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Packet Classificationfor CoreRouters:Is therean
alternative to CAMs?

Florin Baboescu,SumeetSingh,George Varghese

Abstract— A classifier consistsof a set of rules for classifying
packets based on header fields. Becausecore routers can have
fairly large(e.g., 2000rule) databaseand must uselimited SRAM
to meetOC-768speeds,the bestexisting classificationalgorithms
(RFC, HiCuts, ABV) are precludedbecauseof the large amount
of memory they need. Thus the general belief is that hardware
solutionslik eCAMs are needed,despitethe amount of board area
and power they consume.In this paper, we provide an alternative
to CAMs via an Extended Grid-of-T ries with Path Compression
(EGT-PC) algorithm whose worst-case speed scales well with
database size while using a minimal amount of memory. Our
evaluation is basedon real databasesused by Tier 1 ISPs, and
synthetic databases.EGT-PC is basedon a observation that we
found holds for all the Tier 1 databaseswe studied: regardlessof
databasesize,any packet matchesonly a small number of distinct
source-destinationprefix pairs. The code we wrote for EGT-PC,
RFC, HiCuts, and ABV is publicly available [16], providing the
first publicly available code to encourageexperimentation with
classification algorithms.

I . INTRODUCTION

The rapid growth of the Internet has brought great chal-
lengesandcomplex issuesin deploying high-speednetworks.
The number of users, the volume of traffic and the type
of servicesto be provided are continually increasing.The
increasingtraffic demandrequiresthree key factorsto keep
pace:high link speeds,high routerdataswitchingthroughput
andhigh packet forwardingrates.Although therearealready
solutionsfor thefirst two factors,packet forwardingcontinues
to be be a difficult taskat wire speeds.

Packet forwarding based on a longest matching prefix
lookup of destinationIP addressesis fairly well understood
with bothalgorithmicandCAM-basedsolutionsin themarket.
Using basicvariantsof tries and somepipelining, it is fairly
easyto performonepacket lookupevery memoryaccesstime,
which can easily scale(beyond even today’s OC-768speeds
of 40 Gbps)to 100 Gpsusing1 nsecSRAMs.

However, the Internet is becominga more complex place
to live in becauseof its use for mission critical functions
executed by organizations.Organizationsdesire that their
critical activities not be subvertedeither by high traffic sent
by other organizations(i.e., they requireQoS guarantees)or
by maliciousintruders(i.e., they requiresecurityguarantees).
Both QoS andsecurityguaranteesrequirea finer discrimina-
tion of packetsbasedon fields other than the destinationthat
we call packet classification.
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Other fields a router may needto examine include source
addresses(to forbid or provide different service to some
sourcenetworks), port fields (to discriminatebetweentraffic
types such as Napsterand say Email), and even TCP flags
(to distinguish betweensay externally and internally initi-
atedconnections).Besidessecurityand QoS,other functions
that requireclassificationinclude network addresstranslation
(NAT), metering,traffic shaping,policing, andmonitoring.

The industrystandardfor classifierformatshascomefrom
Cisco ACLs, which consistof a numberof rules. Each rule
specifiesa destinationaddressprefix, a sourceaddressprefix,
a protocol type or a wildcard, rangesfor the destinationand
sourceport fields, and somevaluesof TCP flags. The rules
arearrangedin orderof priority andhave anassociatedaction
(suchasdrop, forward,placein queue� etc.).Conceptually,
a packet must be matchedto the first (i.e., highestpriority)
rule that matchesthe packet.

Classifiers historically evolved from firewalls that were
placedat theedgesof networksto filter out unwantedpackets.
Suchdatabasesare generallysmall, containing10-500rules,
and can be handledby ad hoc methods.However, with the
DiffServ movement, there is potential anticipation [12] of
classifiersthat could supportone hundredthousandrules for
DiffServandpolicing applicationsat edgerouters.Thuswhile
many classificationalgorithms[7], [6] work well for classifiers
up to say1000rules,thereis a real scalingproblemfor larger
databasesthat is partially addressedby [1].

While large classifiersare anticipatedfor edgerouters to
enforceQoS via DiffServ, it is perhapssurprisingthat even
within the core fairly large (e.g., 2000 rule) classifiersare
commonly usedfor security. Emerging core routersoperate
at 40 Gbs speeds,thus requiring the use of limited SRAM
to storestatefor any algorithmic solution.Unfortunately, the
bestexisting classificationschemesdescribedin the literature
(RFC [6], HiCuts [7], ABV [1]) require large amountsof
memoryfor evenmediumsizeclassifiers,precludingtheir use
in core routers.

While thesecore router classifiersare nowhere near the
anticipatedsize of edge router classifiers,there seemsno
reasonwhy they shouldnot continueto grow beyondthesizes
reportedin this paper. For example,many of the rulesappear
to be denying traffic from a specified subnetwork outside
the ISP to a server (or subnetwork) within the ISP. Thus,
new offending sourcescould be discoveredand new servers
couldbeaddedthatneedprotection.In fact,we speculatethat
one reasonwhy core router classifiersare not even bigger is
becausemostcorerouterimplementationsslow down (anddo
not guaranteetrue wire speedforwarding) as classifiersizes
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increase.
Thus the general belief is that hardware solutions like

TernaryCAMs are neededfor core routers,despitethe large
amountof boardspaceandpower that CAMs consume[12],
[8]. For a large numberof designers,TernaryCAMs, which
essentiallycomparea packet to every rule simultaneously, are
the only solution.

There are several reasonsto consideralgorithmic alterna-
tivesto TernaryCAMs, however, someof which arestronger
thanothers:
� Density Scaling: One bit in a TCAM requires10-12

transistorswhile an SRAM requires4-6 transistors.Thus
TCAMs will alsobelessdensethanSRAMsor take more
area.Boardareais a critical issuefor many routers.� Power Scaling: TCAMs take morepower becauseof the
parallel compare.CAM vendorsare, however, chipping
away at this issueby finding waysto turn off partsof the
CAM to reducepower. Power is a key issuein largecore
routers.� Time Scaling: The match logic in a CAM requiresall
matching rules to arbitrate so that the highest match
wins. Older generationCAMs took around10 nsecfor
an operationbut currentlyannouncedproductsappearto
take 5 nsec,possibly by pipelining parts of the match
delay.� Extra Chips: Giventhatmany routerslike theCiscoGSR
or the JuniperM160 alreadyhave a dedicatedASIC (or
network processor)doingpacket forwardingit is tempting
to integrate the classificationalgorithm with the lookup
without adding CAM interfacesand CAM chips. Note
that CAMs typically require a bridge ASIC in addition
to the basicCAM chip, and sometimesrequiremultiple
CAM chips.� Rule Multiplication for Ranges:CAMs needto repre-
sent port rangesby several prefixes thus causingextra
entries.

To see that this problem is not just of academicinterest
considerthe following recent announcementby Cypress(a
leadingmanufacturerof CAM chips) in EE Times[12]. Basi-
cally, Cypressis consideringshippinga chip that implements
an algorithmic approachto classificationto provide a lower
cost, lower area,and lower power alternative to their CAMs.
The article alsomentionsothercompaniessuchasFast-Chip,
EZchip, and Integrated Silicon Solution that are claiming
algorithmicsolutions.

