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Abstract— A classifier consistsof a set of rules for classifying
packets based on header fields. Becausecore routers can have
fairly large(e.g, 2000rule) databaseand must uselimited SRAM
to meet OC-768 speedsthe bestexisting classificationalgorithms
(RFC, HiCuts, ABV) are precludedbecauseof the large amount
of memory they need. Thus the general belief is that hardware
solutionslik e CAMs are needed despitethe amount of board area
and power they consume.In this paper, we provide an alternative
to CAMs via an Extended Grid-of-T ries with Path Compression
(EGT-PC) algorithm whose worst-case speed scales well with
database size while using a minimal amount of memory. Our
evaluation is basedon real databasesused by Tier 1 ISPs, and
synthetic databases. EGT-PC is basedon a obsewation that we
found holds for all the Tier 1 databaseswe studied: regardlessof
databasesize,any padket matchesonly a small number of distinct
source-destinationprefix pairs. The code we wrote for EGT-PC,
RFC, HiCuts, and ABV is publicly available [16], providing the
first publicly available code to encourageexperimentation with
classification algorithms.

|. INTRODUCTION

The rapid growth of the Internet has brought great chal-
lengesand complex issuesin deploying high-speechetworks.
The number of users, the volume of traffic and the type
of servicesto be provided are continually increasing.The
increasingtraffic demandrequiresthree key factorsto keep
pace:high link speedshigh router dataswitchingthroughput
and high paclet forwarding rates.Although there are already
solutionsfor thefirst two factors,paclket forwardingcontinues
to be be a difficult task at wire speeds.

Paclket forwarding based on a longest matching prefix
lookup of destinationlP addressess fairly well understood
with bothalgorithmicand CAM-basedsolutionsin the market.
Using basicvariantsof tries and somepipelining, it is fairly
easyto performonepaclket lookup every memoryaccesgime,
which can easily scale (beyond even today's OC-768 speeds
of 40 Gbps)to 100 Gpsusing1 nsecSRAMSs.

However, the Internetis becominga more comples place
to live in becauseof its use for mission critical functions
executed by organizations.Organizationsdesire that their
critical actvities not be subverted either by high traffic sent
by other organizations(i.e., they require QoS guaranteespr

by maliciousintruders(i.e., they requiresecurityguarantees).

Both QoS and securityguaranteesequirea finer discrimina-
tion of pacletsbasedon fields otherthanthe destinationthat
we call padket classification

F. Baboescu,S. Singh and G. Vargheseare with the Computer Science
and EngineeringDepartment,University of California, San Diego(UCSD),
La Jolla, California. E-mail:{baboescuyamghesé @cs.ucsd.edu

Other fields a router may needto examineinclude source
addresseqto forbid or provide different service to some
sourcenetworks), port fields (to discriminatebetweentraffic
types such as Napsterand say Email), and even TCP flags
(to distinguish betweensay externally and internally initi-
ated connections)Besidessecurityand QoS, other functions
that require classificationinclude network addresgranslation
(NAT), metering,traffic shaping,policing, and monitoring.

The industry standardfor classifierformatshascomefrom
Cisco ACLs, which consistof a numberof rules. Eachrule
specifiesa destinationaddressrefix, a sourceaddresgrefix,
a protocoltype or a wildcard, rangesfor the destinationand
sourceport fields, and somevaluesof TCP flags. The rules
arearrangedn orderof priority andhave an associatection
(suchasdrop, forward, placein queueX etc.). Conceptually
a paclket must be matchedto the first (i.e., highestpriority)
rule that matcheshe paclet.

Classifiers historically evolved from firewalls that were
placedat the edgesof networksto filter out unwantedpaclets.
Suchdatabasesire generallysmall, containing10-500rules,
and can be handledby ad hoc methods.However, with the
DiffServ movement, there is potential anticipation [12] of
classifiersthat could supportone hundredthousandrules for
DiffServandpolicing applicationsat edgerouters.Thuswhile
mary classificatioralgorithms[7], [6] work well for classifiers
up to say1000rules,thereis areal scalingproblemfor larger
databaseshatis partially addressedby [1].

While large classifiersare anticipatedfor edgeroutersto
enforce QoS via DiffSery, it is perhapssurprisingthat even
within the core fairly large (e.g., 2000 rule) classifiersare
commonly usedfor security Emeiging core routers operate
at 40 Gbs speedsthus requiring the use of limited SRAM
to storestatefor any algorithmic solution. Unfortunately the
bestexisting classificationschemeslescribedn the literature
(RFC [6], HiCuts [7], ABV [1]) require large amountsof
memoryfor even mediumsize classifiers precludingtheir use
in corerouters.

While these core router classifiersare nowhere near the
anticipatedsize of edge router classifiers,there seemsno
reasorwhy they shouldnot continueto grow beyondthe sizes
reportedin this paper For example,mary of the rulesappear
to be derying traffic from a specified subnetwork outside
the ISP to a sener (or subnetvork) within the ISP Thus,
new offending sourcescould be discoveredand new seners
could be addedthat needprotection.In fact, we speculatehat
one reasonwhy core router classifiersare not even bigger is
becausemostcorerouterimplementationslow dowvn (anddo
not guarantedrue wire speedforwarding) as classifiersizes



increase.

Thus the general belief is that hardware solutions like
Ternary CAMs are neededfor core routers,despitethe large
amountof boardspaceand power that CAMs consume[12],
[8]. For a large numberof designers,Ternary CAMs, which
essentiallycomparea paclet to every rule simultaneouslyare
the only solution.

There are several reasonsto consideralgorithmic alterna-
tivesto TernaryCAMs, however, someof which are stronger
than others:

« Density Scaling: One bit in a TCAM requires10-12
transistorswvhile an SRAM requires4-6 transistorsThus
TCAMs will alsobelessdensehanSRAMsor take more
area.Board areais a critical issuefor mary routers.

« Power Scaling: TCAMs take more power becausef the
parallel compare.CAM vendorsare, however, chipping
away at this issueby finding waysto turn off partsof the
CAM to reducepower. Pawer is a key issuein large core
routers.

« Time Scaling: The matchlogic in a CAM requiresall
matching rules to arbitrate so that the highest match
wins. Older generationCAMs took around10 nsecfor
an operationbut currently announcegroductsappearo
take 5 nsec, possibly by pipelining parts of the match
delay

« Extra Chips: Giventhatmary routerslikethe CiscoGSR
or the JuniperM160 alreadyhave a dedicatedASIC (or
network processorjloing packetforwardingit is tempting
to integrate the classificationalgorithm with the lookup
without adding CAM interfacesand CAM chips. Note
that CAMs typically require a bridge ASIC in addition
to the basicCAM chip, and sometimesequire multiple
CAM chips.

