Packet Classification Using Multidimensional Cutting

Sumeet Singh, Florin Baboescu, George Varghese

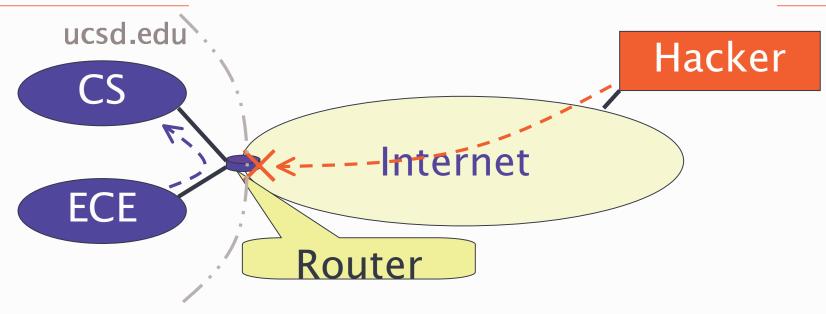
University of California, San Diego (UCSD)

&

Jia Wang

AT&T Labs - Research

Packet Classification (forwarding based on multiple fields)



Rul	les	Destination	Source	Destination Port	Action
Rui	le 1	CS	ece	*	10Gbps
Rui	le2	*	hacker	NetBios	Deny

Classifier \rightarrow A set of predicates (rules).

Packet Classification → Finding the Action associated with the highest priority rule (matching all dimensions) in the classifier.

Rules of the Game

- Fast search speed (4–32ns/pkt throughput)
- Low storage requirements (less than several Mbits)
- Scalability in the number of rules (up to 100K rules)
- Scalability in the number of fields (five fields or more)

Packet Classification: A Crowded Space

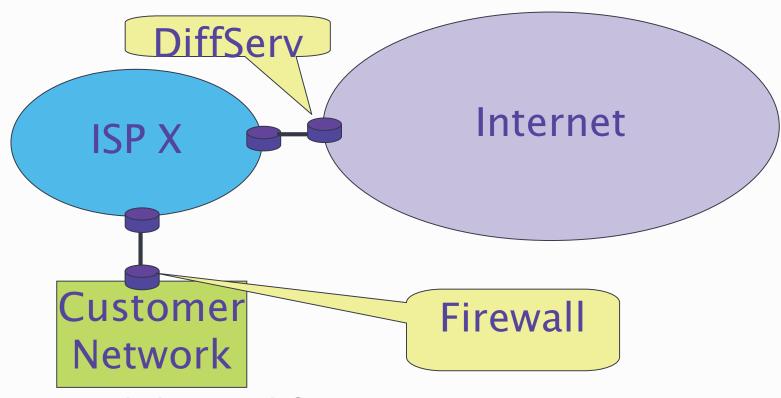
```
1998
Bit Vector
1999
Grid of Tries, Crossproducting
RFC, HiCuts
2000
FIS Trees
2001
ABV
2003
HyperCuts (this paper)
```

Why yet another paper on Packet Classification?

Three Reasons for another solution

- A. Increasing importance of Packet classification.
- B. Inadequate performance of existing schemes:
 - CAMs
 - Algorithmic solutions
- c. Possibility of new ideas.

