Packet Classification Using Multidimensional Cutting

Sumeet Singh Florin Baboescu
UC San Diego
9500 Gilman Drive
La Jolla, CA 92093-0114
susingh@cs.ucsd. edu

UC San Diego
9500 Gilman Drive
La Jolla, CA 92093-011}
baboescu@cs.ucsd. edu

ABSTRACT

This paper introduces a classification algorithm called Hy-
perCuts. Like the previously best known algorithm, HiCuts,
HyperCuts is based on a decision tree structure. Unlike
HiCuts, however, in which each node in the decision tree
represents a hyperplane, each node in the HyperCuts deci-
sion tree represents a k—dimensional hypercube. Using this
extra degree of freedom and a new set of heuristics to find
optimal hypercubes for a given amount of storage, Hyper-
Cuts can provide an order of magnitude improvement over
existing classification algorithms. HyperCuts uses 2 to 10
times less memory than HiCuts optimized for memory, while
the worst case search time of HyperCuts is 50 — 500% better
than that of HiCuts optimized for speed. Compared with
another recent scheme, EGT-PC, HyperCuts uses 1.8 — 7
times less memory space while the worst case search time is
up to 5 times smaller. More importantly, unlike EGT-PC,
HyperCuts can be fully pipelined to provide one classifica-
tion result every packet arrival time, and also allows fast
updates.

Categories and Subject Descriptors
C.2.6 [Internetworking]: Routers—Packet Classification

General Terms
Algorithms

Keywords
Packet Classification, Firewalls, QoS

1. INTRODUCTION

In the last five years, a large number of papers on packet
classification([1, 2, 3, 4, 5, 6, 7, 8]) have been published.
Given that the course of packet classification is now consid-
erably downstream from the fresh springs in which it had

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

S GCOMM' 03, August 25-29, 2003, Karlsruhe, Germany.

Copyright 2003 ACM 1-58113-735-4/03/0008 ...$5.00.

George Varghese

La Jolla, CA 92093-0114

Jia Wang

UC San Diego
9500 Gilman Drive

ATET Labs—Research

Florham Park, NJ07932-0971

varghese@cs.ucsd.edu jiawang@research. att.com

its source, any new paper must answer the question: why is
there yet another paper on packet classification?.

We answer this challenge immediately with three propo-
sitions.

1, Importance: Packet classification continues to grow
in importance, both at the edge and the core.

2, Performance of existing schemes: Existing algo-
rithms still have poor performance, and ternary CAMs still
have issues in terms of power consumption and chip density.

3, New ideas are possible: Despite the large number
of ideas explored, there are still new ideas in packet classifi-
cation that can provide major benefits.

Next, we amplify these three propositions to provide more
detail.

1, Importance of Packet Classification: Both the
core and the edge of the Internet are growing in speed.
Dataquest claims that in 2004, 14% of the links between
core routers will be OC-768 (40 Gbps), and 21% of edge
links will be OC-192 (10 Gbps). Concurrently, demand for
packet classification is increasing in order to provide QoS
and security. These two trends (increased speed, increased
use) combine to put pressure on router vendors, to the point
that IP lookup, traditionally considered hard, is now con-
sidered a solved problem compared to classification.

What do customers use packet classification for? In packet
classification, the handling of a packet can depend on addi-
tional header fields besides the destination IP address. Thus
at the edge, packet classification can be used to mark IP
headers (e.g., TOS, DSCP) with the appropriate QoS levels
based on port fields that indicate the application. At both
the edge and the core, packet classification can be used to
discard or rate control certain offending application packets
for the purposes of security.

The increased virtualization of the Internet via Virtual
LANSs and Virtual Private networks (VPNs) contributes to
the growth of classifiers. VPNs are growing in importance,
and a single ISP router must support multiple customer
VPNs, each of which can contribute a classifier. Thus many
classification chips for edge routers routinely support 32K
rules.! Perhaps surprisingly, some ISPs require that even
core routers [5] support up to 2800 rule classifiers.

2, Performance of Existing Schemes: Packet classifi-
cation algorithms use two dominant resources, memory and

Tt is also worth noting the increased trend towards “deep”
packet classification based on application headers and even
on packet contents. While our algorithms can help with deep
packet classification, this paper and the evaluation focuses
on traditional rule databases based on IP 5-tuples.

time. The need for large memory can be finessed using cheap
DRAM; however, speed requirements often dictate the use
of expensive SRAM, making memory usage important. The
need for speed can sometimes be finessed by pipelining but
increased pipeline depths add expense, and pipelines larger
than 32 stages are rare. Thus reducing worst-case search
time in memory references is equally important.

All existing packet classification algorithms trade memory
for time, ranging from schemes like RFC [2] (that is fast but
takes excessive storage) to linear search (that is slow but
takes minimal storage). The current algorithms with the
best time-space tradeoffs appear to be EGT-PC [5] and Hi-
Cuts [1]. Unfortunately, while the tradeoffs have been con-
stantly improving, the time taken for a reasonable amount
of memory is still too poor for practical deployment.

Because of problems with existing algorithmic schemes,
most vendors use Ternary CAMs, which use brute-force par-
allel hardware to simultaneously check for all rules. The
main advantages of TCAMs over algorithmic solutions are
speed and determinism (TCAMs work for all databases not
just “typical databases”).

Newer TCAM designs use aggressive banking techniques
to reduce power, and better processes to increase density.
However, CAMs fundamentally have to contend with re-
duced density (uses compare logic per bit) and increased
power (uses parallel comparison). Two less fundamental
problems are the need for rules with range specifications
to be translated into several CAM entries, and the need
for glue logic. It would be foolhardy for us to say that
CAMs are not strong contenders. However, problems with
CAMs have made vendors consider algorithmic alternatives.
These include Cypress, Fast-Chip, EZchip, and Integrated
Silicon [9].

Thus two reasons to continue to investigate new classi-
fication schemes are: 1, Need: Given a need for CAM al-
ternatives, any new algorithmic scheme that can improve
the space-time tradeoff of existing schemes by an order of
magnitude can be useful in practice. 2, Scientific Interest:
Decoupling from the exigencies of the market, new ideas for
a fundamental geometric problem should be of interest to
academic researchers.

3, New ideas: Besides improving performance on a wide
range of classifiers (firewall and core router classifiers) by an
order of magnitude, we introduce two intuitive new ideas.

1, Multidimensional Cutting: The classification problem
can be considered geometrically as follows: given a set of
boxes in N-space and a point, find the set of boxes that
contain the point. While this problem is provably hard in
the worst case, one of the best existing heuristic algorithms,
HiCuts [1] solves this problem recursively by cutting the
space of boxes at each step using a hyperplane. We explore
the natural degree of freedom, which is to use a hypercube
instead of a hyperplane. This allows our algorithm to simu-
late several cuts of HiCuts in one cut.

2, Pulling Rules up the Decision Tree: Recursive cutting
can be embodied using a decision tree in which each node
represents a cut and leaves represent rules. In general, some
linear searching at the leaves is useful to reduce storage. Our
observation is that a heavily wildcarded rule often ends up
in many leaves, increasing storage unnecessarily. Instead,
we simply move all common rules in a subtree to a linear
list at the root of the subtree.