« Rule Multiplication for Ranges:CAMSs needto repre-
sent port rangesby several prefixes thus causingextra
entries.

To seethat this problemis not just of academicinterest
considerthe following recentannouncemenby Cypress(a
leadingmanufcturerof CAM chips)in EE Times[12]. Basi-
cally, Cypressis consideringshippinga chip that implements
an algorithmic approachto classificationto provide a lower
cost, lower area,and lower power alternatve to their CAMs.
The article also mentionsother companiesuchas Fast-Chip,
EZchip, and Integrated Silicon Solution that are claiming
algorithmic solutions.

Il. PAPER CONTRIBUTIONS

Our paper has three main contributions: a new classifier
characteristic,a new algorithm, and the first standardized
comparisoracrossa numberof major algorithms.

« i, New Characteristic: Our paper studiesthe charac-
teristics of core router classifiersusedby Tier 1 ISPS.
While previous studieshave shown [6] that every paclet
matchesat most a few rules, we refine this earlier
obsenation to shaw that every paclet matchesat most
a few distinct souice-destinationprefix pairs presentin
the rule set.In otherwords, if we projectthe rule setto

just the sourceand destinationfields, no paclet matches
more than a small numberof rulesin the new set of

projectedrules. Note that this is emphaticallynot true

for single fields becauseof wildcards: a single paclet

can match hundredsof rules when consideringary one
field in isolation.

« ii, New Algorithm: Basedon the obsenation above,
our paperintroducesa new algorithm we call Extended
Grid of Trie with Path Compession(EGIPC) for multi-
dimensionalpaclet classificationand evaluatesit. While
our EGT algorithm is inspired by the earlier grid-
of-tries algorithm [17], it requiresa significant exten-
sion. Briefly, the standardgrid-of-tries assumeghat any
source-destinatioprefix pair (S;,D1) thatis no more
specificin both fields than anotherpair (S2, D>) canbe
eliminated.While this works for 2 field classificationit
doesnot work for more than 2 fields, and requiresnew
machinery(e.g.,jump pointersinsteadof switch pointers)
for correctnessWe hadto experimentwith a numberof
extensionvariantsbefore finding one that did not result
in storagereplicationandyet had good performance.

« iii, New standardized comparison: Previous work
mostly comparesthe new algorithm presentedin the
paperwith one other algorithm. Thus for example, the
HiCuts paper[7] describesmprovementsover RFC [6];
similarly, the ABV paper[1] paperdescribesimprove-
mentsover the Lucentbit vectorschemg11]. The code
for eachalgorithmis also usually difficult to obtain. We
have written code for each of thesealgorithms?® and
comparedhemusing databasessedby Tier 1 ISPs.We
also do comparisonshasedon synthetic databaseghat
presere the structureof the smallerreal databaseshat
we have?

Finally, our code is publically available on a web site
describedn the referencesBy making multiple classification
algorithms publicly available we hope to encourageexperi-
mentationand improvementsthat can then be incorporated
into revisions on the sameweb site.

I1l. PRIOR WORK AND SUMMARY OF RESULTS

The paclet classificationproblemis inherently hard([11],
[18], [7], [17], [6], [19]) from a theoretical standpoint.It
has been shavn [11] that in its fullest generality paclet
classification requires either O(log"~* N) time and linear
spaceprlog N timeandO(N*) spacewhereN is thenumber
of rules,and k is the numberof headerfields usedin rules.

Most practicalsolutionseitheruselineartime [11] to search
through all rules sequentially, or use a linear amount of
parallelism (e.g., Ternary-CAMs as in [13], [10]). Ternary
CAMs are ContentAddressabléMemoriesthatallow wildcard
bits. Solutionsbasedon caching[20] do not appearto work

1The RFCcodeis basedn codegraciouslysuppliedto us by PankajGupta

20ur databasearedifferentfrom thosein [1] becausghosedatabasewere
largely edgedatabaseasopposedo coredatabaseOur syntheticgeneration
methodologyis alsovery differentfrom [1] in thatwe provide a simplerand
morerealisticmodelfor generatindgarge ISP classifiers.

3Theschemdn [11] reduceslassificatiorto linearsearchon a N-bit vector
which canbe spedup by usinga wide memoryword



well in practice becauseof poor hit rates and small flow
duraiiong14], andstill needa fastclassifierasa backupwhen
the cachefalils.

Severalalgorithmshave beendevelopedfor the caseof rules
on two fields (e.g., sourceand destinationIP addressonly).
For this special case,the lower boundsdo not apply (they
apply only for £ > 2); thus hardly surprisingly there are
algorithmsthattake logarithmictime andlinearstorageThese
include the use of rangetreesand fractional cascading11],
grid-of-tries[17], area-baseduad-tree$2], andFIS-treeq5].
While thesealgorithmsare useful for specialcases(suchas
measuringtraffic betweensource and destination subnets),
they do not solve the general problem of k—dimensional
paclet classification.

Thepaperdy GuptaandMcKeawn [6], [7], [19] introduced
amajornew directioninto paclet classificatiorresearchSince
the problemis unsohablein the worst case they look instead
for heuristicsto exploit the structureof the databasesThey
obsened for the first time that a given packet matchesonly a
few rulesevenin large classifiers Baboescland Varghese[1]
also exploit this obsenation to reducethe searchtimes for
the algorithm describedin [11]. Qiu et al [15] exploit the
obsenation that ary paclet matchesat most a few distinct
valuesin eachfield to suggestbacktrackingtrie searchas a
viable (thoughfairly slow) alternatve.

Performance of Existing Schemesin termsof the current
stateof the art (seecomparisondater), it appearsthat RFC
has the fastestsearchtimes (12 memory accessesising 16
bit chunks)but at the cost of a large amountof storage(for
example,on a databasef 2800rules, RFC requires24 Mbits
of memory).HiCutstakesmorememoryaccesseandrequires
less memory (e.g., 3 Mbits for the samedatabaseusing 82
memoryaccesses).

HiCuts mostly works well. However, with the spacefactor
of 4 usedin the HiCuts paper it is fast(82 memoryaccesses
for a 2800 rules database)ut requiresa large amount of
storagefor databasegsee DB3 below) in which there are
a large number of rules where the destination addressis
wildcarded, and a large number of rules where the source
addresss wildcarded.Using alower spacefactorof 1, HiCuts
tendsto sometimesdo betterin storagebut still doesworsein
time. In the caseof DBy, HiCuts —4 usesmorethan3 times
more memorythan EGT — PC while the worst casesearch
time is only slightly better:82 vs. 87 while HiCuts — 1 uses
about16% lessmemorythan EGT — PC but sacrificesthe
worst casesearchtime which is now twice aslarge asthe one
for EGT — PC.