A) Increasing Importance of Packet Classification



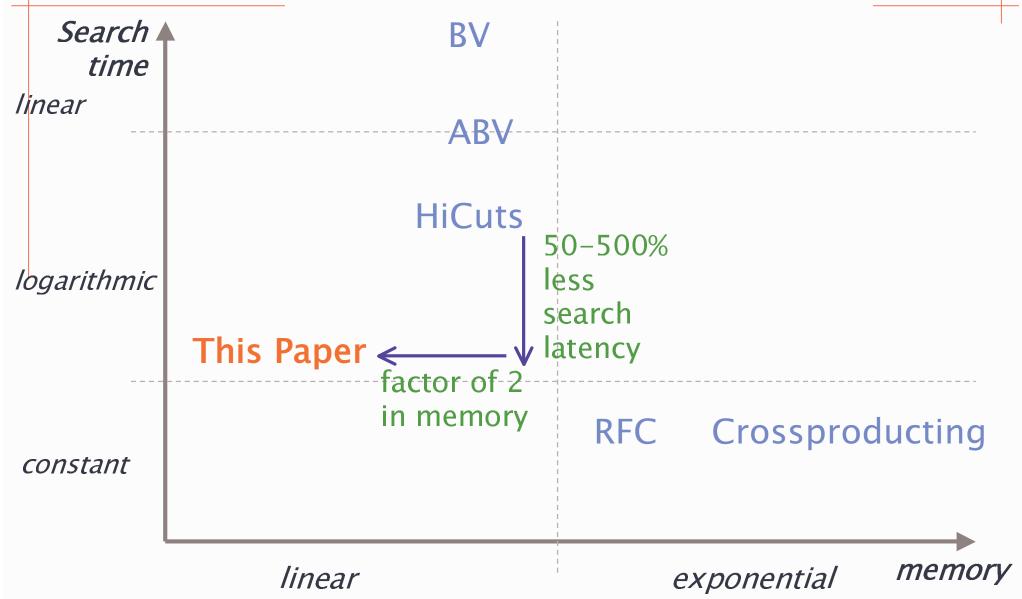
- > Increased demand for new services
 - QoS
 - Security
- Increased speed
 - In 2004, 21% of edge routers will be OC-192 (10Gbps)

B) Inadequate Performance of CAM based solutions

- Content Addressable Memory
 - Hardware Solution (using parallelism)
 - Widely used in the Industry
- Pros:
 - Low latency and high throughput
 - Simple on-chip management scheme
- > Cons:
 - High power (heat!)
 - Large die size (more board space)
 - High cost (compared to SRAM based solutions)
 - All fields must be expressed into a prefix format

An algorithmic solution may be a contender!

B) Inadequate Performance of Existing Algorithmic Schemes



C) Possibility of New Ideas

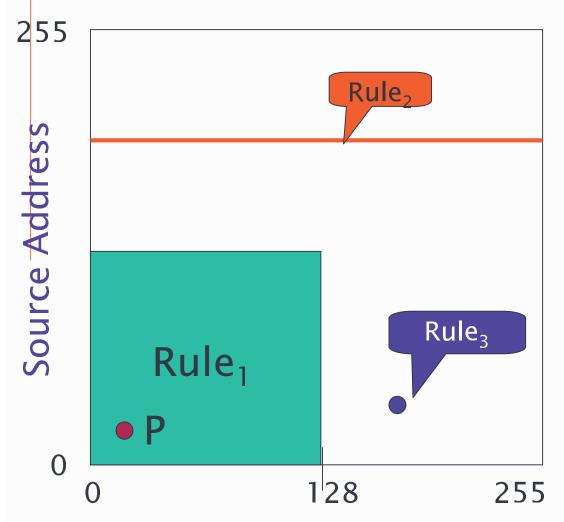
> Main Idea:

 Increasing degrees of freedom involved in decision tree approaches to classification, by using hypercubes to partition the search space instead of hyperplanes.

Outline

- 1. Introduction
- 2. Geometric View of Packet Classification
 - 3. Basic Decision Tree Approaches
 - 4. Basic HyperCuts
 - 5. HyperCuts Optimizations
 - 6. Experimental Results
 - 7. Conclusion