Thus packet classification is an important problem and

there is a need for new algorithms. Finally, this paper in-
troduces a new algorithm that uses two new ideas to (of-
ten) produce an order of magnitude improvement in per-
formance. The rest of the paper is organized as follows.
Section 2 formally describes the problem, Section 3 moti-
vates our solution, Section 4 describes related work, Sec-
tion 5 describes our new algorithm, Section 6 summarizes
performance results, and Section 7 states our conclusions.

2. PACKET CLASSIFICATION PROBLEM

Individual entries for classifying a packet are called rules/
The packet classification problem is to determine the first
matching rule for each incoming message at a router.

The classifier or rule database in a router consists of a
finite set of rules, R1, Rz ... Rn. Each rule is a combination
of K values, one for each header field in the packet. Each
field in a rule is allowed three kinds of matches: exact match,
prefix match, or range match. In an exact match, the header
field of the packet should exactly match the rule field—for
instance, this is useful for protocol and flag fields. In a
prefix match, the rule field should be a prefix of the header
field—this could be useful for blocking access from a certain
subnetwork. In a range match, the header values should lie
in the range specified by the rule—this can be useful for
specifying port number ranges.

A packet P matches rule R; if all the header fields Fiield;,
j = 1...k of the packet match the corresponding fields in
R;. If a packet matches multiple rules, the matching rule
with the smallest index is returned.

3. WHY HYPERCUTS?

In this section, we motivate the use of hypercubes with a
simple geometric example. The geometric view of classifica-
tion is due to Lakshman and Stiliadis [3].

For example, a 32-bit prefix like 00x can be viewed as a
range of addresses from 000...00 to 001...11 on the num-
ber line from 0 to 232, If prefixes correspond to line segments
geometrically, what do rules correspond to? It is not hard
to see that two dimensional rules correspond to rectangles,
three dimensional rules correspond to cubes, and so on. A
given address becomes a point. Thus from a geometric point
of view the problem of packet classification reduces to find-
ing the lowest cost box that contains the given point.

Figure 1 displays a toy example of a two dimensional clas-
sifier with 4 rules: R; ... R4. Each rule is represented by a
rectangle in two dimensional space. The left figure shows
the action of HiCuts [1]. HiCuts builds a decision tree using
local optimization decisions at each node to choose the next
dimension to test, and how many cuts to make in the chosen
dimension. The leaves of the HiCuts tree store a list of rules
that may match the search path to the leaf.

The left part of Figure 1 shows how the HiCuts algorithm
works on the example rule set. Assuming the maximum
number of rules held in a leaf is 1, no matter how many cuts
are going to be executed at a time, the HiCuts algorithm
requires at least two levels in the decision tree.

The HyperCuts algorithm introduced in this paper elim-
inates this limitation in HiCuts by introducing one more
degree of freedom. Each node in the decision tree represents
a decision taken on the most representative dimensions, as
opposed to using only a single dimension. For each of the
chosen dimensions, the number of cuts is computed based on

1st Step

‘Ymax ' v :
1 . max
! HiCuts i
2ndStep| . N ,
i |
- -
Ymin . i
Xmin ' Xmax Ymin :
Xmax

Figure 1: HiCuts vs. HyperCuts. A Geometric representation of a 4-rule classifier. HiCuts(on left) is applied to the 4-rule
classifier. If the leaf node can only accommodate one rule than the decision tree in HiCuts has height at least 2. By contrast,
HyperCuts (on right) can break the space into four smaller squares in one cut, resulting in a decision tree of height 1.

a metric dependent on the amount of space that is available
for the search structure. In the example in Figure 1 Hyper-
Cuts(on the right) cuts the plane into four squares with one
direct cut, reducing the height of the decision tree to 1.

This is extremely reminiscent of how a B-tree can reduce
the height of a binary tree by using a higher radix, say d.
In the case of the B-tree, this does nothing to reduce the
fundamental log, N bound on searching for one item among
N items. This is because finding which of the d-pointers to
follow at each node requires log, d time. Thus the reader
may feel we are cheating: the use of higher dimensional cuts
may slow down search times at each node, which can in turn
offset any decrease in tree height.

However, this is not the case. We decide which pointer to
follow at each node using essentially array indexing which
costs one memory access regardless of the number of children
at a node. It is easiest to see how array indexing works in one
dimension. Imagine a 6-bit address space is partitioned into
four equally spaced ranges (i.e., cuts) [0—15], [16 —31], [32—
47] and [48 — 63]. Each range has an associated pointer, and
the pointers are stored as four consecutive elements in an
array.

To compute which pointer corresponds to a point, say 33,
we find the quotient? when 33 is divided by the range width
16. Since the quotient is 2, we index into the third element
of the array, assuming array indices start at 0. This simple
indexing scheme can be generalized to multiple dimensions
as long as the cut widths are fixed in each dimension. The
bottom line is that search time at a node takes 1 memory
access regardless of the number of cuts. Note that HiCuts
also allows multiple cuts per node; it just restricts these
cuts to be along one dimension. HyperCuts uses the extra
degree of freedom to reduce tree height without sacrificing
node search times.

The use of arrays can, however, increase storage because
of empty and redundant pointers. We call such useless ar-
ray locations “dead space”. Fortunately, we can eliminate
much of the “dead space” (as in HiCuts) by eliminating re-
dundant subtrees. Whenever, two pointers point to identical
subtrees, we eliminate one of the subtrees and make the cor-

2This is easily computed in hardware using shifts.

responding pointer point to the other subtree. This converts
the Decision tree into a Directed Acyclic Graph. Finally, we
apply the heuristic of moving up common rules to reduce
storage even further. We note that one could also eliminate
empty array pointers using simple bitmap compression as in
the Lulea [10] IP lookup algorithm.

Notice also that combining cuts in several dimensions as
in HyperCuts can increase storage. For example, consider a
HiCuts tree in which the root uses 2 cuts on F'ield;, which
then leads to two children A and B. Suppose A uses 8 cuts
on Fields, and B uses 2 cuts on F'ields. Then the HiCuts
tree will only have 2 4+ 8 + 2 = 12 pointers. However, if Hy-
perCuts were to combine all the three fields in a single node,
it would require 2 * 8 x 2 = 32 pointers. But HyperCuts can
always simulate HiCuts and not combine fields if the stor-
age increase (relative to the gain in time) is large. We have
found in our experiments that this extra degree of freedom
in HyperCuts is extremely useful for core router databases,
but less so for edge router databases.

4. RELATED WORK

The simplest classification algorithm is a linear search
through the rules of the classifier. For a large number of rules
this approach implies a large search time. However it is very
efficient in terms of memory. Several algorithms have been
developed for the case of rules on two fields [3, 8, 11, 6] but
these do not solve the general problem of K —dimensional
packet classification.

Srinivasan et al. [12] build a table of all possible field value
combinations (cross-products) and precompute the earliest
rule matching each cross-product. Search can be done quickly
by doing separate lookups on each field, pasting the re-
sults together into a crossproduct, and indexing into the
crossproduct table. Unfortunately, the size of this table
grows astronomically with the number of rules.