Besides these better results for existing core router
databasedZGT — PC hasthreeothercharacteristicshatmay
male it more attractive than HiCuts.

« Predictability: It appearsto be difficult to predict the
performanceof HiCuts on arbitrary databasebecause
thereis no model to predict its performance EGT —
PC performancecan be characterizedn terms of the
maximumnumberof rulesthat matcha projectionof the
original rule setonto the sourceand destinationfields.

o Scaling: EGT — PC appearsto scale well to large
databases.

« Patent issues: EGT — PC' is not subjectto patent
restrictionunlike HiCuts which is patented While this
is not a fundamentaissue,it doesprovide an important
reasonfor looking for alternatvesto HiCutsin practice.

While RFCis very fast,its large amountof memorymakes
it hardto implementusing limited SRAM. Thus for existing
ISP databaseroneof the existing algorithmsincludingHiCuts
scaleaswell in both memoryandtime. Further the EGT-PC
schemecan easily be implementedusing a small amountof
SRAM.

More importantly whenwe attemptedo scalethe database
sizesto 100,000 while preservingtheir structure, EGT-PC
took only slightly more memory accessegat most 118)
while preservinglow storagé. Thus EGT-PC should scale
well assumingthat larger databasekeep the samesource-
destinationprefix characteristicof the Tier 1 ISP databases
we studied.

Assuminga chip capableof around32 memoryaccesseper
minimum size packet (using say a 32 way pipeline), EGT-PC
shouldallow the handlingof large classifiersin 2-3 minimum
size paclet times in the worst-case While this is not quite
wire speedforwarding, suchperformancefor large classifiers
in some pathologicalcasesseemsadequatesince most core
routerstoday can also fall belonv wire speedforwarding for
large classifiers.

A. Modelsand Metrics

Readersfamiliar with classificationshould skip the next
sectionto get to the new material presentedn the paper In
generalthe job of a paclet classifieris to cataorize paclets
basedon a setof rules.Rulesarealsosometimesalledfilters.

The information relevant for classifying a paclet is con-
tainedin K distinct headerfieldsin the paclet. Theseheader
fields aredenotedH[1], H[2], ..., H[K].

For example, the fields typically usedto classify IPv4
paclets are the destinationIP address,source IP address,
protocol field, destinationport number sourceport number
andprotocolflags. The numberof protocolflagsis limited, so
we cancombinetheminto the protocolfield itself.

Using thesefields, a rule F=(128.252.*,*, TCR 23, *), for
example,matchesll traffic addressetb subnetl28.252 using
TCP destinationport 23, which is usedfor incoming Telnet;
using a rule like this, a firewall may disallonv Telnetinto its
network.

A classifier(alsoknown asrule databaser filter database)
consistsof N rules Fy, Fy, ..., Fxy. Eachrule F; is an array
of K values,whereFj}[i] is a specificationon the i-th header
field. Thei-th headeffield is sometimegeferredto asthe i-th
dimension.The value F;[i] specifieswhatthe i-th headeffield
of apacketmustcontainin orderfor the packetto matchrule ;.
Thesespecificationoften have (but neednot be restrictedto)
thefollowing forms: exactmatch,for example“sourceaddress
must equal 128.252.169.16" prefix match, like “destination

4However, a linear increasein the memory spacethat it is usedmay be
obtainedif the numberof distinct prefixesin the databasescaleaswell with
the the numberof rulesin the database.



addressmust match prefix 128.252.*"; or range match, e.g.
“destinationport mustbe in the range0 to 1023"

Each rule F; has an associateddirective disp;, which
specifiesthe action to perform for a paclet that matches
this rule. This directve may indicate whetherto block the
paclet, sendit out a particular interface, or perform some
otheraction.A paclet P is saidto matc arule F if eachfield
of P matchesthe correspondindield of F'. For instance et
F = (128.252.x, %, TCP, 23, ) be a rule with disp = block.
Then, a paclet with headern(128.252.169.16128.111.41.101
TCR 23, 1025) matchesF', and is thereforeblocked. The
paclet (128.252.169.16128.111.41.101TCPR, 79, 1025), on
the otherhand,doesnt match F'.

Sincea paclet may matchmultiple rulesin thedatabaseye
associatea costfor eachrule to resole ambiguousmatches.
The paclet classificationproblemis to find the lowest cost
rule matchinga given paclet P.

B. Performancemetricsfor padet classification

The two main metricsfor paclet classificationare speedin
memoryaccesseand memory A secondarymetric could be
the numberof fields that can be handled;someapplications
require more than 5 fields althoughwe will only consider5
field classifiersin this paper

Speed:Thegoalof paclet classifications to ideally classify
paclets at wire speed,which meansthat for eachpaclet a
decisionis to be madein the time we have for handling a
minimum size paclket. At OC-192ratesof 10 Gbpsandusing
40 byte paclets,a decisionmustbe madein 32 nsec.

In practice,this is tricky for several reasonsFirst, eventhe
definition of minimum paclet sizeis debatabletherearea few
rare pacletsthatarrive in with sizesof 30 bytesor less;while
moststudiesuse40 byte minimum size paclets(sincepaclets
with TCR IP, andDatalink headersareat|leastthis size)some
vendorsaim for a 64 byte paclet sizeswith a small queueto
handleburstsof smallersizes.Secondsomepacket processing
eventslike handlingencapsulategacketsor multiple levels of
labelstackingmayrequiremultiple lookupsthatcannotstrictly
behandledatline speedor aminimum pacletsize.Thussome
relaxationof strict wire speedprocessindimits for saypaclet
processingmay be acceptabldespeciallywhen using a large
classifier);indeed this appeargo betrue for mostcorerouters
today

Speedis measuredin terms of memory accessesOften
a wider memory accesscan reducethe numberof memory
accessegequired. We will assumea 32 bit wide memory
Many of the algorithms describedhere (especiallythe two
leading contenderdHiCuts and EGT) can benefitfrom wider
words, but we normalizeour resultsto 32 bit words.

Memory size: On-chip SRAM for semi-customASICS is
at most 32 Mbits today Since on-chip SRAM provides the
fastestmemory (around1 nsec),one would ideally like the
memoryof a classificationalgorithmto scalewith the size of
an on-chip SRAM. For example,the RFC sizesof 24 Mbits
for a 2800 size table (seeresultslater) tend to rule out RFC
for high speedimplementations.