Geometric View of Packet Classification



Rules	Source	Destination
Rule ₁	0 - 127	0 - 127
Rule ₂	192	0 - 255
Rule ₃	32	160

Prefixes represented as ranges

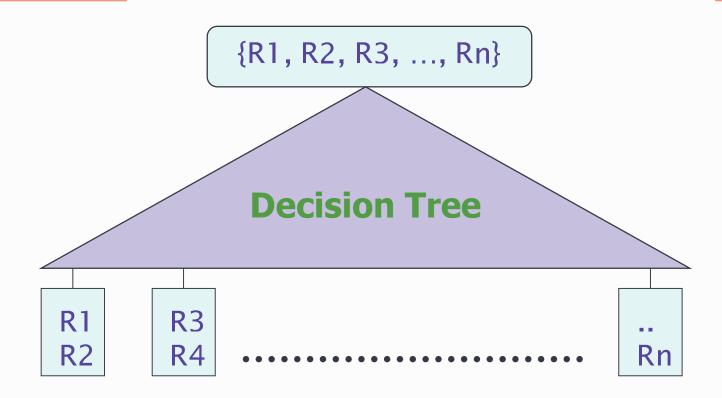
Destination Address

Outline

- 1. Introduction
- 2. Geometric View of Packet Classification

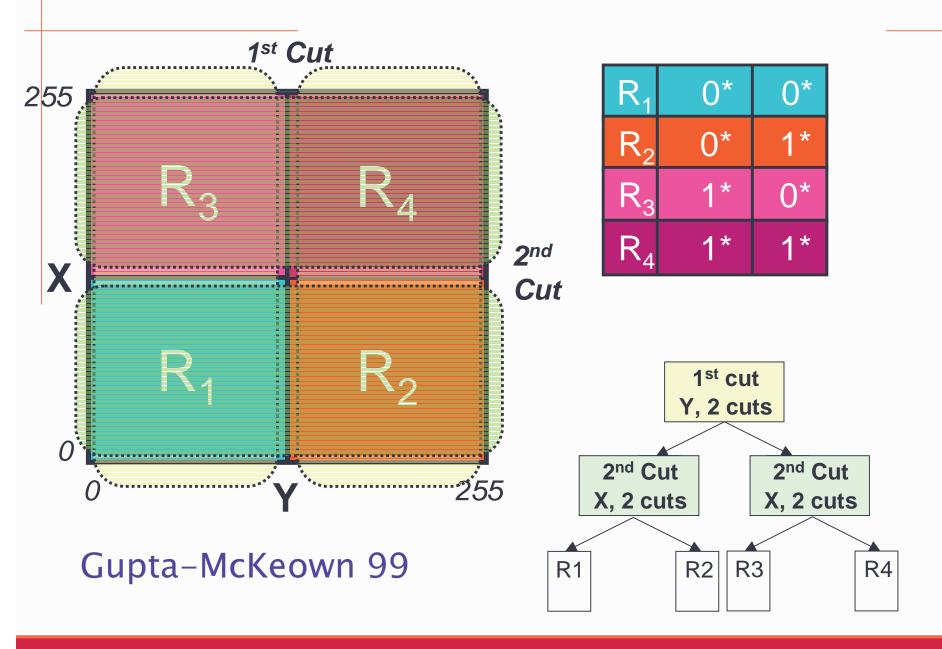
- 3. Basic Decision Tree Approaches
- 4. Basic HyperCuts
- 5. HyperCuts Optimizations
- 6. Experimental Results
- 7. Conclusion

Decision Tree Based Classification



Pioneered by Woo and Gupta-McKeown

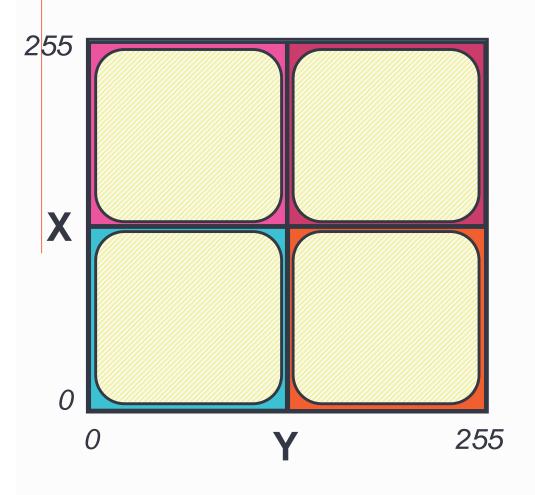
HiCuts:Using single-dimension cutting



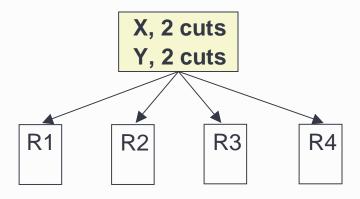
Outline

- 1. Introduction
- 2. Geometric View of Packet Classification
- 3. Basic Decision Tree Approaches
- 4. Basic HyperCuts
- 5. HyperCuts Optimizations
- 6. Experimental Results
- 7. Conclusion