In the bit vector linear search algorithm [3], search is first
done in each dimension separately to yield the set of rules
that match the packet in that particular dimension. These
sets are then intersected efficiently using bitmaps to yield
the set of rules that match in all dimensions. With hard-
ware assistance, this algorithm works well for moderately
size classifiers.

Gupta and McKeown [1, 2] introduced two new algo-
rithms, RFC (which is very fast but whose memory needs
are large) and HiCuts (which we describe later). They also
made the seminal observation that a given packet matches
only a few rules even in large classifiers.

Baboescu and Varghese [4] exploit the sparse matching
observation to reduce the search times for the algorithm
described in [3]. Qiu et al [13] exploit the observation that
any packet matches at most a few distinct values in each
field to suggest backtracking trie search as a viable (though
fairly slow) alternative.

The algorithms in the previous work with the best perfor-
mance are HiCuts [1] RFC [2], and EGT-PC [5]. We evaluate
HyperCuts against all these three algorithms in Section 6.
We now describe decision tree based classification algorithms
which are the starting point in the development of Hyper-
Cuts. To provide a running example, we consider the small
firewall database in Figure 2. The example contains twelve
rules on five fields.

4.1 Decision Tree Algorithms

Work on decision-tree based classification algorithms based
on geometric cutting was pioneered in concurrent papers by
Gupta and McKeown [1] and Woo[7]. Both schemes build a
decision tree using local optimization decisions at each node
to choose the next bit (or next field in the case of HiCuts [1])
to test. A simple criterion used in [1] is to balance storage
and time.

The paper by Woo [7] also introduced a second important
degree of freedom by considering multiple decision trees. For
example, it may help to place all the rules with wildcards
in both the source IP field and destination IP field in one
tree, and the remainder in a second tree. While this can
increase search time, it can greatly reduce storage. This is
because rules with a large number of wildcards often end
up replicated in most of the leaf nodes when using a single
decision tree.

Both papers [7] and [1] use a small amount of linear search-
ing after traversing the decision tree. Each leaf in the deci-
sion tree holds a small list of possible matching rules. Dur-
ing classification, the tree is traversed based on the packet
header, and a leaf node is identified. The list of rules as-
sociated with the leaf node is then traversed to identify the
highest priority matching rule. Consider a decision tree with
10,000 leaves; assume that each leaf is associated with up to
4 rules. While it may be possible to distinguish these 4 rules
by lengthening the decision tree in height, this lengthened
decision tree could add 40,000 extra nodes of storage.

Thus, in balancing storage with time, it may be better to
settle for a small amount of linear searching (e.g., among
one of 4 possible rules) at the end of tree search. Intuitively,
this can help because the storage of a tree can increase ex-
ponentially with its height.

The Hierarchical Cuttings (HiCuts) scheme described in
[1] is similar in spirit to [7] but uses range checks instead of
bit tests at each node of the decision tree. Range checks are
slightly more general than bit tests because a range check
such as 10 < D < 35 for a destination address D cannot
be emulated by a bit test. A range test (cut) can be viewed
geometrically in two dimensions as a line in either dimension
that splits the space into half; in general, each range cut is
a hyperplane.

We now describe HiCuts in more detail because we use it

as point of departure. In HiCuts, each node can be regarded
as a k—dimensional box cut up into a set of nc smaller boxes.
The cutting is done using heuristics which take into account
the structure of the classifiers. The size of a box depends on
the range covered by the box in each dimension. For exam-
ple, the root node for a 5—tuple (IP Source and Destination,
Port Source and Destination, Protocol) can be viewed as the
box [0, 232 1] X0, 232 1] X [0, 2** 1] X [0, 2'¢—1] X [0, 28 —1].
Associated with each box is the set of rules which intersect
the box.

Choosing the number of boxes a node is split into (nc),
requires several heuristics which tradeoff the depth of the
decision tree versus the tree memory space. The dimension
on which a cut may be executed is chosen, roughly speaking,
to minimize the maximum number of rules in any partition.
Picking the number of partitions (nc) also clearly affects the
overall memory space. The algorithm tunes nc as a function
of a space measure. It uses two parameters: (1) binth (which
limits the amount of linear searching at leaves) and (2) spfac
(a multiplier which limits the amount of storage increase
caused by executing cuts at a node).

Figure 3 shows a decision tree for the Example in Figure 2.
A range representation for the set of rules in Figure 2 is
shown in Figure 4. Assume that a packet with the header
(0010, 1101, 00,01, TCP) needs to be classified. The path
followed by this packet is shown in Figure 3. At the root
node, marked A, based on the value in its second field the
packet is directed to the node marked B. At Node B, search
uses information in the third field to direct search to a leaf
node containing a small list of two possible matches. In this
case, Ry is the lowest cost rule matching the packet.

For this example, observe that even if we were able to cre-
ate a number of partitions(cuts) based on each of the distinct
values that occur in the chosen dimension, we cannot get a
height of 1 for this tree, assuming that the maximum length
of the list of rules at a leaf is less than 4. Figure 5 shows
that even if we make 16 partitions on the second field (which
is the field with the largest number of unique elements) the
partition associated with a Fieldos = 10 contains 6 rules,
which in turn requires one more node for segregating the
rules into groups of at most 4. By contrast, the HyperCuts
tree will be able to obtain a height of 1.

Secondly, observe also that all the children of the node
on Fields share the set of rules {R7, Rio, R11}. This du-
plication contributes to an increase in the memory used by
HiCuts which we can eliminate to some extent in HyperCuts
by pulling up common rules to the appropriate ancestor.

5. HYPERCUTS DESCRIPTION

HyperCuts is a decision tree based algorithm. At each
node in the decision tree, the set of current rules is split
based on information from one or more fields in the rule.
Each time a packet arrives, the decision tree is traversed
based on information in the packet header to find a leaf
node. A small number of matching rules that are stored
in the leaf node are linearly traversed to find the highest
priority rule that matches the packet. This basic structure
is similar to the work in [7, 1] except for the possible use of
two or more fields at each node. Each node in the decision
tree has associated with it:

e i: A region R(v) that is covered. In the case of a
5—field classifier, this can be represented as a 5 tu-

Rule | Fieldy | Fields | Fields | Fieldy | Fields | ACTION
Ro 000x* 111% 10 * UDP acto
Ry 000 111 01 10 UDP acto
R 000 10x* * 10 TCP acty
R3 000 10x* * 01 TCP acto
R4 000 10x* 10 11 TCP acty
Rs 0% 111 10 01 UDP acto
Rs 0x 111% 10 10 UDP acto
R7 0% 1 * * TCP acto
Rs * 01% * * TCP acto
Ro * 0% * 01 UDP acto
Rio | * * * * UDP acts
Ri1 * * * * TCP acty

Figure 2: A simple example with 12 rules on five fields.