Updatecompleity is generallynot anissuefor corerouters
as rules are rarely changed.On the other hand, edgerouters

that do stateful filtering or intrusion detectionsystemsthat
dynamically identify certainflows to be tracked may indeed
requirefasterupdatesWe do not considerupdatecomplexity
in this paper

IV. BRIEF REVIEW OF RFC AND HICUTS

In this section we briefly describetwo of the previous
algorithmsthat we compareagainstour newv EGT scheme.
We describe HiCuts in some detail as it is the strongest
contenderfor the core router databasesve examined. We
describeour new algorithmin the next Section.In orderto
provide examples let’s considerthe small firewall databasén
the Figure 1. The examplecontainstwelve ruleson five fields.

A. Recusive Flow Classification(RFC)

The first algorithm we consideris RFC [6]. Gupta and
McKeown [6] have inventeda schemecalled Recursve Flow
ClassificatiofRFC).RFCis really animprovedform of cross-
producting that significantly compresseshe cross-product
table at a slight extra expensein searchtime. The scheme
works by building larger cross-productsrom smaller cross-
products;the mainideais to placethe smallercross-products
into equivalenceclassedeforecombiningthemto form larger
cross-productsThis equivalencing of partial cross-products
considerablyreducesmemory requirementsbecausesereral
original cross-producterms map into the sameequialence
class.

In Figure 2 we apply the equivalencecross-productingo
the first two columnsin the example in Figure 1. A two
dimensionatableis built basedon the uniqueprefixesin each
of thefirst two fields. In this casetheresultis 7 distinctvalues
which is closeto the numberof uniqueprefixesin the second
field.

Prefix matching on a large field can be performed by
splitting it up and treating it as several smaller fields. This
is useful for fields exceedingl16 bits in length, since a field
W bits in size requiresa table of size 2"V to map valuesto
equivalenceclassesWe usethefield valueof 16 bits suggested
in the RFC paper

B. Hierarchical Intelligent Cuts (HiCuts)

HiCutswasintroducedby GuptaandMcKeown in [7]. The
schemeis basedon a precomputeddecisiontree which is
traversedfor eachpaclet that needto be classifiedin orderto
identify the matchingrule which is always locatedin a leaf
node.Eachleaf nodestoresa small numberof ruleswhich are
linearly searchedn the last step.lIt is a remarkablyeffective
algorithmand so is worth describingin more detail.

In HiCuts eachnode can be regardedas a k—dimensional
box cutupinto a setof nc smallerboxesusingheuristicsvhich
try to take into accounthe structureof the classifiersThe size
of aboxis givenby therangecoveredby the box. For example
the root nodefor a 5—tuple (IP Sourceand Destination,Port
Sourceand Destination, Protocol) may be seenas the box
[0,232 —1]X][0, 232 — 1] X [0, 2'® — 1] X [0, 2'® — 1] X [0, 28 — 1].
Eachbox has associatedhe set of rules which intersectthe
box range.



Rule | Field, | Fields | Fields | Fieldy | Fields | ACTION

Fy 000 111x% 10 * UDP acty

F 000x% 111% 01 10 UDP | actg

Fy 000 10x% * 10 TCP acty

F; 000 10x * 01 TCP actsy

Fy 000 10x 10 11 TCP acty

F; 0% 111x% 10 01 UDP | acty

Fy (123 111x% 10 10 UDP | acty

Fy 0% 1x * * TCP acts

Fy * 01x% * * TCP acts

Fy * 0x * 01 UDP | actg

F10 * * UDP act3

Fll * * TCP act4

Fig. 1. A simple example with 12 rules on five fields.
| Field,/Fields | 000 | 0% | * |
111x% 110001110011 = Cy | 000001110011 = C; | 000000000011 = Co

10% 001110010011 = C5 | 000000010011 = C} Cy
1x Cy Cy Cs
01x 000000001111 = Cs Cs Cs
0= 000000000111 = C4 Cs Ce
* 02 02 02

Fig. 2.
same set of matching rules.

A similar ideeawith bit testsreplacing rangetests, was
describedby T. Woo in  [19]. Much more [19] introduces
one more degree of freedomin building the decisiontree: it
allows to arbitrarily interleave the bit testsfor all fields. Thus
theroot of thetrie couldtestfor (say)Bit 10 of thesourcefield,;
if the bit is 0, this could leadto a nodethat testsfor say Bit
22 of the port numberfield. Clearly, thereare an exponential
numberof suchdecisiontrees.The schemesn [19] and [7]
build the final decisiontree usinglocal optimizationdecisions
at eachnodeto choosethe next bit to test.

In whatfollows, we describeHiCutsin moredetailusingan
example. The HiCuts local optimization criterion works well
whentestedon real core router classifiers.

Picking the numberof boxesnc a nodeis split into may be
donebasedon several heuristicswhich try to make a tradeof
betweenthe depth of the decision tree and implicitly the
searchtime versusthe memoryspaceoccupiedoy thedecision
structure. The dimensionon which a cut may be executed
may be choseneitherto:(1) minimize the maximumnumber
of rules into ary partition, or (2) maximize the different
numberof specificationsin one dimension,etc. Picking the
right numberof partitions(nc) to be madeaffectsthe overall
memoryspaceThealgorithmtunesnc asafunctionof aspace
measureln orderto do this it usesto parameters(1) binth
and (2) spfac

Figure 3 shavs a decision tree for the Example in
Figure 1. Let's assumethat a paclet with the header
(0010, 1101, 00,01, TCP) needsto be classified. The path
followedby this paclketis showvn in redin Figure3. In thefirst
node,marked A4, basedon thevaluein its first field, the paclet

Forming the partial cross-products of the first two fields in Figure 1 and assigning them into the same equivalence class if they have the

is directedto the node marked B. Node B usesinformation
in the secondfield to directto a leaf nodecontaininga small
list of ruleswhich may be a possiblematch.In this caseF;
is the lowestcostrule matchingthe paclet.

(0010, 1101, 00, 01, TCP)

Fig. 3. A decision tree is built for the database of Figure 1. The
dimension on which a cut is made is associated with the field which
has the largest number of unique values. For example the first node is
cut along the first field.

V. CHARACTERISTICS OF REAL LIFE CLASSIFIERS

Each designerof paclet classificationheuristicsfacesthe
same problem; he or she must know the characteristicsof
large rule databasesln this sectionwe analyze4 real life
classifierswhich are usedby severallarge Tier 1 ISPs.While
realdatabasewerealsousedin [1] and[7], [6], the databases
in [1] aresmallandonly reflectfirewall applicationswvhich are
nota goodcharacterizatiomf corerouterdatabasesSimilarly,
it is unclearwhetherthe databasem [7], [6] weremostlyfrom
edgerouters.