Using multidimensional cutting

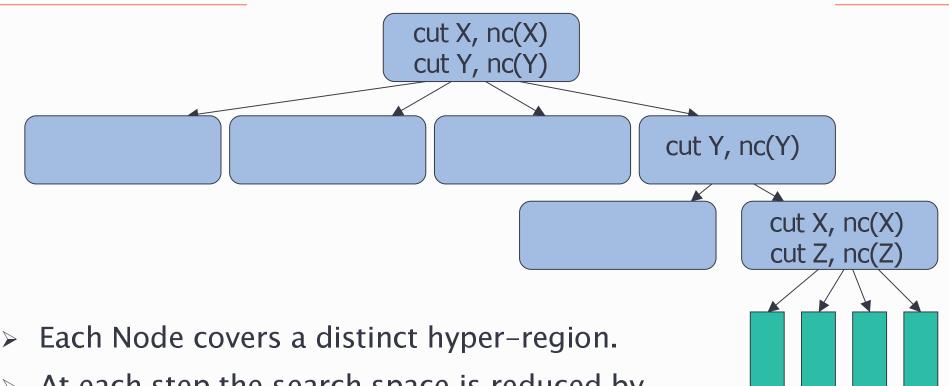


R_1	0*	0*
R_2	0*	1*
R_3	1*	0*
R_4	1*	1*



Cuts are equal size ranges on each dimension, for easy array indexing. The number of cuts in each dimension may be different.

A HyperCuts Decision Tree



- > At each step the search space is reduced by cutting a node (across *k*-dimensions).
- All child-nodes of the same parent cover non-overlapping hyper-regions of same size.
- Leaf-Nodes have a small number of rules represented in a list.

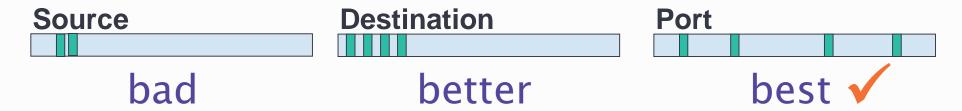
Building the HyperCuts decision tree Step 1: Selecting the Dimensions

> Challenge:

 To pick the dimensions which will lead to the most uniform distribution of the rules when the node is cut into sub-nodes.

> Idea:

Pick dimensions with highest entropy.



Recall: cuts are equal size ranges for easy array indexing!

Building the HyperCuts decision tree Step 2: Selecting the # of cuts

- Goal 1: Minimize search time while keeping space roughly linear
- Strategy 1: Look for multi-dimensional cut that:
 - Minimizes number of rules allocated to any child node
 - Maximum number of Children (cuts) allocated to a node are limited by (space factor * $\sqrt{\#}$ rules in node).
- Goal 2: Avoid exponential time to create a good decision tree
- Strategy 2: Use a greedy strategy which:
 - Determines the optimal cut in each dimension
 - Considers only combinations of these locally optimal cuts