Rule | Field, | Fields Flields | Fieldy | Fields | ACTION
Ro 0—-1 14—-15 | 2 0-—3 0 acto
Ry 0-—1 14-15 |1 2 0 acto
Ro 0-—1 8—11 0-3 2 1 acty
R3 0—1 8 —11 0-—3 1 1 acto
Ry 0—-1 8—11 2 3 1 act1
Rs 0-7 14—-15| 2 1 0 acto
Rsg 0-7 14—-15| 2 2 0 acto
R~ 0—-7 8—15 0-3 0-3 1 acts
Rsg 0—15 [4—-7 0-3 0—-3 1 acts
Ry 0—15 | 0—7 0-3 1 0 acto
Rip |0—15 | 0—15 0-3 0-3 0 acts
Ri; |0—15 | 0—15 0-3 0-—3 1 acty

Figure 4: A range based representation of the example with 12 rules on five fields shown in Figure 2.

(0010, 1101, 00, 01, TCP)
(sample packet header)

\

path on sample header

Figure 3: A HiCuts decision tree built for the database of
Figure 2. Fields is chosen for the root node because it has the
largest number of unique values. A sample packet header and
a sample search path are also shown.

ple: [IPSmin-IPSmaz, IPDmin-IPDestmaz, PSmin-
PSmax, PDmin-PDmaz, ProtMin-ProtMaz];

e ii: A number of cuts (NC) and a corresponding array
of NC pointers;

e iii: A list of rules that may match. The maximum
number of rules stored in a node is predetermined.

Figure 6 shows HyperCuts in action. The decision tree is
built for the same database as in Figure 4. The tree consists
of a single root node which covers the region [0 — 15,0 —

15,0 — 3,0 — 3,0 — 1] that is split into sub-regions with 16
cuts. There are 4 cuts based on field Fields, 2 cuts based
on Fields, and 2 cuts based on the Fields. Because of the
difficulty of drawing a 3-dimensional array on three fields,
Figure 6 shows the root node in terms of its projections
on Fieldz. This results in four 2-dimensional subarrays for
each of the four possible ranges of Fields. Each 2D subar-
ray is built on Fields (shown vertically) and Fields (shown
horizontally). Note that since there are 4 cuts in Fields,
the assumed 4-bit field splits into four ranges of equal size
0—-3,4—7,8—11 and 12 — 15.

As an example, consider the fourth and rightmost sub-
array, and the rightmost element in the second row of this
subarray. This corresponds to a Flields range of 0 — 1, and
a Fields value of 1, and hence represents the leaf node as-
sociated with the region [0—15,12—15,0—3,0—1,1]. This
subarray element has two associated rules: R; and Rii1. It
is easy to verify from the rule set of Figure 4 that these are
the two only rules that match this region.

Note that the HyperCuts algorithm for this database reaches
any of the leaf nodes in at most one step. By comparison,
the HiCuts algorithm (as shown in Figure 5) cannot reach
the leaf nodes in less than two steps (for an equivalent bucket
size).

To describe HyperCuts, we need to describe two differ-
ent algorithms. The first is the Preprocessing Algorithm in
which the decision tree is built based on the rules in the
classifier. The second algorithm is the search algorithm, in

Figure 5: This picture helps explain why no HiCuts tree for
the database of Figure 2 can have height equal to 1. Compared
to Figure 3, even if we increase the number of cuts in Flields to
the maximum number that it can possibly use (16), the region
associated with F'ieldo = 10 still has 6 rules. This in turn
requires another search node because linear searching at a leaf
is limited to 4 rules.

which for any packet the tree is traversed to identify the
matching rule. A fast update algorithm can also be imple-
mented; however we do not go into the details of incremental
update in this paper.

Before describing our algorithm, we make some observa-
tions:

e i. The decision tree should try at each step(node)
to eliminate as many rules as possible from further
consideration.

e ii. The maximum number of steps to be taken during
a search should be minimized.

e iii. Certain rules may not be able to be segregated
without a further increase in the overall complexity
of the algorithm (both space and time). Therefore a
separate approach should be taken to deal with them.
Rules in this category are rules with wildcards (any)
in both IP source and IP destination fields.?

e iv. As in any packet classification scheme there is
always a tradeoff between the search time and the
memory space occupied by the search structures. As
with [7, 1], when the number of rules is small, linear
search may be a tradeoff. That is why, in order to re-
duce the overall memory space and to keep the depth
of the decision tree at a minimum, a node is not subdi-
vided if the number of rules associated with the node
is smaller than a predefined threshold.

Our approach takes the four observations into considera-
tion to build a tree as follows. At each node (1) it identifies
the dimensions (fields) with the highest number of distinct
elements (2) for each of the identified dimensions it deter-
mines the number of cuts to be done based on a tradeoff

3A separate decision tree could be built for the subset of
rules that contain wildcards in both IP source and destina-
tion fields. Both the original decision tree as well as the ad-
ditional one are traversed during the search. For any packet
the matching rule is the highest priority rule from the union
of the result sets.

between the depth of the tree to be obtained and the mem-
ory size that is available, (3) it executes the cuts on the
chosen dimension creating a number NC' of children to the
number of cuts that are executed. No further cuts are ex-
ecuted if the number of rules associated with a node are
smaller than a predetermined value that we call bucketSize.

2D subarray 2D subarray 2D subarray 2D subarray
for Field,= 0-3 for Field,,= 4-7 for Field,= 8-11 for Field,= 12-15
2 2 2
R10(R11 R10(R8 R10(R2 RO |R7
© o R11 o R4 ®|R1 |R11
Ao AN Ao R7 AN|R6
o " o Ruy| | |R10
© ©] ©
i R9 |[R11 ic |R9 [RS8 L |R10|R3 ic |RO |R7
- |R10 <| R10| R11 i R7 <|R5 |R11
o o o R11 o|R10
0 1 0 1 0 1 0 1
Fields-»-> Fielqs»--> Fields---> Fields--->

Hypercuts tree consisting of a single 3D
root node array. The 3D array is shown as four
2D subarrays for 4 possible ranges of Field ,.

Figure 6: The HyperCuts decision tree for the database of
Figure 4 consists of a single 3-dimensional root array built using
4 cuts on field Fields, and 2 cuts each on Fields and Flields.
The 3D root array is shown as four 2D subarrays for the four
possible ranges of F'ields. Contrast this single node tree with
Figure 5 which shows that any HiCuts tree must have height
at least two.

5.1 Buildingthe HyperCuts Tree from Scratch

The algorithm starts with a set of IV rules, each of the
rules containing K dimensions. A subset of all the rules
containing wildcards in both IP source and IP destination
fields is created. We call this W-Set. We call R-Set the
subset of remaining rules after extracting W-Set. A decision
tree is built for both R-Set and W-Set.

FEach node identifies a region and has associated with it
a set of rules S that match the region. If the size of the
set of rules at the current node is larger than the acceptable
bucket size, the node is split in a number (NC) of child
nodes, where each child node identifies a sub-region of the
region associated with the current node. Identifying the
number of child nodes as well as the sub-region associated
with each of the child nodes is a two step process, which tries
to locally optimize the split(s) such that the distribution of
the rules among the child nodes is optimal. This process
includes (1) identifying the most suitable set of dimensions
to split and (2) determining the number of splits to be done
in each of the chosen dimensions.