Thenumberof rulesin the classifierssariesfrom 85 to 2800
asis shovn in Figure9. All the classifiersarefive dimensional
with the IP sourceanddestinatiorfield representeds prefixes
while the port fields are representedas ranges.The prefix
length distribution for both IP sourceand destinationfields
is givenin Figures4 and 5.

With the exceptionof one databasevhich appeardo have
rules connectingsubnetverks (prefix lengthswith values of
16 — 24) all the other databasesave the similar maximums
at length of 0, 16, 24 and 32. The distribution is very
different from the prefix distribution in publicly available
routing tables([9]) which is describedn [1].

The performanceof mary classifieralgorithmsare strictly
dependenbn the largestnumberof valid prefixes that may
be seenon a path from the root to a leaf in a trie that is
generatedusing all the prefixes. The valuesfor this number
are between3 and 7 for sourceand destinationaddresgries.
However if we considerthe sourcetries associatedvith ary
particular destinationtrie, then the numberis even smaller:
between2 and4.

The numberof rules matchingall five fields is somavhere
betweer3 and5. This resultis consistentith the resultgiven
by Guptaand McKeown in [6], [7]. A value of 3 is easily
achieved by a classifierwhich containsa default rule to be
executedon all paclets, a secondrule to be executedon all
the paclets carrying a TCP messageand a third rule to be
executedon all pacletsfor an establishedl CP connection.

Analyzing the number of IP sourceand destinationpairs
only in the rule setwe notice that the mostcommononesin
order of their occurrenceare:

« i. 32—Dbit IP sourceto 32—bit IP destination This form of
rule appearso beprotectingparticularlSP seners/routers
from particularhosts.Of course theserulesare qualified
by port fields that specify the traffic type.

o ii.Anything (wildcarded)to 32—bit IP destination.This
form of rule appeargo be protectingsenersfrom being
reachedrom the externalworld.

e iii.16 or 24 bit network sourceaddressto 32—bit IP
destination.This form of rule is similar to the first type
of patternexceptgeneralizedo protectingseners from
particularsubnets.

o iVv. 24—Dbit network sourceaddresgo anything. This form
of rule simply forbids certain subnetverks for certain
specifiedtraffic types.

To test scaling later, we use a much simpler synthetic
databasegenerationalgorithm than [1]. Since eachdatabase
we studiedis quite differentin patternsand distribution of
lengthtuples,we usedeachdatabas@asa modelto synthesize
larger databaseby simply replacingeachlP addressor prefix
in a rule by other addressesvhile keeping other fields the
same.This seemdo be areasonablenodelof anISP growing
in senersto be protectedand subnetvarks to be protected
against.

A. IP Source-Destinationmatding characteristic

The key obsenation that forms the basis of our new
algorithmis asfollows.

Source Prefix Length Distribution

100.0

—— DBL
---- DB2

DB3
—-— DB4

80.0 [

60.0 H

20.0

Fig. 4. Prefix Distribution in the IP source field.Prefix length is repre-
sented on the horizontal axis while the percentage of entries with a given
prefix length is given on the vertical axis. The graphs have a maximum
on the lengths of 0, 16, 24 and 32.

Destination Prefix Length Distribution

100.0

— pB1
---- DB2
DB3

80.0 —-— DB4

60.0

40.0 -

20.0

0.0

10.0 20.0

Fig. 5. Prefix Distribution in the IP destination field.Prefix length is
represented on the horizontal axis while the percentage of entries with
a given prefix length is given on the vertical axis. The graphs have a
maximum on the lengths of 0, 16, 24 and 32

Source-Destination Matching: For all our databaseswe
computedheBYV bitmapon all possiblesourceanddestination
prefix values.Thenfor eachpossiblesource-destinatioprefix
pair (crossproduct)we computedthe intersectionof these
bitmapsandcountedthe numberof rulesthat matcheda given
paclet when consideringonly the first two fields. We found
that for 99.9% of the source-destinatiorcrossproductsthe
numberof matchingruleswasb5 or less.Evenin aworstcase
sense,no crossproductand hencepaclet) for ary database
matchesmore than 20 rules when consideringonly source
destinationfield matches.

Notice that this obsenation implies that the number of



distinct source-destinatiomprefix pairs matchinga paclet is
evenlessthan20 becauseherecanbe severalrulesthatshare
thesamesource-destinatioprefix pair. This obsenationis true
for the smallestto the largestdatabasef around2800 rules.
We expectit to remainapproximatelytrue even as databases
scale becausethe number of overlapping prefixes (e.qg., of
lengths0, 24, 32) are so limited in eachof the sourceand
destinationfields.

Note thatthe smallnumberof matcheds not truewhenone
considersonly the sourceor destinationfields becauseof the
large numbersof wildcardsin eachfield.

VI. EXTENDING 2D SCHEMES

A numberof algorithmssimply uselinear searchto search
through all possiblerules. This scaleswell in storagebut
poorly in time. The source-destinatiomatchingobsenation
leadsto a very simpleideashavn in Figure 6 to usesource-
destinationaddresgnatchingto reducethe linear searchingo
all rulescorrespondingo source-destinatioprefix pairsin the
databasdhat matchthe given paclet header Since mostly 5
andat most 20 ruleswill matchary packet whenconsidering
only the sourceand destinationfields, this will reducethe
numberof rulesto be searchedo be betweens and 20. Thus
we have linear searchingamonga prunedspaceof around20
rules comparedto linear searchingthe entire databasge.g.,
2800rulesin our large databases).

Any 2D
search alg.
for finding all

matches for a pair (S,D)

(5,,0)  (S,.D,) (S,.D,)

Fig. 6. Extending two dimensional schemes

The main ideais depictedin Figure 6. The ideais to use
ary efficienttwo dimensionaimatchingschemeto find all the
distinct source-destinatiorprefix pairs (Sy, D1)...(St, Dy)
that matcha header For eachdistinct pair (S;, D;) thereis a
linear array or list with all rulesthat contain (S;, D;) in the
sourceand destinationfields. Thusin the figure, we have to
traversethe list at (S1, D1) searchinghroughall the rules(in
reality only the otherfields suchasport numbers)or Rs, Rg,
R, and R4. Thenwe move on considerthe lists at (S2, D-),
etc.

Notice that this structurehastwo importantadvantages:

« Each rule is only representedonce without replica-
tion.However, one may wish to replicaterulesto reduce

the number of source-destinatiorpairs consideredto
reducesearchtimes.

« The port range specificationsstay as rangesin the in-
dividual lists without the blowup associatedvith range
translationin say CAMs, BV, and ABV.