Search algorithm for a HyperCuts decision tree

Current range is entire search space

X:0-255,Y:0-255,Z:0-15

X=240, Y=250, Z=15

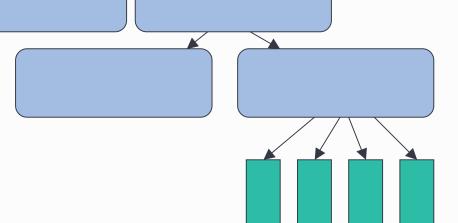
cut X,
$$nc(X)=2$$

cut Y, $nc(Y)=2$

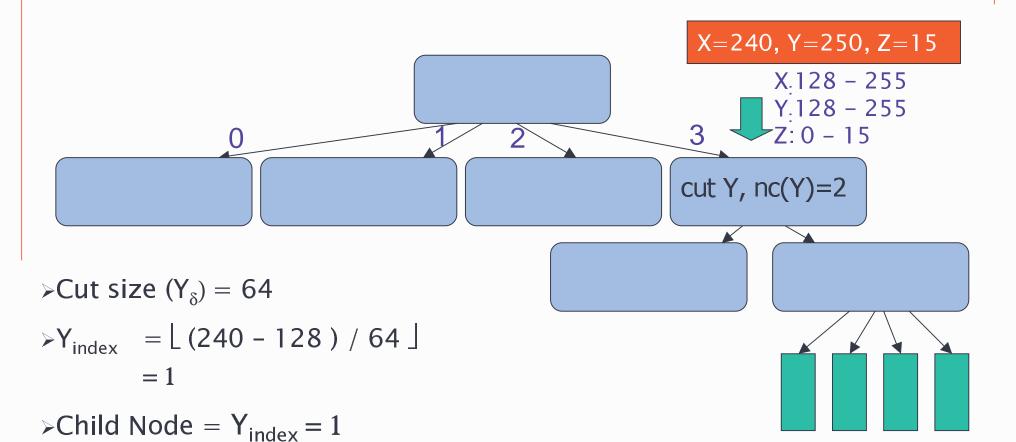
$$Y_{index} = [(250 - 0) / 128] = 1$$

>Child Node =
$$Y_{index} * nc(Y) + X_{index}$$

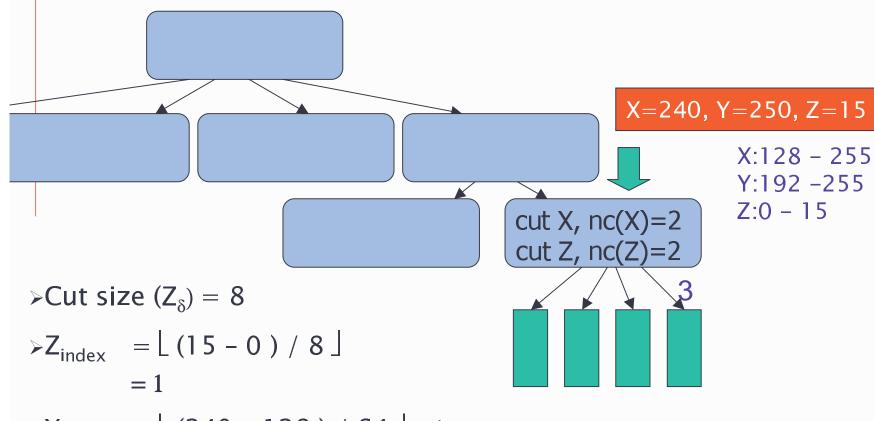
= $(1 * 2) + 1 = 3$



Search algorithm for a HyperCuts decision tree



Search algorithm for a HyperCuts decision tree



Y:192 -255

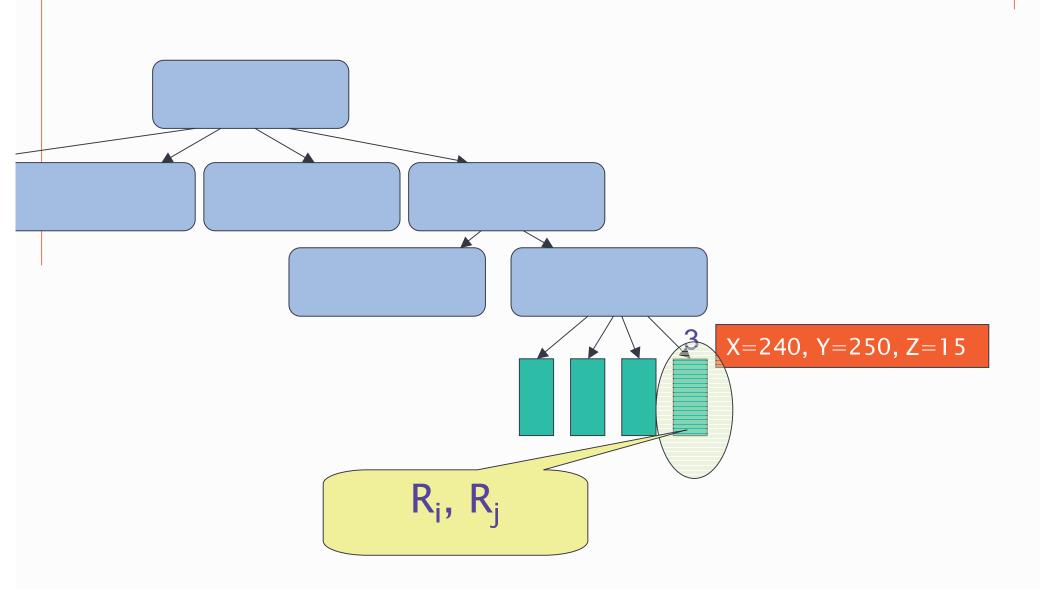
Z:0 - 15

$$>X_{index} = [(240 - 128) / 64] = 1$$

>Child Node =
$$Z_{index} * nc(Z) + X_{index}$$

= $(1 * 2) + 1 = 3$

Search algorithm for a HyperCuts decision tree



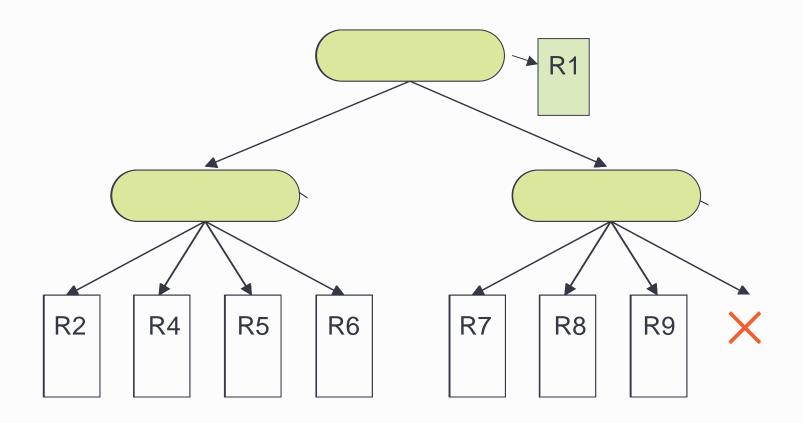
Outline

- 1. Introduction
- 2. Geometric View of Packet Classification
- 3. Basic Decision Tree Approaches
- 4. Basic HyperCuts
- 5. HyperCuts Optimizations
- 6. Experimental Results