5.1.1 Choosing the dimensions

The challenge is to pick the dimensions which will lead to
the most uniform distribution of the rules when the node is
split into sub-nodes. To the best of our knowledge there is
no consummate method of picking this set of dimension(s).
Therefore, we propose a set of heuristics to help make an
effective decision.

A first solution is to consider the set of dimensions with
the largest number of unique elements. However, this is
not very satisfactory because choosing more dimensions will
almost always increase the number of unique elements, and
thus the algorithm might always choose all 5 dimensions.
But this can have adverse affects on storage because of the
storage cost of 5-dimensional arrays. On the other hand,

observe that if adding a dimension adds only a few unique
elements, then the small increase in search discrimination is
probably not worth the extra storage penalty.

To quantify this point of diminishing returns, we consider
instead the set of dimensions for which the number of unique
elements is greater than the mean of the number of unique
elements for all the dimensions under consideration. For
example, if for the five dimensions the number of unique
elements in each of the dimensions are: 45, 15, 35, 10 and
3 with a mean of 22, then the dimensions which should be
selected for splitting are the first and the third. This is
because these have values greater than the mean.

We have also experimented with the ratio of the number
of unique elements to the size of the region represented by
that dimension. For example consider the root node which
covers the region [0...2%2 —1] for IP source and destination
fields, and a region [0...2* — 1] for source and destination
port numbers. If the number of unique elements in the IP
Source and the number of unique elements in the source port
number is the same, then it may be logical to first select the
source port as the first field to split because the resulting
split region sizes are smaller than when using the IP source
field. Formally, we can use as a measure the ratio of the
number of unique elements to the total number of possible
values covered by the range representing the dimension.

5.1.2 Picking the number of cuts

Once the set of dimensions (D) on which the splits are to
be executed at a node is chosen, the next step is to establish
the number of cuts to execute in each of the dimensions.
This means picking the set of numbers {nc(i)}icp, where
nc(i) represents the number of cuts to be executed on the
i — th dimension.

Since our goal is to create a search tree with minimal mem-
ory requirements, we steal a leaf from the HiCuts building
algorithm and limit the maximum number of child nodes
that the current node can be split into by a factor of the
number of rules contained in the node. We define this as
the function f(N) = spfac* N where N is the number of
rules in the current node and spfac is a space factor param-
eter that can be varied to tradeoff storage against time.

The total number of split operations to be executed is
NC = T],cp nc(i). Ideally we should try all possible combi-
nations of {nc(i) }sep where the NC' =[], , nc(i) is bounded

by f(N) = spfacxv/N to determine which set of {nc(i)} pro-
vides the best distribution with the least amount of memory
increase. However, considering every possible combination
is computationally infeasible. Hence, we select the follow-
ing greedy approach: we first choose separately, for each
dimension i, the local optimum number of cuts nc(i) to be
executed, and then determine the best combination centered
around these values.

To identify the number nc(¢) of cuts for each of the cutting
dimensions we keep track of: (1) the mean of the number of
rules in each of the child nodes, (2) the maximum number of
rules in any one of the child nodes, (3) the number of empty
child nodes*. A set of iterations are executed; at each step
the current value for nc(7) is multiplied by two.

If after a number of subsequent steps there is no significant
change in the mean or the maximum number of rules in the

4These need to be taken into consideration in order to avoid
a possible memory blowup

child nodes, or there is a significant increase in the number
of empty child nodes, then we backtrack and use the last
known best value as the chosen number of splits to be made
along the dimension under consideration.®

5.1.3 Algorithm Refinements

The number of child nodes as well as the number of rules
stored in a node have a direct relationship to the memory
space occupied by the search structure. Therefore we con-
sider the following mechanisms to reduce them and implic-
itly to reduce the memory space occupied by the algorithm.

We use a set of four heuristics for doing these reductions.
They are based on: (1) node merging, (2) rule overlap, (3)
region compaction and (4) identifying a common subset of
rules which are covered by all the child nodes. The first two
heuristics were also discussed in [7, 1]. However the last two
are introduced here for the first time.

Node Merging: We reduce the memory space occupied by
the algorithm by merging the nodes which have associated
with them the same set of rules. Figure 8 shows a situa-
tion in which two nodes that share the same set of rules are
merged into a single node. The single node has been as-
signed the same set of rules as the previous ones, and covers
a contiguous region that is the union of the regions of its
children.

Rule Overlap: The leaf nodes store a list of rules which
are matched by values from the subregion covered by the
node. However there may be situations, such as in Figure 7,
in which a rule R» is assigned to a node in which there is a
rule Ry with a higher priority which also covers the whole
region covered by the rule R> in the node. In this case there
is no reason to store the rule Rs in the node because it will
never be chosen. As a result rule Rz may be eliminated from
the list of rules that are covered by the node.

Region Compaction: Each node has associated with it a
region that it covers as well as a set of rules that are a
match. However there are cases as in Figure 9 in which
the region covered by the rules is smaller than the overall
size of the region associated with the node. Therefore a
reasonable optimization is to shrink the region associated
with the node to the minimum cover that includes the areas
covered by all the rules in the set of rules associated with
the region. Figure 9 shows an example in which a node has
an associated region {[Xmin, Xmaz], [Ymin, Ymaz]} and a set
of rules it covers {R1, Rz, R3, Ra}. The area associated with
the node is reduced to {[X nin, Xmaz), [Ymin, Ymaz]} Which
is the minimum cover that includes the areas covered by all
the rules {R1...Ra}.

Pushing Common Rule Subsets Upwards: In this heuris-
tic, if all the child nodes have associated a subset of rules
that are identical, then the parent node will store this sub-
set instead of the children. If we choose to do this opti-
mization, then rules may be associated with non-leaf nodes.
Searching for such rules in non-leaf nodes can add an un-
necessary memory access at each node with an empty list
if implemented naively using a list pointer. Instead, we use
a bitmap in the header of each node to distinguish between
nodes that have empty and non-empty lists without using
an extra memory access.

The procedure to implement this optimization executes a
bottom-up traversal of the tree in order to identify all the

5A hash based cut is done for the fields in which an exact
match needs to be executed (e.g. the protocol field)

possible situations. Figure 10 shows an example in which all
the child nodes of A share the same subset of rules {R1, Ra}.
As a result A will store this subset of rules { R1, Rz} instead
of being kept at the children.
The pseudocode for the tree building algorithm is:

CreateNodeP(l1,7r1,l2,72, ... ,lk, Tk, R);
if (|R| < bucketSize) return;
for i — 1 to k do

N; — numberO fUniqueValuesOnDim(R, i);
Mean «— mean(Ny ... Ng);
for i — 1 to k do

if N; > Mean then Dims «— Dims|J{i};
for ¢« € Dims do

NC(i) « optimumNoCutsOnDimension(i,l;,r;, R);
N = ILiepims NCi;
for i — 1 to N do
10 (li,ri, . 7l}‘€7 7“1%'€7 R?) « createCut();
11 C?"eateNode(li7 7“%7 cey l]?‘€7 7’};, RY);
12 return;

—_

© 00 O N O Ut WN

Line 8 in the actual algorithm is subtler than the simpli-
fied pseudocode shown above. The dimensions are ranked
first by unique elements and then (in case of ties) by the
ratio of unique elements to the size of the region. Then the
algorithm considers the candidate dimensions in ranked or-
der, first calculating the optimal number of cuts for that di-
mension (following a procedure similar to HiCuts), choosing
this dimension only if allowed by space factor constraints.
At the end of this procedure, the pruned set of dimensions
is optimized further by considering every possible subset of
the pruned set, and choosing the best subset in terms of a
storage/time tradeoff. Note that this may result in choosing
a single dimension as in HiCuts.