I I . PAPER CONTRIBUTIONS

Our paper has three main contributions: a new classifier
characteristic,a new algorithm, and the first standardized
comparisonacrossa numberof major algorithms.
� i, New Characteristic: Our paper studies the charac-

teristics of core router classifiersusedby Tier 1 ISPS.
While previous studieshave shown [6] that every packet
matchesat most a few rules, we refine this earlier
observation to show that every packet matchesat most
a few distinct source-destinationprefix pairs presentin
the rule set. In otherwords, if we project the rule set to

just the sourceanddestinationfields, no packet matches
more than a small number of rules in the new set of
projectedrules. Note that this is emphaticallynot true
for single fields becauseof wildcards: a single packet
can matchhundredsof rules when consideringany one
field in isolation.� ii, New Algorithm: Based on the observation above,
our paperintroducesa new algorithm we call Extended
Grid of Trie with Path Compression(EGT-PC) for multi-
dimensionalpacket classificationandevaluatesit. While
our EGT algorithm is inspired by the earlier grid-
of-tries algorithm [17], it requiresa significant exten-
sion. Briefly, the standardgrid-of-tries assumesthat any
source-destinationprefix pair �����
	��
��� that is no more
specificin both fields thananotherpair ������	������ can be
eliminated.While this works for 2 field classificationit
doesnot work for more than 2 fields, and requiresnew
machinery(e.g.,jump pointersinsteadof switchpointers)
for correctness.We had to experimentwith a numberof
extensionvariantsbeforefinding one that did not result
in storagereplicationandyet hadgoodperformance.� iii, New standardized comparison: Previous work
mostly comparesthe new algorithm presentedin the
paperwith one other algorithm. Thus for example, the
HiCuts paper[7] describesimprovementsover RFC [6];
similarly, the ABV paper [1] paperdescribesimprove-
mentsover the Lucentbit vectorscheme[11]. The code
for eachalgorithmis alsousuallydifficult to obtain.We
have written code for each of thesealgorithms 1 and
comparedthemusingdatabasesusedby Tier 1 ISPs.We
also do comparisonsbasedon syntheticdatabasesthat
preserve the structureof the smaller real databasesthat
we have.2

Finally, our code is publically available on a web site
describedin the references.By makingmultiple classification
algorithmspublicly available we hope to encourageexperi-
mentationand improvementsthat can then be incorporated
into revisionson the sameweb site.

I I I . PRIOR WORK AND SUMMARY OF RESULTS

The packet classificationproblemis inherentlyhard( [11],
[18], [7], [17], [6], [19]) from a theoretical standpoint.It
has been shown [11] that in its fullest generality, packet
classification requires either �����������! ��" � time and linear
space,or ����� " timeand ��� " � � space,where

"
is thenumber

of rules,and # is the numberof headerfields usedin rules.
Most practicalsolutionseitheruselineartime [11] to search

through all rules sequentially3, or use a linear amount of
parallelism (e.g., Ternary-CAMs as in [13], [10]). Ternary
CAMs areContentAddressableMemoriesthatallow wildcard
bits. Solutionsbasedon caching[20] do not appearto work

1TheRFCcodeis basedon codegraciouslysuppliedto usby PankajGupta
2Our databasesaredifferentfrom thosein [1] becausethosedatabaseswere

largely edgedatabasesasopposedto coredatabases.Our syntheticgeneration
methodologyis alsovery different from [1] in that we provide a simplerand
more realisticmodel for generatinglarge ISP classifiers.

3Theschemein [11] reducesclassificationto linearsearchona $ -bit vector
which canbe spedup by usinga wide memoryword
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well in practice becauseof poor hit rates and small flow
durations% [14], andstill needa fastclassifierasa backupwhen
the cachefails.

Severalalgorithmshavebeendevelopedfor thecaseof rules
on two fields (e.g., sourceand destinationIP addressonly).
For this special case,the lower boundsdo not apply (they
apply only for #'&)( ); thus hardly surprisingly, there are
algorithmsthat take logarithmictime andlinearstorage.These
include the useof rangetreesand fractional cascading[11],
grid-of-tries[17], area-basedquad-trees[2], andFIS-trees[5].
While thesealgorithmsare useful for specialcases(suchas
measuringtraffic betweensource and destinationsubnets),
they do not solve the general problem of #+* dimensional
packet classification.

Thepapersby GuptaandMcKeown [6], [7], [19] introduced
a majornew directioninto packetclassificationresearch.Since
the problemis unsolvablein the worst case,they look instead
for heuristicsto exploit the structureof the databases.They
observed for the first time that a given packet matchesonly a
few ruleseven in large classifiers.BaboescuandVarghese[1]
also exploit this observation to reducethe searchtimes for
the algorithm describedin [11]. Qiu et al [15] exploit the
observation that any packet matchesat most a few distinct
valuesin eachfield to suggestbacktrackingtrie searchas a
viable (thoughfairly slow) alternative.

Performanceof Existing Schemes:In termsof thecurrent
stateof the art (seecomparisonslater), it appearsthat RFC
has the fastestsearchtimes (12 memory accessesusing 16
bit chunks)but at the cost of a large amountof storage(for
example,on a databaseof 2800rules,RFC requires24 Mbits
of memory).HiCutstakesmorememoryaccessesandrequires
less memory (e.g., 3 Mbits for the samedatabaseusing 82
memoryaccesses).

HiCuts mostly works well. However, with the spacefactor
of 4 usedin the HiCuts paper, it is fast (82 memoryaccesses
for a (�,�-�- rules database)but requiresa large amount of
storagefor databases(see �
.0/ below) in which there are
a large number of rules where the destinationaddressis
wildcarded,and a large number of rules where the source
addressis wildcarded.Usinga lower spacefactorof 1, HiCuts
tendsto sometimesdo betterin storagebut still doesworsein
time. In thecaseof �
.21 , 3547608:9<;�*�= usesmorethan > times
more memorythan ?A@CBD*FEG6 while the worst casesearch
time is only slightly better: ,�( vs. ,�H while 3547608:9<;I*KJ uses
about J!LNM lessmemory than ?G@CBO*PEG6 but sacrificesthe
worst casesearchtime which is now twice aslargeastheone
for ?G@CBQ*REG6 .

Besides these better results for existing core router
databases,?G@CBS*TEG6 hasthreeothercharacteristicsthatmay
make it moreattractive thanHiCuts.
� Predictability: It appearsto be difficult to predict the

performanceof 3547608U9<; on arbitrary databasebecause
there is no model to predict its performance.?G@CBV*
EG6 performancecan be characterizedin terms of the
maximumnumberof rulesthat matcha projectionof the
original rule setonto the sourceanddestinationfields.� Scaling: ?G@CBW*XEG6 appearsto scale well to large
databases.

� Patent issues: ?G@CBY*ZEG6 is not subject to patent
restrictionunlike 3547608U9<; which is patented.While this
is not a fundamentalissue,it doesprovide an important
reasonfor looking for alternativesto HiCuts in practice.

While RFC is very fast,its largeamountof memorymakes
it hard to implementusing limited SRAM. Thus for existing
ISPdatabasesnoneof theexistingalgorithmsincludingHiCuts
scaleaswell in both memoryand time. Further, the EGT-PC
schemecan easily be implementedusing a small amountof
SRAM.