Since the Grid-of-Tries implementationby Srinivasan et
al [17] is one of the most efficient two dimensionalschemes
described,we now instantiatethis generalschemaby using
grid-of-triesasthe 2D algorithmin Figure 6

A. ExtendedGrid-of-Tries(EGT)

In a naive generalizatiorof a k-dimensionaltrie we either
pay a large price in memory or we may be forced to do
backtrackingandwe pay a large price in time [15]. However,
we may eliminate part of the wasteof backtrackingby using
precomputationThis basic techniquewas introducedin the
two dimensionaltrie implementationusing grid of tries [17].

However one canimmediatelyseethatthe approachin grid
of tries cannotbe generalizedn &, k£ > 2 dimensionsThis is
becausethe grid of tries algorithm assumeghat a rule may
have at mosttwo fields. If two rulesarea matchfor a paclet,
thenthe mostspecificrule is picked. This obsenation allows
the replacemenbf the backtrackingmechanismwith switch
pointers. By usinga switch pointerin ary failure pointin the
sourcetrie, it allows the searchto jump to the next possible
seconddimensiontrie which may containa matchingrule.

Our goal is that for eachpaclet headerH = (Hy, Hs,...)
to be able to identify the set of rules F' suchthat FF =
{F[i]|F1]i] < H1 N Fy[i] < H»}.

In our extendedgrid of trie structureafirst trie is associated
with the first dimensionin the rule databaseFor every valid
prefix node in this trie a special node is created.Each of
thesenodescontainsa link to a trie which containsvalues
from the seconddimensionfield. For example, if the node
in the first dimensiontrie is associatedvith a prefix P, then
the seconddimensiontrie nodesis generatedusing all the
seconddimensionfield prefixes P[] from the rules F; =
(Py[d], P[i],...),i = 1...N in the database.

A nodeX in the seconddimensiontrie which is associated
with a valid prefix P, is appendedvith a list of ruleswhich
correspondto rules that match P, and P in the first two
dimensions A nodealso containsa list of pointersto all the
valid prefixes nodeswhich are a prefix of P,. Thusnode X
knows the list of all the rules F[i] = (Pi[i], P2[],...) for
which Pi[i] = P, and R,[i] < P,°. However, a rule occurs
in exactly one position.

A differentapproaclhis to keepin eachnodeassociatedvith
avalid prefix P, thelist of rules F'[iJwhich have P; in thefirst
field andin the secondfield a prefix P,[i] which is eitheran
exactmatchor a prefix of P,. We discusghesetwo approaches
whenwe analyzethe schemebehaior on real classifiers.

At this point, for each paclet with a header H
(Hy,H,,...) we can identify the set of rules F
{F[i]|F[i] =(P, P:[d], . ..)} whereP; is thelongestmatching
prefix of H; for which atleastarule F; = (P,...) existsand

5P < R meansthat P is either an exact matchor a prefix of R.



By[i] if existsis P»[i] = Hs. In orderto getall the rules F
suchthat F' = {F[i]|F1[¢]X H1 N Fy[i] < H»} is hecessaryo
traverseall the tries associatedvith prefixesin the first field
thatare prefixesof thefield H; of the packetheaderHowever
this requiresbacktrackingin which casewe pay a large price
in time.

In orderto avoid the backtrackingwe follow an approach
inspiredby but differentfrom [17]: we introduceat eachfailure
point in the seconddimensiontrie a jump pointer to directly
allow the searcho jumpto thenext possibleseconddimension
trie thatmay containa matchingrule. If the nodein which we
inserteda jump pointeris associatedvith a prefix P, in the
seconddimensiontrie, the jump is eitherto a nodeassociated
with a valid prefix P thatis eithershorteror equalwith P, if
sucha nodeexist, or to a regular node which is the longest
matchingprefix of P, otherwise.

Figure7 showvs the extendedgrid of triesfor the databasén
Figurel. Let'sconsidetthesearcHor rulesthatmatcha paclet
header(0000, 1100, .. .). The searchin thefirst dimensiontrie
gives P, = 000 asthe bestmatch.So we startthe searchfor
finding the matchingprefix associatedvith the secondvalue
in the header1111. We do not find a matchin this trie. The
searchfails in the node11. However a jump pointer allows
the searchto continuefurtherinto the trie associatedvith the
prefix 0x in thefirst dimension.The searcthin thistrie provides
1x asthe longestmatchingprefix and onerule F; asbeinga
matchingrule. Oncethe searchfails againin this dimensiona
jump pointerbrings us to the last nodecorrespondindo x, x.
This lastnodeaddstwo morerulesto thelist makingthe final
matchinglist to be: F;, Fig, F1;.

The worst searchtime for the schemecanbe provedto be:
W+ (H+1)«xW = (H + 2) « W whereW is the time to
find the bestprefix in a trie and H is the maximumlength of
the trie, H = 32 for IP addressesHowever, we expect that
the worst casescenariodoesnot occurin practice.lnsteadwe
expectthe worst casesearchtime to be on the order L x W
with L beinga small value.

We can also reduce W by using compressedmultibit
tries[4] insteadof using1-bit tries.If we usek—bit expansion,
the depth of the trie reducesto W/k and so the lookup
time goesdown correspondinglywithout a corresponding®
increasein storagethat would be incurredby uncompressed
tries.

The bottom line is that using multibit tries, the time to
search for the best matching rule in an arbitrarily large
multidimensionadatabaseould effectively reduceto & times
the time to do IP lookupsusing multibit tries, with £ assumed
to be a smallconstantplus the time to searchthrougha small
list of rules.

B. ExtendedGrid of Trie with Path Compession

We furtherimprove the ExtendedGrid of Trie algorithmby
using Path Compressior{3]. This is a standardcompression
schemdor triesin which singlebranchingpathsareremoved.
Figure 8 shavs how the path compressioris appliedto the
tries in the Figure 7.By doing so a trie with NV leaf nodes
can be compressednto a trie with at most 2N — 1 nodes.

Field 1

_________ ~

.- T == =Togp L7:F10,F11
. s
: i ’ L6: F9 :
I i Field 2
/

L2:F2,F3,F4 ~ N ’ L5: F8

L3: F5,F6
L4

jump pointer

Fig. 7. Improving the search cost with the use of jump pointers in the
extended grid of tries. The tries are generated using the database in
Figure 1.

Furtherimprovementmay be gainedby applying both path
compressiormswell asthe compressioechniquesntroduced
in [4].

Field 1

compressed
path

Fig. 8. Reducing the time of the trie traversal by applying path
compression to the tries in Figure 7.The tries are generated using the
database in Figure 1.

VIl. METHODOLOGY

In this sectionwe describehow the EGT algorithmcanbe
implementedand how it performson both real life databases
andsyntheticallycreateddatabasedNotethatwe needsynthet-
ically createddatabaseso testthe scalability of our scheme.