Ymax

Ymin

X min Xmax

Figure 7: A two dimensional region
{[Zmin, Tmaz], [Ymin, Ymaz]} associated with a node which
has assigned three rules Rq, Rz, R3. The highest priority rule
is Ri followed by the rules R2 and Rs. The node does not
need to keep track of rule R> because any of the packets
which might be associated with R> are also covered by the
rule R that has a higher priority.

5.2 HyperCuts Search Algorithm

We explain the search algorithm by first going through a
small example. Figure 11 shows a node A in the decision
tree structure together with a packet header that has arrived
at this node. The packet header has the value X = 215

Fieldx, Fieldy Fieldx, Fieldy

el v B S . AB -
y2
R1 R1 R1
R2 R2 R2
R3 R3 R3
yi y1
Xl x2l X2 X3 x1 X3

Figure 8: A node in the decision tree is split into 4 child
nodes each one of them associated with a hyper region by doing
cuts on two dimensions X and Y. The child nodes A and B
cover the same set of rules Ri, Ra, R3 therefore they may be
merged into a single node AB associated with the hyper region
{[z1, 3], [y1, y2]} that covers the set of rules Ri, R2, R3.

Xmin Xmax

Ymax

Ymin Y'min

Figure 9: A node in the decision tree originally covers the re-
gion {[Xmin, Xmaz], [Ymin, Ymaz]}. However all the rules that
are associated with the node are only covered by the subregion
X ins Ximaz)s [Yomins Ymaz) - Using region reduction the
area that is associated with the node shrinks to the minimum
space which can cover all the rules associated with the node.
In this example this area is:{[X in, Xmaz)s [Yomins Ymaz) }-

and Y = 111. The current node covers the regions 200 —
239 in the X dimension and 80 — 159 in the Y dimension.
During the search the packet header is escorted by a set of
registers carrying information regarding the hyper-region to
which the packet header belongs at the current stage. In
this example the current hyper-region is {[200 — 239], [80 —
119],...}°

Node A has 16 cuts, with 4 cuts for each of the dimen-
sion X and Y. To identify the child node which must be
followed for this packet header, the index in each dimen-
sion is determined as follow. First, X;ndex = 2151:)200j =
1. This is because each cut in the X dimension is of size
(239 — 200 + 1)/4 = 10. Similarly, Yindes = L%J =
1. This is because each cut in the Y dimension is of size

(159 — 80 + 1)/4 = 207

5The hyper-region associated with the packet header is dif-
ferent than the hyper-region covered by the node A because
the node A is obtained as a result of merging two nodes
that cover the hyper-regions {[200 — 239], [80 — 119],...}
and {[200 — 239], [120 — 159], ... } respectively.

"The division operation can be easily replaced with a binary
shift operation by using a multiple of two for the number of

after "pushing" up
the common fules

Figure 10: An example in which all the child nodes of A share
the same subset of rules { R1, R2}. As a result only A will store
the subset instead of being replicated in all the children.

As a result the child node B is picked and the set of reg-
isters is updated with the new values describing the hyper-
region covering the packet header at this stage. This hyper-
region is now: {[200 — 219],[100 — 119], ...}

The search ends when a leaf node is reached in which case
the packet header is checked against the fields in the list of
rules associated with the node.

The pseudocode for the search algorithm (using F; for
Field; for brevity) is:

Search(F1, ... Fy);

Node curNode = root;

for i — 1 to k do
regionL[i] «— Min[i];

—_

regionR[i] — Max[i];
while curNode! = LEAF do
for i € curNode.Dims do

- F;—curNode.MinDim[i] |,
Cut[l] - L cur Node.A[t] J’

© 00 O U W N

regionL[i] < curNode.Dimsli].le ft[cut[i]];

10 regionR[i] < cur Node.Dims][i].right[cut[i]];

11 curNode «— curNode.child(cut[0], cut[1],. .. cut[k]);
12 matchRule «— findMatchRule(cur Node.listRules);
13 return matchRule;

The search for a packet with a k—dimensional header
Fi,...Fy starts with an intialization phase (steps 2 — 5) in
which the current node of the search is set to the root node of
the search structure, and the regions which cover the packet
header are set to the maximum value of the ranges for each
of the dimensions. For example, if the first two dimensions
correspond to IP values than these values are 0 and 232 — 1
respectively.

The next steps (6 — 11) traverse the decision tree until
it finds either a leaf node or a NULL node. At each step
in the traversal it updates the hyper-regions that cover the
values in the packet header

Once a leaf node is found on step 12 the list of rules as-
sociated with this node is traversed and the first matching
rule is returned in step 13. If there is no match a NULL is
returned;

6. EVALUATION

6.1 Classifier Characteristics

We evaluate HyperCuts both on firewall databases as well
as on edge and core router databases. All the router rule
databases are from major ISPs. CR; through C' R4 are rule
databases provided by four major ISPs. ISP; is the provider
for the databases ER;1 ... ER4s which are considered to be

cuts.

Packet: \\
X=215 s

N

Y=111 N
Z=... \ 200 X— 239 Register Values:
159 X min = 200

Xmax = 239
Y¢ m
80

Ymin = 80
Ymax =119
Zmin = ...
Zmax = ...

Register Values:
Xmin =210
Xmax = 219

100 Ymin = 100
Ymax =119
Zmin =...

Zmax = ...

Figure 11: A search through the HyperCuts decision tree
in which a packet arrives to a node that covers the regions
200 — 239 in the X dimension and 80 — 159 in the Ydimension.
The packet header has the value 215 in the X dimension and
111 in the Y dimension.

representative for the edge router databases®. The firewall
databases are named F'Wi ... FWy, and were obtained from
real firewalls.

The number of rules in the core router classifiers varies
from 85 to 2800 as is shown in Figure 12. All the classifiers
are five dimensional with the IP source and destination field
represented as prefixes while the port fields are represented
as ranges.

In the case of core router databases, with the exception of
one database which appears to have rules connecting sub-
networks (prefix lengths with values of 16 —24), all the other
databases have similar maximums at lengths 0, 16, 24 and
32. The prefix length distribution in the case of firewall
databases has maximums at lengths 0 and 32, while for other
lengths the distribution is much more uniform than in the
case of the core router classifiers.

In the case of the edge router databases, the IP prefix
length distribution has values which are identical for both
source and destination. With very few exceptions, the pre-
fixes in the classifier all have length 32. More specifically,
most of the rules are made up of pairs of prefixes with the
same length. The only exception to this rule is when a rule
contains a wildcard in one of the fields. This appears to be
be a consequence of the policies used by I.SPx.