More importantly, whenwe attemptedto scalethe database
sizes to 100,000 while preservingtheir structure,EGT-PC
took only slightly more memory accesses(at most 118)
while preservinglow storage4. Thus EGT-PC should scale
well assumingthat larger databaseskeep the samesource-
destinationprefix characteristicsof the Tier 1 ISP databases
we studied.

Assuminga chip capableof around32 memoryaccessesper
minimum sizepacket (usingsaya 32 way pipeline),EGT-PC
shouldallow the handlingof large classifiersin 2-3 minimum
size packet times in the worst-case.While this is not quite
wire speedforwarding,suchperformancefor large classifiers
in somepathologicalcasesseemsadequatesince most core
routerstoday can also fall below wire speedforwarding for
large classifiers.

A. Modelsand Metrics

Readersfamiliar with classificationshould skip the next
sectionto get to the new materialpresentedin the paper. In
general,the job of a packet classifieris to categorizepackets
basedon a setof rules.Rulesarealsosometimescalledfilters.

The information relevant for classifying a packet is con-
tainedin [ distinct headerfields in the packet. Theseheader
fields aredenoted3F\�J�]^	�3P\ (_]�	�`�`a`�	�3F\ [5] .

For example, the fields typically used to classify IPv4
packets are the destinationIP address,source IP address,
protocol field, destinationport number, sourceport number,
andprotocolflags.Thenumberof protocolflagsis limited, so
we cancombinetheminto the protocolfield itself.

Using thesefields,a rule F=(128.252.*, *, TCP, 23, *) , for
example,matchesall traffic addressedto subnetJ
(b,c` (�d�( using
TCP destinationport 23, which is usedfor incoming Telnet;
using a rule like this, a firewall may disallow Telnet into its
network.

A classifier(alsoknown asrule databaseor filter database)
consistsof

"
rules ef�_	�e � 	�`�`a`a	�ehg . Eachrule e�i is an array

of [ values,where ejiN\ 4�] is a specificationon the 4 -th header
field. The 4 -th headerfield is sometimesreferredto asthe 4 -th
dimension.Thevalue e i \ 4�] specifieswhat the 4 -th headerfield
of apacketmustcontainin orderfor thepacket to matchrule k .
Thesespecificationsoften have (but neednot be restrictedto)
thefollowing forms:exactmatch,for example“sourceaddress
must equal 128.252.169.16”; prefix match, like “destination

4However, a linear increasein the memory spacethat it is usedmay be
obtainedif the numberof distinct prefixes in the databasescaleaswell with
the the numberof rules in the database.
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addressmust match prefix 128.252.*”; or rangematch,e.g.
“destinationport mustbe in the range0 to 1023.”

Each rule eji has an associateddirective l�47;<mUn , which
specifies the action to perform for a packet that matches
this rule. This directive may indicate whether to block the
packet, send it out a particular interface, or perform some
otheraction.A packet E is saidto match a rule e if eachfield
of E matchesthe correspondingfield of e . For instance,let
eVoX�7J!(�,p`q(�d�(r`ts�	usr	<Bv6CEw	u(b>c	usb� be a rule with l�47;�mSoyx{z�|_}~# .
Then,a packet with header(128.252.169.16, 128.111.41.101,
TCP, 23, 1025) matches e , and is thereforeblocked. The
packet (128.252.169.16, 128.111.41.101,TCP, 79, 1025), on
the otherhand,doesn’t match e .

Sincea packet maymatchmultiple rulesin thedatabase,we
associatea cost for eachrule to resolve ambiguousmatches.
The packet classificationproblem is to find the lowest cost
rule matchinga given packet E .

B. Performancemetricsfor packet classification

The two main metricsfor packet classificationarespeedin
memoryaccessesand memory. A secondarymetric could be
the numberof fields that can be handled;someapplications
requiremore than 5 fields althoughwe will only consider5
field classifiersin this paper.

Speed:Thegoalof packetclassificationis to ideallyclassify
packets at wire speed,which meansthat for eachpacket a
decision is to be madein the time we have for handling a
minimum sizepacket. At OC-192ratesof 10 Gbpsandusing
40 byte packets,a decisionmustbe madein 32 nsec.

In practice,this is tricky for several reasons.First, even the
definitionof minimumpacket sizeis debatable:therearea few
rarepacketsthatarrive in with sizesof 30 bytesor less;while
moststudiesuse40 byteminimumsizepackets(sincepackets
with TCP, IP, andDatalink headersareat leastthis size)some
vendorsaim for a 64 byte packet sizeswith a small queueto
handleburstsof smallersizes.Second,somepacketprocessing
eventslike handlingencapsulatedpacketsor multiple levelsof
labelstackingmayrequiremultiple lookupsthatcannotstrictly
behandledat line speedfor aminimumpacketsize.Thussome
relaxationof strict wire speedprocessinglimits for saypacket
processingmay be acceptable(especiallywhen usinga large
classifier);indeed,this appearsto betruefor mostcorerouters
today.

Speedis measuredin terms of memory accesses.Often
a wider memory accesscan reducethe numberof memory
accessesrequired.We will assumea 32 bit wide memory.
Many of the algorithms describedhere (especially the two
leadingcontendersHiCuts and EGT) can benefitfrom wider
words,but we normalizeour resultsto 32 bit words.

Memory size: On-chip SRAM for semi-customASICS is
at most 32 Mbits today. Since on-chip SRAM provides the
fastestmemory (around1 nsec),one would ideally like the
memoryof a classificationalgorithmto scalewith the sizeof
an on-chip SRAM. For example,the RFC sizesof 24 Mbits
for a 2800 size table (seeresultslater) tend to rule out RFC
for high speedimplementations.

Updatecomplexity is generallynot an issuefor corerouters
as rules are rarely changed.On the other hand,edgerouters

that do stateful filtering or intrusion detectionsystemsthat
dynamically identify certainflows to be tracked may indeed
requirefasterupdates.We do not considerupdatecomplexity
in this paper.

IV. BRIEF REVIEW OF RFC AND HICUTS

In this section we briefly describetwo of the previous
algorithms that we compareagainstour new EGT scheme.
We describeHiCuts in some detail as it is the strongest
contenderfor the core router databaseswe examined. We
describeour new algorithm in the next Section.In order to
provide examples,let’s considerthe small firewall databasein
theFigure1. Theexamplecontainstwelve ruleson five fields.

A. RecursiveFlow Classification(RFC)

The first algorithm we consider is RFC [6]. Gupta and
McKeown [6] have inventeda schemecalledRecursive Flow
Classification(RFC).RFCis really animprovedform of cross-
producting that significantly compressesthe cross-product
table at a slight extra expensein searchtime. The scheme
works by building larger cross-productsfrom smaller cross-
products;the main idea is to placethe smallercross-products
into equivalenceclassesbeforecombiningthemto form larger
cross-products.This equivalencing of partial cross-products
considerablyreducesmemory requirements,becauseseveral
original cross-productterms map into the sameequivalence
class.

In Figure 2 we apply the equivalencecross-productingto
the first two columns in the example in Figure 1. A two
dimensionaltableis built basedon theuniqueprefixesin each
of thefirst two fields.In this casetheresultis H distinctvalues
which is closeto the numberof uniqueprefixesin the second
field.