First, we considerthe compleity of the preprocessingtage
and the storagerequirementsof the algorithm. Then, we
considersearchperformanceand we relateit to the perfor
manceof otheralgorithms:RFC, HiCuts, BV and ABV. The
speedmeasurewe useis the worst casenumberof memory
accessedo be executedacrossall possiblepadket heades.
Fortunately computingthis numberdoesnot entail generating
all possiblepacletheadersThis is becausgaclket headerdgall
into equivalenceclassesasedon distinctcross-productg17];
a distinct cross-producis a unique combinationof distinct
prefix valuesfor eachheaderfield.

Since each paclet that has the same cross-productis
matchedo the samenodeN; (in trie T;) for eachfield 7, each
paclet thathasthe samecross-productvill behare identically.
Thus it sufiices to computeworst casesearchtimes for all
possiblecross-products.

One can easily see that our algorithm has a worst case
behaior whenit may needto traversea very large number



of tries that are associatedvith the seconddimensionfield.
However pathologicalcasesfor which the heuristicsexperi-
encethe worst behasior may be found for all the algorithms
we presentedThereforein this paperwe focus on the worst
casesearchtime for a seriesof realistictestdatabases.

A. ExperimentalPlatform

We usedtwo different types of databasesFirst we used
a set of four core router databaseghat we obtainedfrom
several large Tier 1 ISPs. For privagy reasonswe are not
allowedto disclosethe nameof the ISP or theactualdatabases.
Each entry in the databasecontainsa 6 — tuple (source
IP prefix, destinationIP prefix, sourceport number(range),
destinationport number(range)protocol and action). We call
thesedatabase® B; ... DB,. Thedatabaseharacteristicare
discussedn SectionV.

The secondype of databasess generatedisingthereallife
databasesis a starting point. We extend eachof the original
databasedy randomly generatingprefixes for the first two
fields with the samelengthdistribution asin the original one.
We also maintainthe distribution for the last threefields.

B. Performance Evaluation on Real Life Core Router
Databases

We experimentallyevaluateall the algorithmson a number
of four real life core router databasedDBy,...,DB,. The
rulesin the databasesre corvertedinto prefix format using
the techniquedescribedin [17] for the evaluationof the BV
andABV algorithms.The memoryspacethatis usedby each
of themcanbe estimatedhasedon the numberof nodesin the
tries, and the numberof nodesassociatedvith valid prefixes
in the caseof BV and ABV.

In the caseof EGT we also needto take into accountthe
sizesfor thelist aswell asthe jump pointers.We usewordsof
size 32 bits andaggreatesize of 32 for ABV. In the caseof
RFC ateachlevel if the numberof uniqueelementss N we
uselogo Nbits for anindex into thatlevel. Thereforefor each
table X x Y the total memorysizein bitsis X xY xlogaN.
Our resultsare summarizedn Figure 9.

Both the searchtime andmemoryspacein HiCuts [7] are
dependenbn two parameteravhich may be tuned: (1)space
factor (spfac} which determineghe amountof total memory
spacethat will be allocatedon the decisiontree and a (2)
threshold(binthfja node with fewer than binth rules is not
partitionedfurther). [7] makes the obsenation that the tree
depthis inversely proportionalto binth and spfac while the
total memory spaceis proportional with spfac and inverse
proportionalto binth. The resultsin Figure 11 and Figure 9
arefor HiCuts — 4:(binth = 10, spfac = 4) and HiCuts —
1:(binth = 10, spfac = 1).

In the caseof three databaseshe memory spaceoccupied
by HiCuts—4 (thevalueusedin theoriginal HiCuts paper)is
an orderof magnitudeargerthanthe memoryspaceoccupied
by the EGT — PC. However, by tuning the spacefactor
parameter(spfacjo a valueof 1 correspondingo optimizing
HiCuts for memory space,the overall spaceoccupiedby
HiCuts is comparabldan sizewith EGT for threedatabases

while in the caseof DB; it is still about? times higherthan
EGT — PC. DBj; shawvs a databasegype which may hurt the
performanceof the HiCuts heuristics.In this casethe height
of the decisiontree that is generatecby HiCuts staysthe
samewhen spfac is changedrom 1 to 4. This is becauseof
a setof ruleswhich getsreplicatedin a majority of the leaf
nodes.

In the caseof both BV and ABV notice the increasein
the (aggreated)bit vector size with the numberof rulesin
the databasecontributesto a higher increasein the overall
memorysize, being multiplied with the total numberof valid
prefix nodesin all the tries. However, not keepingthe bits in
the original bit vectorwhich are associatedvith an aggreyate
bit with the value 0 may reducethe memoryusageof ABV.
While this optimizationcanreducethe memorysizeof ABV,
we have not shown its effect here. The results for RFC
confirm the assumptionin [6] that despiteof a worst case
scenarioin which an implementationmay take O(N*—1)
memoryspace,n reality the memory spaceoccupiedby the
algorithm’s searchstructureis smaller

Overall, as expected, RF'C occupiesby far the largest
memoryspace.On the othersidein termsof lowestmemory
space EGT — PC and HiCuts are the main competitors.
EGT — PC in generalis the onewith the bestuseof space.
However, when HiCuts is optimized for memory spaceit
comescloseto EGT — PC but is slover with an worst case
searchtime thatis 2 — 3 timesslower than EGT — PC.

We also evaluatethe performanceof the five algorithmsin
termsof worst caselookup time on the corerouterdatabases.
The resultsare shovn in Figure 11.

As anticipatedR F'C' hasthe bestsearchtime with anumber
of 12 memoryaccessesThe resultsin Figure 11 shows that
classifyingpaclketswith ABV hasbenefitswhenthe number
of memory entriesin the databasds large. In this casethe
searchtime for ABV is more than four times fasterthanin
BV evenwithout rule rearrangementiowever, if the number
of rulesis small, on the order of hundredsthe phenomenon
of falsematchingdescribedn [1] may limit the performance
of ABV.

The searchtime in EGT — PC is mostly due to the
severaltraversalsof thetries. Theworstcasesearchime using
EGT — PC is on the sameorder of magnitudeas HiC'uts
when HiCuts is optimizedfor speed.However the memory
spaceoccupiedby EGT — PC is on an order of magnitude
smallerthanary otheranalyzedheuristicwith the exceptionof
HiCuts optimizedfor a spacefactorof 1. In this caseHiCuts
and EGT — PC occupy similar memoryspacesizes.