The number of rules matching all five fields is somewhere
between 3 and 5 for the core router databases, and up to 7
matches in the case of the firewall databases. This result is
consistent with results by Gupta and McKeown in [2, 1]. A
value of 3 is easily achieved by a classifier which contains a
default rule to be executed on all packets, a second rule to
be executed on all the packets carrying a TCP message, and
a third rule to be executed on all packets for an established
TCP connection.

8While the other ISPs use a large amount of rules in their
core routers, ISP, uses very small core router databases
which we did not study here. However, ISP, did have large
edge router databases. We investigated about 38,000 of
these databases, each with up to 5,000 rules per database;
because of space limitations, we show the results on only
four sample edge router databases.

For more details regarding the structure of the rule sets,
the interested reader may consult [14].

Overall, analyzing the rule sets we come to the surprising
conclusion that packet classification databases in the core,
edge, and firewall spaces have totally different characteris-
tics. This is in sharp contrast to the uniform testing method-
ology used in past papers.

6.2 Metrics

We wish to do packet classification at wire speed for min-
imum sized packets and thus speed is the dominant metric.
We focus on worst case search time expressed in number of
mMemory accesses.

To allow the database to fit in high speed memory it is cru-
cial to also reduce the amount of storage. On-chip SRAM
can provide latencies of around 1 — 4 nsec per operation.
However, on-chip SRAM is limited in size. For example,
in a .13 micron technology the area occupied by about 16
Mbits of SRAM is around 85mm?. By comparison, an ARM
966E core without any additional caches occupies only about
1mm? using the same technology. Therefore, the second
metric we study is the space occupied by the search struc-
ture.

6.3 Performance on Real Life Classifiers

As mentioned earlier, we evaluate our algorithm on a set
of classifiers which we consider to be representative for core
routers, edge routers, and firewalls. The memory space used
by the HyperCuts search structure depends on the number
and size of nodes. A node consists of a header plus an array
of pointers to child nodes, one for each cut. The header size
is 4 bytes, each pointer takes 4 bytes, and the number of
entries in the array is equal to the number of child nodes®.
A bitmap in the header is used to distinguish between types
of nodes.

The code used for the other classification schemes can be
found in our public repository [15]. We start by showing
the results for core router databases. Figure 12 displays the
memory utilization for HyperCuts vs. memory utilization
for RFC, ABV, EGT-PC and HiCuts while Figure 13 shows
the worst case search time for the same algorithms. Our re-
sults show that the main contenders against HyperCuts are
HiCuts and EGT-PC. However, in terms of memory utiliza-
tion, HyperCuts uses up to an order of magnitude less mem-
ory than either HiCuts optimized for space or EGT-PC. In
terms of worst case search time, HyperCuts is 3 to 10 times
faster than HiCuts. In what follows, we show the results of
HyperCuts versus the two best previous algorithms: HiCuts
and EGT-PC.

Despite using ACL lists, the edge router databases only
specify the two fields for IP source and destination, and most
with length 32 prefixes in these two fields; two dimensions
does not provide sufficient degrees of freedom for HyperCuts
to differentiate itself from HiCuts. This can be clearly seen
in Figures 14 and 15.

The results of running HiCuts, HyperCuts and EGT-PC

9The refinements discussed in section 5.1.3 increase the
header size to maintain information about the region cov-
ered by a node. Use of region compaction requires saving
the difference in offsets between new and old regions cov-
ered; node merging also requires storing the new borders
of the region in the header. Overall, this can result in an
increase of 2 — 8 bytes per dimension.

on firewall databases are shown in Figure 16 and 17. The
firewall databases are distinctly different from the core router
databases as they consist of a large number of unique ranges,
as well as a large number of values in the protocol and the
port fields. Growth in the number of popular applications
has a direct impact on the number of port and protocol com-
binations in firewall databases. More importantly, there are
a large number of rules with wildcards in either the source or
the destination IP field. All these contribute to an increase
in the effectiveness of cutting on more than one field at a
time as in HyperCuts.

If we consider cutting on only one dimension as in HiCuts,
the selection picks the dimension with the largest number
of unique elements to cut on. For firewall databases, the
source and destination IP fields have the largest number
of unique elements. However, both fields also have a large
number of wildcards. As a result, using either of the IP
fields for cuts results in replicating a large number of rules,
and hence limits the number of cuts due to storage factor
limits.

By contrast, HyperCuts allows cutting both source and
destination IP fields in a single node, which not only dis-
perses the rules among the child nodes in a single step but
also reduces the effect of rule replication. Further, in Hyper-
Cuts pushing up common sets of rules reduces the damage
due to replication. For the firewall databases under con-
sideration this optimization resulted in a memory reduction
of 10%. Overall for firewall databases, HyperCuts uses an
amount of memory similar to EGT-PC while its search time
is up to 5 times better than HiCuts optimized for speed.

6.4 Performance on Synthetic Classifiers

We have seen that edge, core, and firewall databases have
very different attributes. Thus it is inappropriate to build a
single synthetic model of a classifier to test scalability. In-
stead, we used the real life databases we already had as gen-
erators to produce new synthetic databases of larger sizes.

To create a new rule, we randomly pick two prefixes from
a pool of values that follows the same prefix distribution as
the one found in the original databases, one for the source
and one for the destination. We append the other fields —
source and destination port as well as protocol number —
by randomly picking them from a pool of all the values that
were in the corresponding real life generator. This procedure
is then iterated IV times to create a classifier of size IV.

Our evaluation results are shown in Figure 18. For syn-
thetic core-router style databases of size 20000, HyperCuts
requires only 11 memory access for search in the worst case;
for edge-router style databases, HyperCuts requires 35 mem-
ory for a database of 25000 rules. In the case of firewall-like
databases, the presence of about 10% wildcards in either
of the source and destination IP field contributes to a steep
memory increase. This is possibly because of a large number
of rules replicated in leaves.

7. CONCLUSIONS

The papers in [1, 7] pioneered work on packet classifica-
tion based on decision trees and geometric cuts, but chose
only a single field at a time to cut on. HyperCuts introduces
one more degree of freedom compared with these algorithms
by allowing more than one dimension to be cut within a sin-
gle node, while still using only one memory access per node.
The decision procedure we use for HyperCuts to choose di-

Database | No.Rules || REC HiCuts —4 | HiCuts—1 | ABV EGT — PC | HypCuts —4 | HypCuts — 1
CR; 85 55,202 11,608 1,346 1,572 1,168 453 226
CR> 125 114,080 | 10,704 1,986 1,606 1,472 589 610
CR3 351 100,991 | 64,541 19,001 4,651 2,261 15,395 11,210
CRy 2799 747,271 | 117,801 25,543 285,099 | 30,753 16,631 11,030

Figure 12: The total memory space occupied by the search structure in all 5 heuristics RFC, HiCuts(spfac = 1,4), BV, ABV,
EGT-PC and HyperCuts for the four core router databases. The size is in memory words, one memory word is 32 bits.