- 7. Conclusion

Optimizations for Space Reduction

- Two sources of memory wastage in basic HyperCuts
 - Space consumed by multidimensional arrays.
 Solutions: Node merging, Region compaction
 - Space consumed by replicated rules.
 Solutions: Eliminate Rule overlap, Rule Pushing

Rule Pushing



- > Rule R1 exists in all child-nodes
- > Push-up rule R1 to parent node
- > Wild carded rules often get replicated like this.

Outline

- 1. Introduction
- 2. Geometric View of Packet Classification
- 3. Basic Decision Tree Approaches
- 4. Basic HyperCuts
- 5. HyperCuts Optimizations
- 6. Experimental Results
- 7. Conclusion

Evaluation Methodology

> Metrics:

- Worst case search time in number of memory accesses
- Memory size
- Real & Synthetic Classifiers:
 - Core routers (real from multiple Tier-1 ISPs)
 - Edge routers
 - Firewalls

Notes:

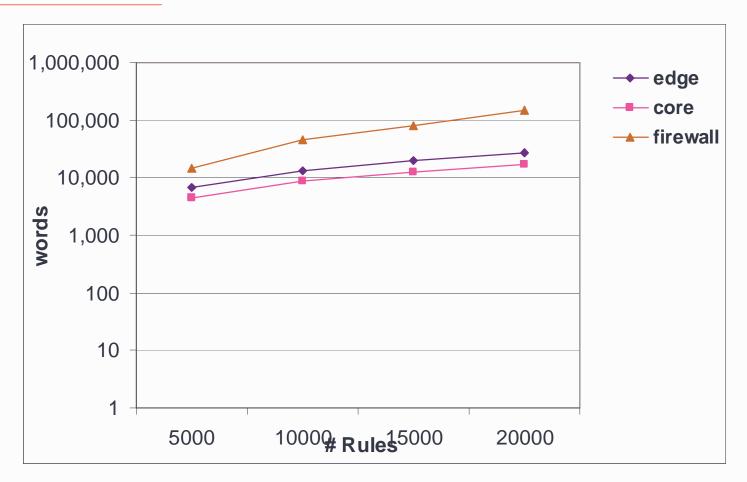
Each rule in the classifiers is a 5 Tuple:

Source Prefix, Destination Prefix, Source Port, Destination Port, Protocol

Evaluation Real Classifiers

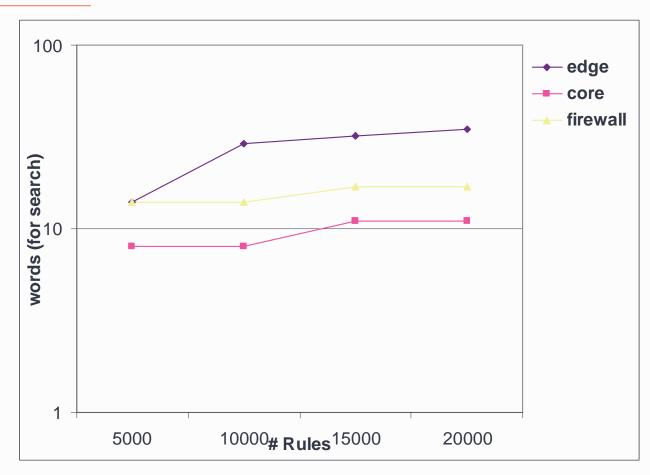
- HyperCuts optimized for memory has 50-500% better search time than HiCuts optimized for speed.
- HyperCuts optimized for speed uses 2 to 10 times less memory than HiCuts optimized for memory.
- Compared with other algorithms (e.g. RFC) for a database of 2800 rules HyperCuts uses 30 times less memory space, while the search speed decreases only by a factor of 50%.

Evaluation Synthetic classifiers (memory)



Memory utilization grows linearly with increase in number of rules

Evaluation Synthetic Classifiers (search)



> Search time does not grow worse than logarithmically

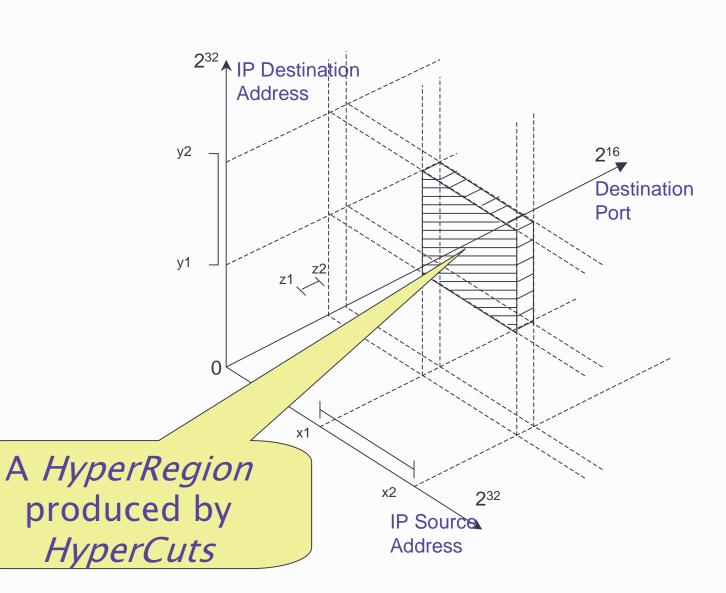
A word of caution

- Classifier characteristics differ between locations and between ISPs (Firewall, Edge, Core Router)
- Cutting across multiple dimensions in each step may not be a good idea:
 - Lose flexibility of adaptive decisions
- For 2-d classifers HyperCuts degenerates to HiCuts for best performance (i.e. select at most 1 dimension at every step)

Conclusion

- HyperCuts has linear space complexity and provides a latency that is at most logarithmic in the number of rules on real classifiers that we studied.
- > The throughput of the algorithm can be improved by pipelining based on the depth of the tree.
- > Based on initial evaluation, It seems that HyperCuts can be a practical contender compared to CAM based solutions.
- Future Direction:
 We have designed a pipeline architecture for hardware implementation of the algorithm, which we are evaluating.

Questions?



Decision Tree Based Algorithms

> Idea:

 build a decision tree based on local optimization decisions at each node

> Pros:

- Tree can be of relatively small height
- Easy to pipeline

> Cons:

- Difficult to predict the performance
- Utilizing fancy heuristics and optimizations may
 - Increase search latency
 - Increase complexity of incremental updates.

What is a Cut?