Prefix matching on a large field can be performed by
splitting it up and treating it as several smaller fields. This
is useful for fields exceeding16 bits in length, sincea field�

bits in size requiresa table of size (N� to map valuesto
equivalenceclasses.We usethefield valueof 16bitssuggested
in the RFC paper.

B. Hierarchical Intelligent Cuts (HiCuts)

HiCutswasintroducedby GuptaandMcKeown in [7]. The
schemeis basedon a precomputeddecision tree which is
traversedfor eachpacket that needto be classifiedin orderto
identify the matchingrule which is always locatedin a leaf
node.Eachleaf nodestoresa smallnumberof ruleswhich are
linearly searchedin the last step.It is a remarkablyeffective
algorithmandso is worth describingin moredetail.

In HiCuts eachnodecan be regardedas a #+* dimensional
boxcutup into asetof �j} smallerboxesusingheuristicswhich
try to take into accountthestructureof theclassifiers.Thesize
of a box is givenby therangecoveredby thebox.For example
the root nodefor a dr* tuple (IP SourceandDestination,Port
Sourceand Destination,Protocol) may be seenas the box
\ -p	�( /�� *�J~]a�P\ -p	u( /�� *SJ~]a��\ -c	�( �<� *�J�]��P\ -c	�( �7� *�J�]��P\ -p	�(��U*SJ~] .
Eachbox hasassociatedthe set of rules which intersectthe
box range.
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� 8Uz�� eC4��
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s J�- -cJ �C�
E ��}{9��
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s s s Bv6CE ��}{9 �
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E ��}{9��
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E ��}{9 /
e ��� s s s s Bv6CE ��}{9 1

Fig. 1. A simple example with �<� rules on five fields.

eC4��!z�l��~�_eC4��
z�l � -�-�-Ns -�s s
J�J�J
s J�J!-�-�-pJ�J�J�-�-pJ�JIoO6�� -�-�-�-�-pJ�J�J�-�-pJ�JIoO6�� -�-�-�-�-�-�-�-�-�-pJ�JIoO6 �
J!-Ns -�-cJ�J�J�-�-cJ�-�-pJ�JIoO6�/ -�-�-�-�-�-�-cJ�-�-pJ�JIoO6 1 6��
J
s 6�1 6�1 6 �
-cJ
s -�-�-�-�-�-�-�-pJ�J�J�JIoO6 � 6 � 6 �
-Ns -�-�-�-�-�-�-�-�-cJ�J�JIoO6 � 6 � 6 �
s 6 � 6 � 6 �

Fig. 2. Forming the partial cross-products of the first two fields in Figure 1 and assigning them into the same equivalence class if they have the
same set of matching rules.

A similar ideea with bit tests replacing range tests, was
describedby T. Woo in [19]. Much more [19] introduces
one more degreeof freedomin building the decisiontree: it
allows to arbitrarily interleave the bit testsfor all fields.Thus
therootof thetrie couldtestfor (say)Bit 10of thesourcefield;
if the bit is 0, this could lead to a nodethat testsfor say Bit
22 of the port numberfield. Clearly, therearean exponential
numberof suchdecisiontrees.The schemesin [19] and [7]
build the final decisiontreeusing local optimizationdecisions
at eachnodeto choosethe next bit to test.

In whatfollows,we describeHiCuts in moredetailusingan
example.The HiCuts local optimizationcriterion works well
when testedon real core routerclassifiers.

Picking the numberof boxes �j} a nodeis split into may be
donebasedon several heuristicswhich try to make a tradeoff
betweenthe depth of the decision tree and implicitly the
searchtime versusthememoryspaceoccupiedby thedecision
structure.The dimensionon which a cut may be executed
may be choseneither to: �7J!� minimize the maximumnumber
of rules into any partition, or ��(�� maximize the different
numberof specificationsin one dimension,etc. Picking the
right numberof partitions ���j}~� to be madeaffectsthe overall
memoryspace.Thealgorithmtunes�j} asa functionof aspace
measure.In order to do this it usesto parameters:�7J
� binth
and(2) spfac.

Figure 3 shows a decision tree for the Example in
Figure 1. Let’s assume that a packet with the header
��-�-cJ�-c	~J�J!-pJ�	�-�-c	�-cJ�	<B26CEG� needsto be classified.The path
followedby this packet is shown in redin Figure3. In thefirst
node,marked � , basedon thevaluein its first field, thepacket

is directedto the nodemarked . . Node . usesinformation
in the secondfield to direct to a leaf nodecontaininga small
list of rules which may be a possiblematch.In this case eh�
is the lowestcost rule matchingthe packet.

F9
F10
F11

F8
F9
F10

F7
F10
F11

F7
F10
F11
F3

F7
F10
F11
F3

F7
F10
F11
F5

F7
F10
F11

F7
F10
F11
F1

F7
F10
F11

F11
F7

F10
F0
F5
F6

Field 3, 4

Field 1, 4

Field 2, 4

Field4, 2

(0010, 1101, 00, 01, TCP)
A

B

Fig. 3. A decision tree is built for the database of Figure 1. The
dimension on which a cut is made is associated with the field which
has the largest number of unique values. For example the first node is
cut along the first field.

V. CHARACTERISTICS OF REAL LIFE CLASSIFIERS

Each designerof packet classificationheuristicsfacesthe
sameproblem; he or she must know the characteristicsof
large rule databases.In this section we analyze4 real life
classifierswhich areusedby several large Tier 1 ISPs.While
realdatabaseswerealsousedin [1] and[7], [6], thedatabases
in [1] aresmallandonly reflectfirewall applicationswhich are
not a goodcharacterizationof corerouterdatabases.Similarly,
it is unclearwhetherthedatabasesin [7], [6] weremostlyfrom
edgerouters.



6

Thenumberof rulesin theclassifiersvariesfrom ,�d to (b,�-�-
asis shown in Figure9. All theclassifiersarefive dimensional
with theIP sourceanddestinationfield representedasprefixes
while the port fields are representedas ranges.The prefix
length distribution for both IP sourceand destinationfields
is given in Figures4 and 5.

With the exceptionof onedatabasewhich appearsto have
rules connectingsubnetworks (prefix lengthswith valuesof
J�LG*�(_= ) all the other databaseshave the similar maximums
at length of - , J�L , (_= and >N( . The distribution is very
different from the prefix distribution in publicly available
routing tables([9]) which is describedin [1].

The performanceof many classifieralgorithmsare strictly
dependenton the largest numberof valid prefixes that may
be seenon a path from the root to a leaf in a trie that is
generatedusing all the prefixes. The valuesfor this number
arebetween> and H for sourceanddestinationaddresstries.
However if we considerthe sourcetries associatedwith any
particular destinationtrie, then the number is even smaller:
between( and = .

The numberof rules matchingall five fields is somewhere
between> and d . This resultis consistentwith theresultgiven
by Guptaand McKeown in [6], [7]. A value of > is easily
achieved by a classifierwhich containsa default rule to be
executedon all packets,a secondrule to be executedon all
the packets carrying a TCP message,and a third rule to be
executedon all packets for an establishedTCP connection.