C. Performanceevaluation on syntheticgeneated databases

In this sectionwe want to investigatethe scalability of
EGT — PC. In orderto do sowe generatediatabasesvith a
large numberof rules between5, 000 and 100, 000. The first
two typesof databases§ D B; andSD B, aregeneratedising
asa generatoithe two longestreal core routerdatabasesrhe
lasttype of databases D B; aregeneratedisinga combination
of all four real corerouterdatabaseasa generatarFigure 13
shaws the size of the memoryoccupiedby EGT — PC while



Database | No.of Rules|| RFC HiCuts —4 | HiCuts—1 | BV ABV EGT EGT - PC
DB, 85 55,202 | 11,608 1,346 1,496 1,572 3,174 | 1,168
DB, 125 114,080 | 10,704 1,986 1,530 1,606 3.935 | 1,472
DBs 351 100,991 | 64,541 19,001 4,452 4,651 3,845 2,261
DB, 2799 747,271 | 117,801 25,543 276,604 | 285,099 | 75,376 | 30,753
Fig.9. The total memory space occupied by the search structure in all 6 heuristics RFC, HiCuts(spfac = 1,4), BV, ABV, EGT and EGT-PC for the
four core router databases. The size is in memory words, one memory word is 32 bits.
Database EGT EGT - PC
Trie List | Total Mem. Trie List | Total Mem.
DB, 3,019 | 155 3,174 1,013 | 155 1,168
DBy 3,713 222 3,935 1,250 222 1,472
DBs; 3,339 506 3,845 1,755 506 2,261
DB, 70,710 | 4,666 75,376 26,087 | 4,666 30,753
Figb_lo. The total memory occupied by both EGT and EGT-PC used with real life databases. The size is in memory words. One memory word is
32 bits.
Database | No.of Rules|| RFC | HiCuts —4 | HiCuts—1 | BV | ABV | EGT | EGT — PC
DB, 85 12 82 64 106 | 111 107 32
DB, 125 12 46 106 101 | 106 110 54
DB;j 351 12 118 172 136 | 126 114 47
DBy 2,799 12 82 172 846 | 196 154 87

Fig. 11. The total number of memory accesses for a worst case search in all 5 heuristics RFC, HiCuts(sp fac = 1,4), BV, ABV, EGT and EGT-PC
for the four core router databases. One memory access is one word. One word is 32 bits.

the numberof rulesin the classifierincreasedrom 5,000 to
100, 000.

The results prove that the memory space occupied by
EGT — PC scales linearly in number of rules. Of
course,this should be taken with a grain of salt becausethe
large databasegenerationmethodologypreseres the source-
destinationstructureof the original databasedf this assump-
tion doesnot hold asdatabasescaleup, EGT — PC will not
scale.However, we have not seenary experimentalevidence
that this is not the case.

The worst casescenariofor a searchusing EGT — PC'is
shawn in Figure12. In the caseof SD B; with 100,000 rules
it takesabout118 memoryaccesseslhis correspond$o about
5 trie traversalsplus the selectionof roughly 30 rulesthatare
a match. In the caseof SDB; with 100,000 in the worst
caseit takes98 memoryaccessedueto four onedimensional
lookupsandthe selectionof about17 rules.

VIIlI. CONCLUSION

Paclet filter classificationhas received tremendousatten-
tion([11], [1], [17], [6], [7], [15], [2], [5], [19]). Unfortunately
despitethe vast amount of previous work, there does not
appearto be a good algorithmic solution when rules contain
more than 2 fields. At the sametime, classificationis an
extremely importantproblemwith several vendors,including
Juniper allowing the use of filter-basedactionsfor purposes
such as accountingand security While Ternary CAMs [13]
offer a good solution in hardware for small classifiers,they
may usetoo much power andboardareafor large classifiers.
Thusit is worth looking for alternatves[12] to CAMs.

Becausereal-life classifiers have considerablestructure,
[6] obsenred that such structurecould be exploited to yield
heuristicsthat beatthe worst-caseboundson real databases.
The primary obsenation till this paperwas [6] that each
paclet only matchesa few rules.Our paperstartswith a fresh
obsenation driven by datawe obsenred: each paclet does
indeed match only a few rules, but it also matchesonly a
few ruleswhenthe rulesare projectedto only the sourceand
destinationfields. Thus even for large classifiers,if one can
find all the source-destinatioprefix pairsthat matcha paclet,
one needonly linearly searchthrougha set of 20 possible
rules.

This suggeststhat ary efficient two-field classification
schemecanbe extendedwith a small amountof linear search
to generalclassifiers.The only catch is that the two-field
schemehasto find matcdes and not eliminate less specific
matchesThus,while this suggestedtartingwith the grid-of-
tries, we hadto modify it usingjump pointersto computeall
matches|osing worst caseguaranteesn eventhe searchtime
for 2-field search.

Despitethis, EGT — PC works very well comparedo all
otheralgorithms.lts worst casesearchtimes are on the same
orderasfor the HiCuts optimizedfor speedwhile its memory
storagerequirementsare on the same order as for HiCuts
optimizedfor space.Thereforewe considerthat EGT — PC
provides a reasonablyfast algorithm with minimal storage
requirementsthat can fit into on-chip SRAM. Much more,
EGT — PC hasthe advantageof being more predictable of
not having ary patentrestrictions,and potentially allowing
simple further improvementsusing compressednultibit tries
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DatabaseType/No.of rules | 5,000 | 10,000 | 15,000 | 20,000 | 100,000
SDB; 62 96 114 155 N/A
SDB; 87 92 93 93 98
SDB;3 106 101 100 109 118

Fig. 12. The total number of memory accesses for a worst case search for EGT-PC for synthetic databases. The number of entries is changed
between 5000 and 100, 000. One memory access is one word and one word is 32 bits.

DatabaseType/No.ofrules | 5,000 | 10,000 | 15,000 | 20,000 100,000
SDB, 65,695 | 114,644 | 158,191 | 191,694 N/A
SDB, 55,320 | 109,771 | 166,657 | 220,042 | 1,097,848
SDB;3 71,254 | 106,812 | 178,035 | 249,261 | 1,102,091

Fig. 13. The total memory occupied by EGT-PC used with synthetic databases. The number of entries is changed between 5000 and 100, 000.

One memory word is 32 bits.

asin [4]. We are working on the use of multibit tries,
compressedersionsof thelists, andthe useof wide wordsto
furtherreducethe spaceandtime of EGT-PC.Our papereaves
openthe issueof modifying other 2 field algorithmssuchas
[5], [2], [11], [1] to achieve better performanceThe lack of
standardizedomparisonsasled us to placeall the codewe
implementedbn a public repository[16]. As otherstinker with
thesealgorithms,we believe that even betteralgorithmswill

be found and the state of the art will improve further The
use of paclet classificationis not confinedto routers:from
personalfirewalls to web load balancingusing URLS, better
and open sourcecode for classificationcan help improve a
numberof applicationsin software and hardware.
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