Database | No.Rules || RFC | HiCuts —4 | HiCuts —1 | ABV | EGT — PC | HypCuts —4 | HypCuts — 1
CRy 85 12 25 32 111 32 14 14
CR, 125 12 25 36 106 54 8 11
CRs3 351 12 35 57 126 47 22 31
CRy 2,799 12 38 66 196 87 18 25

Figure 13: The total number of memory accesses for a worst case search in all 5 heuristics RFC, HiCuts(spfac = 1,4), BV, ABV,
EGT-PC and HyperCuts for the four core router databases. One memory access is one word. One word is 32 bits.

mensions is inspired by HiCuts but differs from it in several
subtle ways including the use of the mean number of unique
elements, the region density, and a different space factor
function.

As in HiCuts, there may be wasted space for cuts because
of empty or replicated array elements. HyperCuts deals with
replicated array elements by “pushing up common rules” to
ancestors in the search tree. HyperCuts also reduces empty
pointers using “region compaction” which shrinks a node
region to includes only the areas covered by all rules in the
node.

We evaluated HyperCuts on both industrial firewall databases

and synthetically generated databases. We found very lit-
tle improvement over HiCuts in the case of edge routers
(because they have simple structure using rules on source-
destination pairs). However, both HiCuts and HyperCuts
do very well on such databases. Further, the packet classi-
fiers from IS P> edge routers have recently migrated to a new
set of rules, which use all five fields, and seem more similar
to core router classifiers. Thus we believe that HyperCuts
will outperform HiCuts significantly on the new edge router
databases being deployed.

On firewall databases and core routers, HyperCuts pro-
duces an order of magnitude in memory utilization while at
the same time reducing worst-case search time by a factor
of up to 3. The difference between the performance on the
three different types of databases underscores the need for
more careful modeling of firewall databases.

Finally, we note that HyperCuts can easily be implemented
in hardware at line speeds using a pipeline and on-chip
SRAM. Since the trees generated by HyperCuts have heights
no greater than 10, this requires only 10 pipeline stages,
which is well within current hardware limits. For all these
reasons, we believe that HyperCuts can be a viable algorith-
mic contender to Ternary CAMs.

8. ACKNOWLEDGEMENTS

The work of the first three authors was supported by NSF
Grant ANI 0074004 and by a grant from NIST for the Sen-
silla Project.

9. REFERENCES

[1] P. Gupta and N. McKeown, “Packet classification
using hierarchical intelligent cuttings,” in Proc. Hot
Interconnects, 1999.

[2] ——, “Packet classification on multiple fields,” in
SIGCOMM 99, 1999.

[3] T. Lakshman and D. Stiliadis, “High speed
policy-based packet forwarding using efficient
multi-dimensional range matching,” in SIGCOMM,
1998.

[4] F. Baboescu and G. Varghese, “Scalable packet
classification,” in SIGCOMM, 2001.

[5] F. Baboescu, S. Singh, and G. Varghese, “Packet
classification for core routers: Is there an alternative
to CAMs?” in INFOCOM, 2003.

[6] A. Feldman and S. Muthukrishnan, “Tradeoffs for
packet classification,” in INFOCOM, 2000.

[7] T. Woo, “A modular approach to packet classification:
Algorithms and results,” in INFOCOM, 2000.

[8] V. Srinivasan et al, “Fast and scalable layer 4
switching,” in SIGCOMM, 1998.

[9] C. Matsumoto, “CAM vendors consider algorithmic

alternatives,” in EETimes, may 2002.

M. Degermark et al, “Small forwarding tables for fast

routing lookups,” in SIGCOMM, 1997.

M. Buddhikot et al, “Space decomposition techniques

for fast layer-4 switching,” in Proc. PHSN, 1999.

[12] V.Srinivasan, S.Suri, and G.Varghese, “Packet

classification using tuple space search,” in SIGCOMM,

1999.

L. Qiu, G. Varghese, and S. Suri, “Fast firewall

implementation for software and hardware based

routers,” in Proc. ICNP, 2001.

S. Singh, F. Baboescu, G. Varghese, and J. Wang,

“Packet classification using multidimensional cutting,”

in UCSD Technical Report CS2003-0736, 2003.

S. Singh and F. Baboescu, “Packet classification

repository.” [Online]. Available:

http://ial.ucsd.edu/ classification

(10]

(11]

(13]

(14]

(15]

Database | No. of Rules || EGT — PC | HiCuts —4 | HiCuts — 1 | HyperCuts —4 | HyperCuts — 1
ER, 4740 284,159 6695 6659 6659 6482
ER, 2505 149,470 3730 3470 3456 3393
ER3 995 62, 266 1501 1459 1527 1465
ER, 2458 154,976 3263 3274 3295 3295

Figure 14: The total memory space occupied by the search structure in EGT-PC, HiCuts(spfac = 1,4) and HyperCuts for the
four edge router databases. The size is in memory words, one memory word is 32 bits.

Database | No. of Rules || EGT — PC | HiCuts —4 | HiCuts — 1 | HyperCuts — 4 | HyperCuts — 1
ER: 4740 62 15 18 15 18
ER> 2505 63 15 18 15 18
ER3 995 49 15 18 15 15
ER4 2458 65 15 15 11 15

Figure 15: The total number of memory accesses for a worst case search in EGT-PC, HiCuts(spfac = 1,4) and HyperCuts for
the four edge router databases. One memory access is one word. One word is 32 bits.

Database | No. of Rules || EGT — PC | HiCuts — 4 | HiCuts —1 | HyperCuts —4 | HyperCuts — 1
L 279 7,477 18, 347 16,978 9,574 6,026
FWo, 183 3,642 20,995 2,872 4,311 6,675
FWs 158 2,962 18,207 6,675 2,164 943
W, 266 1,275 14, 624 6,375 9,477 6,991

Figure 16: The total memory space occupied by the search structure in EGT-PC, HiCuts(spfac = 1,4) and HyperCuts for the
four firewall databases. The size is in memory words, one memory word is 32 bits.

Database | No. of Rules || EGT — PC | HiCuts —4 | HiCuts — 1 | HyperCuts —4 | HyperCuts — 1
FW, 279 63 41 74 26 32
FW, 183 55 74 74 20 26
FWs 158 56 74 74 17 17
FW, 266 38 23 50 17 23

Figure 17: The total number of memory accesses for a worst case search in EGT-PC, HiCuts(spfac = 1,4) and HyperCuts for
the four firewall databases. One memory access is one word. One word is 32 bits.

Database | No. of Rules || Memory Space | Search
ER —-5K 4,970 6,745 14
ER - 10K 9,940 13,482 29
ER — 15K 14,910 20, 188 32
ER — 20K 19, 880 27,098 35
CR —-5K 5,000 4,508 8
CR— 10K 10, 000 8,495 3
CR - 15K 15,000 12,822 11
CR — 20K 20, 000 16, 857 11
W — bK 5,000 14,733 14
FW — 10K 10, 000 45,158 14
FW — 15K 15,000 80, 486 17
FW — 20K 20,000 150, 551 17

Figure 18: The total memory space and worst case search time for HyperCuts with a space factor of 4(optimized for speed) using
synthetic databases. The databases are generated with the same prefix rule distribution as in the edge router (ER), core router(CR)
and firewall(FW) databases. One memory access is one word. Memory space is expressed in words. One word is 32 bits.