Analyzing the numberof IP sourceand destinationpairs
only in the rule setwe notice that the mostcommononesin
orderof their occurrenceare:
� i. >N(r* bit IP sourceto >�(r* bit IP destination.This form of

ruleappearsto beprotectingparticularISPservers/routers
from particularhosts.Of course,theserulesarequalified
by port fields that specify the traffic type.� ii.Anything (wildcarded)to >N(r* bit IP destination.This
form of rule appearsto be protectingserversfrom being
reachedfrom the externalworld.� iii. J�L or (b= bit network source addressto >N(r* bit IP
destination.This form of rule is similar to the first type
of patternexcept generalizedto protectingservers from
particularsubnets.� iv. (b=c* bit network sourceaddressto anything.This form
of rule simply forbids certain subnetworks for certain
specifiedtraffic types.

To test scaling later, we use a much simpler synthetic
databasegenerationalgorithm than [1]. Since eachdatabase
we studied is quite different in patternsand distribution of
lengthtuples,we usedeachdatabaseasa modelto synthesize
largerdatabasesby simply replacingeachIP addressor prefix
in a rule by other addresseswhile keepingother fields the
same.This seemsto bea reasonablemodelof anISPgrowing
in servers to be protectedand subnetworks to be protected
against.

A. IP Source-Destinationmatching characteristic

The key observation that forms the basis of our new
algorithmis as follows.
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�
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Fig. 4. Prefix Distribution in the IP source field.Prefix length is repre-
sented on the horizontal axis while the percentage of entries with a given
prefix length is given on the vertical axis. The graphs have a maximum
on the lengths of � , �<� , �u  and ¡{� .
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Fig. 5. Prefix Distribution in the IP destination field.Prefix length is
represented on the horizontal axis while the percentage of entries with
a given prefix length is given on the vertical axis. The graphs have a
maximum on the lengths of � , �<� , �u  and ¡{�

Source-Destination Matching: For all our databases,we
computedtheBV bitmaponall possiblesourceanddestination
prefix values.Thenfor eachpossiblesource-destinationprefix
pair (crossproduct)we computed the intersectionof these
bitmapsandcountedthenumberof rulesthatmatcheda given
packet when consideringonly the first two fields. We found
that for £�£p` £NM of the source-destinationcrossproducts,the
numberof matchingruleswas d or less.Even in a worst case
sense,no crossproduct(and hencepacket) for any database
matchesmore than (b- rules when consideringonly source
destinationfield matches.

Notice that this observation implies that the number of
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distinct source-destinationprefix pairs matchinga packet is
even less

¤
than20 becausetherecanbeseveral rulesthatshare

thesamesource-destinationprefixpair. Thisobservationis true
for the smallestto the largestdatabaseof around2800 rules.
We expect it to remainapproximatelytrue even as databases
scale becausethe number of overlapping prefixes (e.g., of
lengths0, 24, 32) are so limited in eachof the sourceand
destinationfields.

Note that thesmallnumberof matchesis not truewhenone
considersonly the sourceor destinationfields becauseof the
large numbersof wildcardsin eachfield.

VI . EXTENDING 2D SCHEMES

A numberof algorithmssimply uselinear searchto search
through all possible rules. This scaleswell in storagebut
poorly in time. The source-destinationmatchingobservation
leadsto a very simple idea shown in Figure 6 to usesource-
destinationaddressmatchingto reducethe linear searchingto
all rulescorrespondingto source-destinationprefix pairsin the
databasethat matchthe given packet header. Sincemostly 5
andat most20 ruleswill matchany packet whenconsidering
only the sourceand destinationfields, this will reducethe
numberof rulesto be searchedto be between5 and20. Thus
we have linear searchingamonga prunedspaceof around20
rules comparedto linear searchingthe entire database(e.g.,
2800rules in our large databases).

R

R

R

5

6

2

4

R7

1

R8

R
3

Any 2D
search alg.

for finding all 
matches for a pair (S,D)

R

R

1 1 p p t t(S  , D  )  (S  , D  )  (S  , D  )  

Fig. 6. Extending two dimensional schemes

The main idea is depictedin Figure 6. The idea is to use
any efficient two dimensionalmatchingschemeto find all the
distinct source-destinationprefix pairs �����_	��¥�~�+`~`�`����+¦u	��T¦7�
that matcha header. For eachdistinct pair ����n�	���n�� thereis a
linear array or list with all rules that contain ����n<	���n�� in the
sourceand destinationfields. Thus in the figure, we have to
traversethe list at �����b	��
�~� searchingthroughall the rules(in
reality only the otherfieldssuchasport numbers)for

� � , � � ,� � and
� 1 . Thenwe move on considerthe lists at ��� � 	�� � � ,

etc.
Notice that this structurehastwo importantadvantages:
� Each rule is only representedonce without replica-

tion.However, onemay wish to replicaterules to reduce

the number of source-destinationpairs consideredto
reducesearchtimes.� The port rangespecificationsstay as rangesin the in-
dividual lists without the blowup associatedwith range
translationin sayCAMs, BV, andABV.

Since the Grid-of-Tries implementationby Srinivasanet
al [17] is one of the most efficient two dimensionalschemes
described,we now instantiatethis generalschemaby using
grid-of-triesas the 2D algorithmin Figure6

A. ExtendedGrid-of-Tries(EGT)

In a naive generalizationof a k-dimensionaltrie we either
pay a large price in memory or we may be forced to do
backtrackingandwe pay a large price in time [15]. However,
we may eliminatepart of the wasteof backtrackingby using
precomputation.This basic techniquewas introducedin the
two dimensionaltrie implementationusinggrid of tries [17].

However onecanimmediatelyseethat theapproachin grid
of tries cannotbe generalizedin #+	u#
&§( dimensions.This is
becausethe grid of tries algorithm assumesthat a rule may
have at mosttwo fields. If two rulesarea matchfor a packet,
then the mostspecificrule is picked. This observation allows
the replacementof the backtrackingmechanismwith switch
pointers. By usinga switch pointer in any failure point in the
sourcetrie, it allows the searchto jump to the next possible
seconddimensiontrie which may containa matchingrule.

Our goal is that for eachpacket header3¨oV��3
�b	�3 � 	�`~`~`q�
to be able to identify the set of rules e such that e©oª e¥\ 4�]�« e��_\ 4�]j¬Q3
��­Se � \ 4�]�¬Q3 �_® .

In our extendedgrid of trie structure,a first trie is associated
with the first dimensionin the rule database.For every valid
prefix node in this trie a special node is created.Each of
thesenodescontainsa link to a trie which containsvalues
from the seconddimensionfield. For example, if the node
in the first dimensiontrie is associatedwith a prefix Ef� then
the seconddimensiontrie nodesis generatedusing all the
seconddimensionfield prefixes E � \ 4�] from the rules ehnSo
��E���\ 4�]^	�E � \ 4�]^	~`�`~` �{	<4�o¯JI`~`~` " in the database.

A node � in the seconddimensiontrie which is associated
with a valid prefix E�� is appendedwith a list of rules which
correspondto rules that match E�� and E � in the first two
dimensions.A nodealso containsa list of pointersto all the
valid prefixes nodeswhich are a prefix of E � . Thus node �
knows the list of all the rules e¥\ 4�]°o)��Ef�b\ 4�]^	�E � \ 4�]�	�`~`~` � for
which E��_\ 4�]�oVE�� and E � \ 4�]I±yE � 5. However, a rule occurs
in exactly one position.

A differentapproachis to keepin eachnodeassociatedwith
a valid prefix Eh� thelist of rules e¥\ 4�] which have E � in thefirst
field and in the secondfield a prefix E � \ 4�] which is eitheran
exactmatchor aprefixof E � . We discussthesetwo approaches
whenwe analyzethe schemebehavior on real classifiers.

At this point, for each packet with a header 3 o
��3 � 	�3��b	�`~`~`q� we can identify the set of rules e oª e¥\ 4�]�« e¥\ 4�]UoT��E � 	�Eh��\ 4�]�	�`~`�` � ® where E � is thelongestmatching
prefix of 3 � for which at leasta rule e n oV��E � 	�`~`~`q� existsand

5 ²´³¶µ meansthat ² is eitheran exact matchor a prefix of µ .
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E��N\ 4�] if exists is E���\ 4�]w±·3�� . In order to get all the rules e
suchthat

¸ e¯o ª e¥\ 4�]7« e � \ 4�]�±�3 � ­Aeh��\ 4�]j±�3�� ® is necessaryto
traverseall the tries associatedwith prefixes in the first field
thatareprefixesof thefield 3 � of thepacket header. However
this requiresbacktrackingin which casewe pay a large price
in time.

In order to avoid the backtrackingwe follow an approach
inspiredby but differentfrom [17]: we introduceateachfailure
point in the seconddimensiontrie a jump pointer to directly
allow thesearchto jump to thenext possibleseconddimension
trie thatmaycontaina matchingrule. If thenodein which we
inserteda jump pointer is associatedwith a prefix E�� in the
seconddimensiontrie, the jump is eitherto a nodeassociated
with a valid prefix E that is eithershorteror equalwith E , if
sucha nodeexist, or to a regular nodewhich is the longest
matchingprefix of E � , otherwise.

Figure7 shows theextendedgrid of triesfor thedatabasein
Figure1. Let’sconsiderthesearchfor rulesthatmatchapacket
header��-�-�-�-c	~J�J!-�-c	~`~`�` � . Thesearchin thefirst dimensiontrie
gives E��¹oO-�-�- as the bestmatch.So we start the searchfor
finding the matchingprefix associatedwith the secondvalue
in the header J�J�J�J . We do not find a matchin this trie. The
searchfails in the node J�J . However a jump pointer allows
the searchto continuefurther into the trie associatedwith the
prefix -Ns in thefirst dimension.Thesearchin this trie provides
J
s as the longestmatchingprefix andonerule e�� asbeinga
matchingrule. Oncethe searchfails againin this dimensiona
jump pointerbringsus to the last nodecorrespondingto s�	{s .
This lastnodeaddstwo morerulesto the list makingthefinal
matchinglist to be: e � 	�e �7� 	�e ��� .

The worst searchtime for the schemecanbe proved to be:�»º ��3 º J!��s � o'��3 º (��hs � where
�

is the time to
find the bestprefix in a trie and 3 is the maximumlengthof
the trie, 3¼o½>�( for IP addresses.However, we expect that
the worst casescenariodoesnot occurin practice.Insteadwe
expect the worst casesearchtime to be on the order ¾Ks �
with ¾ beinga small value.

We can also reduce
�

by using compressedmultibit
tries[4] insteadof using1-bit tries.If weuse #+* bit expansion,
the depth of the trie reducesto

� �b# and so the lookup
time goesdown correspondinglywithout a corresponding( �
increasein storagethat would be incurredby uncompressed
tries.

The bottom line is that using multibit tries, the time to
search for the best matching rule in an arbitrarily large
multidimensionaldatabasecouldeffectively reduceto # times
the time to do IP lookupsusingmultibit tries,with # assumed
to bea small constant,plus the time to searchthrougha small
list of rules.

B. ExtendedGrid of Trie with Path Compression

We further improve theExtendedGrid of Trie algorithmby
using Path Compression[3]. This is a standardcompression
schemefor tries in which singlebranchingpathsareremoved.
Figure 8 shows how the path compressionis applied to the
tries in the Figure 7.By doing so a trie with

"
leaf nodes

can be compressedinto a trie with at most ( " *¿J nodes.
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Fig. 7. Improving the search cost with the use of jump pointers in the
extended grid of tries. The tries are generated using the database in
Figure 1.

Further improvementmay be gainedby applying both path
compressionaswell asthecompressiontechniquesintroduced
in [4].
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Fig. 8. Reducing the time of the trie traversal by applying path
compression to the tries in Figure 7.The tries are generated using the
database in Figure 1.

VII . METHODOLOGY

In this sectionwe describehow the EGT algorithmcanbe
implemented,andhow it performson both real life databases
andsyntheticallycreateddatabases.Notethatweneedsynthet-
ically createddatabasesto test the scalabilityof our scheme.

First, we considerthecomplexity of thepreprocessingstage
and the storage requirementsof the algorithm. Then, we
considersearchperformanceand we relate it to the perfor-
manceof other algorithms:RFC, HiCuts, BV andABV. The
speedmeasurewe use is the worst casenumberof memory
accessesto be executedacrossall possiblepacket headers.
Fortunately, computingthis numberdoesnot entail generating
all possiblepacket headers.This is becausepacket headersfall
into equivalenceclassesbasedon distinctcross-products[17];
a distinct cross-productis a unique combinationof distinct
prefix valuesfor eachheaderfield.

Since each packet that has the same cross-productis
matchedto thesamenode

" n (in trie B�n ) for eachfield 4 , each
packet thathasthesamecross-productwill behave identically.
Thus it suffices to computeworst casesearchtimes for all
possiblecross-products.

One can easily see that our algorithm has a worst case
behavior when it may needto traversea very large number
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of tries that are associatedwith the seconddimensionfield.
However pathologicalcasesfor which the heuristicsexperi-
encethe worst behavior may be found for all the algorithms
we presented.Thereforein this paperwe focus on the worst
casesearchtime for a seriesof realistic testdatabases.

A. ExperimentalPlatform

We used two different types of databases.First we used
a set of four core router databasesthat we obtained from
several large Tier 1 ISPs. For privacy reasonswe are not
allowedto disclosethenameof theISPor theactualdatabases.
Each entry in the databasecontains a LR*X9�8�mUz�� (source
IP prefix, destinationIP prefix, sourceport number(range),
destinationport number(range),protocolandaction).We call
thesedatabases�
.C�f`~`~`��
.v1 . Thedatabasecharacteristicsare
discussedin SectionV.

Thesecondtypeof databasesis generatedusingthereal life
databasesas a startingpoint. We extend eachof the original
databasesby randomly generatingprefixes for the first two
fields with the samelengthdistribution asin the original one.
We alsomaintainthe distribution for the last threefields.

B. Performance Evaluation on Real Life Core Router
Databases

We experimentallyevaluateall the algorithmson a number
of four real life core router databases�
.À�
	~`�`~`�	��
.v1 . The
rules in the databasesare convertedinto prefix format using
the techniquedescribedin [17] for the evaluationof the BV
andABV algorithms.The memoryspacethat is usedby each
of themcanbeestimatedbasedon thenumberof nodesin the
tries, and the numberof nodesassociatedwith valid prefixes
in the caseof BV andABV.

In the caseof ?G@CB we also needto take into accountthe
sizesfor the list aswell asthe jump pointers.We usewordsof
size >�( bits andaggregatesizeof >�( for �2.TÁ . In the caseof� eG6 at eachlevel if the numberof uniqueelementsis

"
we

use z�|!Â � " bits for an index into that level. Thereforefor each
table �ÃswÄ the total memorysize in bits is �Ws�ÄOswz�|!Â � " .
Our resultsaresummarizedin Figure9.

Both the searchtime andmemoryspacein 3547608U9<; [7] are
dependenton two parameterswhich may be tuned:(1)space
factor (spfac)- which determinesthe amountof total memory
spacethat will be allocatedon the decision tree and a ��(��
threshold(binth)(a node with fewer than binth rules is not
partitionedfurther). [7] makes the observation that the tree
depth is inversely proportional to binth and spfac while the
total memory spaceis proportional with spfac and inverse
proportionalto binth. The resultsin Figure 11 and Figure 9
arefor 3547608:9<;Å*�= : ��xu4^��9<Æ
oyJ!- , ;<m+Ç+��}woD=N� and 3547608U9<;�*
J : ��xu4^��9<Æ
oyJ!- , ;�mUÇ+��}�o¯J
� .

In the caseof threedatabasesthe memoryspaceoccupied
by 3547608:9<;:*À= (thevalueusedin theoriginal HiCutspaper)is
anorderof magnitudelarger thanthememoryspaceoccupied
by the ?G@CBZ*yEG6 . However, by tuning the space factor
parameter(spfac)to a valueof J correspondingto optimizing
3547608:9<; for memory space,the overall spaceoccupiedby
3547608:9<; is comparablein sizewith ?G@CB for threedatabases

while in the caseof �
.0/ it is still about H timeshigher than
?G@CBR*SEG6 . �
.0/ shows a databasetype which may hurt the
performanceof the 3547608:9<; heuristics.In this casethe height
of the decisiontree that is generatedby 3È4�608U9<; stays the
samewhen ;�mUÇ+��} is changedfrom J to = . This is becauseof
a set of rules which getsreplicatedin a majority of the leaf
nodes.

In the caseof both .°Á and �2.TÁ notice the increasein
the (aggregated)bit vector size with the numberof rules in
the databasecontributes to a higher increasein the overall
memorysize,beingmultiplied with the total numberof valid
prefix nodesin all the tries. However, not keepingthe bits in
the original bit vectorwhich areassociatedwith an aggregate
bit with the value - may reducethe memoryusageof �2.TÁ .
While this optimizationcanreducethememorysizeof �2.TÁ ,
we have not shown its effect here. The results for

� eG6
confirm the assumptionin [6] that despiteof a worst case
scenario in which an implementationmay take ��� " �! � �
memoryspace,in reality the memoryspaceoccupiedby the
algorithm’s searchstructureis smaller.

Overall, as expected,
� eG6 occupiesby far the largest

memoryspace.On the otherside in termsof lowestmemory
space ?G@CBV*¿EG6 and 3547608:9<; are the main competitors.
?G@CB�*REG6 in generalis the onewith the bestuseof space.
However, when 3547608U9<; is optimized for memory spaceit
comescloseto ?G@CBQ*REG6 but is slower with an worst case
searchtime that is (0*É> timesslower than ?G@CBQ*REG6 .

We alsoevaluatethe performanceof the five algorithmsin
termsof worst caselookup time on the corerouterdatabases.
The resultsareshown in Figure11.

As anticipated
� eG6 hasthebestsearchtime with a number

of 12 memoryaccesses.The resultsin Figure 11 shows that
classifyingpacketswith �2.TÁ hasbenefitswhen the number
of memory entries in the databaseis large. In this casethe
searchtime for �2.TÁ is more than four times fasterthan in
.°Á evenwithout rule rearrangement.However, if thenumber
of rules is small, on the order of hundreds,the phenomenon
of falsematchingdescribedin [1] may limit the performance
of �2.°Á .

The search time in ?G@CBÊ*XEG6 is mostly due to the
severaltraversalsof thetries.Theworstcasesearchtime using
?G@CBO*PEG6 is on the sameorder of magnitudeas 3547608U9<;
when 3547608U9<; is optimizedfor speed.However the memory
spaceoccupiedby ?A@CBD*FEG6 is on an order of magnitude
smallerthanany otheranalyzedheuristicwith theexceptionof
HiCutsoptimizedfor a spacefactorof J . In this case3547608U9<;
and ?G@CBQ*REG6 occupy similar memoryspacesizes.

C. Performanceevaluationon syntheticgenerateddatabases

In this section we want to investigatethe scalability of
?G@CBK*5EG6 . In orderto do so we generateddatabaseswith a
large numberof rules betweendr	�-�-�- and J�-�-p	�-�-�- . The first
two typesof databases,���
.À� and �Å�
. � aregeneratedusing
asa generatorthe two longestreal corerouterdatabases.The
lasttypeof database,���Ë.v/ aregeneratedusinga combination
of all four real corerouterdatabasesasa generator. Figure13
shows the sizeof the memoryoccupiedby ?G@CBR*¶EG6 while
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�
�N97�rx{�r;!� No. of Rules
� eG6 3547608:9<;¹*´= 3È4�608U9<;w*�J .TÁ �v.°Á ?A@CB ?G@CBQ*ÉEG6

�
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�
.v� J
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�
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�
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Hr	�,�-pJ (�dr	ud_=�> (NH_Lp	�L�-�= (�,�dr	�-�£�£ H�dr	�>NH_L >�-p	uH�db>

Fig. 9. The total memory space occupied by the search structure in all 6 heuristics RFC, HiCuts Ì�Í�Î�Ï_Ð�ÑjÒ´�{Ó� ~Ô , BV, ABV, EGT and EGT-PC for the
four core router databases. The size is in memory words, one memory word is ¡{� bits.

�
�N97�rx{�r;�� ?A@CB ?G@CBQ*REG6
Trie List Total Mem. Trie List Total Mem.

�
.À� >p	�-pJ!£ J!d�d >c	~J
H_= J�	�-cJ�> J!d�d J�	~J!L�,
�
.0� >p	{H�J!> (�(�( >c	�£�>Nd J�	�(�db- (�(�( J�	<=rHb(
�
. / >p	�>�>�£ db-�L >c	�,b=�d J�	uH�d�d db-�L (r	�(�LpJ
�
. 1 H_-c	uH�J!- =c	�L�L�L H�dr	�>�H_L (�Lp	�-�,NH =c	�L�L�L >�-p	{Hbdb>

Fig. 10. The total memory occupied by both EGT and EGT-PC used with real life databases. The size is in memory words. One memory word is¡{� bits.

�
�N97��x���;!� No. of Rules
� eG6 3547608:9<;w*R= 3È4�608U9<;w*�J .°Á �2.TÁ ?G@CB ?G@CBQ*ÉEG6

�
.À� ,�d J!( ,�( L�= J�-�L J�J�J J�-�H >N(
�
. � J!(�d J!( =�L J!-�L J�-cJ J�-�L J�J!- db=
�
.0/ >�drJ J!( J�J�, J_Hb( J�>�L J!(�L J�J�= =rH
�
.v1 (r	{H_£�£ J!( ,�( J_Hb( ,b=NL J�£�L J!db= ,�H

Fig. 11. The total number of memory accesses for a worst case search in all 5 heuristics RFC, HiCuts ÌÕÍ�Î�Ï_Ð~ÑjÒ´�{Ó� ~Ô , BV, ABV, EGT and EGT-PC
for the four core router databases. One memory access is one word. One word is ¡{� bits.

the numberof rules in the classifierincreasesfrom dp	�-�-�- to
J�-�-c	�-�-�- .

The results prove that the memory space occupied by
?G@CBÖ*×EG6 scales linearly in number of rules. Of
course,this shouldbe taken with a grain of salt becausethe
large databasegenerationmethodologypreserves the source-
destinationstructureof the original databases.If this assump-
tion doesnot hold asdatabasesscaleup, ?G@CBØ*SEG6 will not
scale.However, we have not seenany experimentalevidence
that this is not the case.

The worst casescenariofor a searchusing ?G@CB§*KEG6 is
shown in Figure12. In the caseof ���
. / with J!-�-c	�-�-�- rules
it takesabout J�J�, memoryaccesses.This correspondsto about
d trie traversalsplus the selectionof roughly >�- rulesthat are
a match. In the caseof ���
.0� with J�-�-p	�-�-�- in the worst
caseit takes £�, memoryaccessesdueto four onedimensional
lookupsand the selectionof about J
H rules.

VI I I . CONCLUSION

Packet filter classificationhas received tremendousatten-
tion( [11], [1], [17], [6], [7], [15], [2], [5], [19]). Unfortunately,
despite the vast amount of previous work, there does not
appearto be a good algorithmic solution when rules contain
more than 2 fields. At the same time, classificationis an
extremely importantproblemwith several vendors,including
Juniper, allowing the useof filter-basedactionsfor purposes
such as accountingand security. While Ternary CAMs [13]
offer a good solution in hardware for small classifiers,they
may usetoo muchpower andboardareafor large classifiers.
Thus it is worth looking for alternatives[12] to CAMs.

Becausereal-life classifiers have considerablestructure,
[6] observed that such structurecould be exploited to yield
heuristicsthat beat the worst-caseboundson real databases.
The primary observation till this paper was [6] that each
packet only matchesa few rules.Our paperstartswith a fresh
observation driven by data we observed: each packet does
indeed match only a few rules, but it also matchesonly a
few ruleswhenthe rulesareprojectedto only the sourceand
destinationfields. Thus even for large classifiers,if one can
find all thesource-destinationprefix pairsthatmatcha packet,
one needonly linearly searchthrough a set of 20 possible
rules.

This suggeststhat any efficient two-field classification
schemecanbe extendedwith a small amountof linear search
to general classifiers.The only catch is that the two-field
schemehas to find matches, and not eliminate less specific
matches.Thus,while this suggestedstartingwith the grid-of-
tries, we hadto modify it using jump pointersto computeall
matches,losingworstcaseguaranteeson eventhesearchtime
for 2-field search.

Despitethis, ?G@CB�*´EG6 works very well comparedto all
otheralgorithms.Its worst casesearchtimesareon the same
orderasfor the HiCuts optimizedfor speedwhile its memory
storagerequirementsare on the sameorder as for HiCuts
optimizedfor space.Thereforewe considerthat ?G@CBQ*REG6
provides a reasonablyfast algorithm with minimal storage
requirementsthat can fit into on-chip SRAM. Much more,
?G@CBQ*KEG6 hasthe advantageof beingmorepredictable,of
not having any patent restrictions,and potentially allowing
simple further improvementsusing compressedmultibit tries
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Fig. 12. The total number of memory accesses for a worst case search for EGT-PC for synthetic databases. The number of entries is changed
between Ù{�{�{� and �<�{�!Ó^�{�{� . One memory access is one word and one word is ¡{� bits.
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���
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Fig. 13. The total memory occupied by EGT-PC used with synthetic databases. The number of entries is changed between Ù{�{�{� and �<�{�!Ó��{�{� .
One memory word is ¡{� bits.

as in [4]. We are working on the use of multibit tries,
compressedversionsof the lists, andtheuseof wide wordsto
furtherreducethespaceandtimeof EGT-PC.Ourpaperleaves
openthe issueof modifying other 2 field algorithmssuchas
[5], [2], [11], [1] to achieve betterperformance.The lack of
standardizedcomparisonshasled us to placeall the codewe
implementedon a public repository[16]. As otherstinker with
thesealgorithms,we believe that even betteralgorithmswill
be found and the stateof the art will improve further. The
use of packet classificationis not confinedto routers: from
personalfirewalls to web load balancingusing URLs, better
and open sourcecode for classificationcan help improve a
numberof applicationsin softwareandhardware.

REFERENCES

[1] F. BaboescuandG. Varghese.Scalablepacket classification.In Proc of
ACM Sigcomm’01, september2001.

[2] M. M. Buddhikot andal. Spacedecompositiontechniquesfor fastlayer-
4 switching. In Proc. of PHSN, aug1999.

[3] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. A software
architecturefor next generationrouters. In Proc. of ACM Sigcomm
’98, sept1998.

[4] W. Eatherton. Hardware-basedinternet protocol prefix lookups. In
Eatherton, Will. Hardware-BasedInternet Protocol Prefix Lookups.
WashingtonUniversity Electrical EngineeringDepartment,MS thesis,
may 1999.

[5] A. FeldmanandS. Muthukrishnan.Tradeoffs for packet classification.
In Proc. of Infocom, march2000.

[6] P. GuptaandN. McKeown. Packet classificationon multiple fields. In
Proc of ACM Sigcomm’99, september1999.

[7] P. Gupta and N. McKeown. Packet classificationusing hierarchical
intelligent cuttings. In Proc of Hot InterconnectsVII, august1999.

[8] P. Gupta and N. McKeown. Algorithms for packet classification. In
IEEE NetworkSpecialIssue, vol. 15, no. 2, march2001.

[9] M. Inc. Ipma statistics.In http://nic.merit.edu/ipma, 2000.
[10] S. Iyer and al. Classipi:anarchitecturefor fast and flexible packet

classification.In IEEE NetworkSpec.Issue, vol. 15, no. 2, 2001.
[11] T. V. Lakshmanand D. Stidialis. High speedpolicy-basedpacket

forwarding using efficient multi-dimensionalrangematching. In Proc.
of ACM Sigcomm’98, sept1998.

[12] C. Matsumoto. Cam vendors consider algorithmic alternatives. In
EETimes, may 2002.

[13] Memory-memory. In http://www.memorymemory.com, 2000.
[14] C. Partridge. Locality and route caches. In Proceedingsof NSF

Workshop,ISMA, feb 1999.
[15] L. Qiu, G. Varghese,and S. Suri. Fast firewall implementationfor

software and hardware basedrouters. In Proc. of the ICNP 2001,
november2001.

[16] S. Singh and F. Baboescu. Packet classification repository. In
http://ial.ucsd.edu/classification.

[17] V. Srinivasanand al. Fast and scalablelayer 4 switching. In Proc of
ACM Sigcomm’98, september1998.

[18] V.Srinivasan,S.Suri,and G.Varghese.Packet classificationusing tuple
spacesearch.In Proc of ACM Sigcomm’99, september1999.

[19] T. Woo. A modularapproachto packet classification:Algorithms and
results. In INFOCOM, 2000.

[20] J. Xu and al. A novel cachearchitectureto supportlayer-four packet
classificationat memoryaccessspeeds.In Proc. of Infocom, mar. 1999.


