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Abstract 
  
We present a mathematical principle that provides a precise formulation for the types of 
functions a slide rule can be designed to calculate. In addition to providing the 
mathematical foundations for how and why a slide rule works, this principle establishes 
its mathematical possibilities and limits. We also present the theory of how slide rule 
scales are constructed. 

 
 
Introduction 
 
The slide rule works because of a very basic property of Euclidean geometry, which is that line lengths 
are additive: Given two consecutive line segments AB and BC that are aligned, the sum of their lengths 
equals the length of their sum, i.e., length AB + length BC = length AC, where AC = AB + BC. This 
simple property, along with the ability to establish different scales on these line segments that can 
represent a variety of single-variable functions, lead to a surprisingly large class of multi-variable 
functions that can be calculated on a slide rule. An interesting question is: What types of functions are 
possible? We answer this question by developing a principle for their general form. 
 
While Oughtred’s invention of the slide rule dates to the early 1600’s [1], a general mathematical theory 
of the slide rule came much later. The basis for such a theory can be found in d’Ocagne’s development of 
nomography in the late 1800’s [2], which focused on the design of graphical charts and scales for various 
types of calculation. A general mathematical formulation of slide rule scales and calculation was given by 
Runge in his lecture notes on graphical methods in the early 1900’s [3]. The key part of this formulation 
was captured in what he described as a “Principle of the Slide Rule,” on which our work is based. Stokes 
also described a “Mathematical Principle of the Slide Rule” that was a generalization of Runge’s 
formulation [4]. 
 
Later descriptions of a “Principle of the Slide Rule,” especially those that appeared in many slide rule 
books and manuals, lost the generality of Runge’s and Stoke’s formulations. They focused mainly on the 
property of logarithms (that log x + log y = log xy) and how it could be exploited to perform 
multiplication and other calculations on a slide rule. This is understandable as most slide rules have 
logarithmic scales. 
 
Shortly after the work of d’Ocagne and Runge, Lipka developed a more complete formulation of 
“graphical and mechanical computation” [5]. Later refinement and streamlining of methods in graphical 
calculation, with applications to the slide rule, can be found in the works of Davis [6], Mackey [7], and 
Hoelscher [8]. 

 ______________________________________________________________________________________________ 
An earlier version of this paper appeared in the Proceedings of the International Meeting for Collectors of Historical 
Calculating Instruments (IM 2011), Cambridge, MA, Sept. 23-25, 2011, pp. 1-8, published by the Oughtred Society 
(www.oughtred.org). 
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Slide Rule Scales 
 
A slide rule has three basic parts: a body, a slide, and an indicator. On the body and slide are scales that 
are parallel to each other. These scales represent various functions, and by moving the slide relative to the 
body, a calculation involving multiple functions can be performed, with the indicator allowing 
corresponding values on the various scales to be matched so that intermediate and final results can be set 
and read. While there are a wide variety of different types of slide rules – linear, circular, cylindrical, 
multi-slide, general vs. special purpose, etc. – the concepts we describe remain essentially the same for all 
slide rules. 
 
To see how multiple scales are used to perform a calculation, we need to first understand what a scale is 
and how it is constructed. A scale is simply a finite line with graduated marks, each corresponding to a 
value x and located at a distance given by f (x), called the function of the scale, relative to an origin x0. An 
example of a scale is shown in Figure 1. 
 

 
Figure 1: Example of a scale. Taking the origin to be x0 = 1 and locating it at the left end 
of the scale’s line, then f (2) is the distance from the left end to x = 2. 

 
Note that x0 = f -1(0) by definition, i.e., the value of the origin x0 is that for which f (x0) = 0. The actual 
location of the origin on the line, i.e., the mark corresponding to the value x0, may be chosen for 
convenience. It is typically located at the left end of the line, but in general, it may be located anywhere 
on it, even on a projection of the line beyond its edges. We will assume that the origin is at the left end 
unless indicated otherwise. 
 
Let us consider some examples. For the identity function f (x) = x, we would have a line marked 0 at the 
left end and uniformly spaced marks labeled with the numbers 1, 2, 3, ... such that 1 is at distance 1, 2 at 
distance 2, 3 at distance 3, and so on. For the square function f (x) = x2, again we would have a line 
marked 0 at the left end, but with marks labeled 1, 2, 3, 4, ... located at distances 1, 4, 9, 16, ... 
respectively. 
 
The origin need not necessarily correspond to the value x0 = 0; the only requirement is that f (x0) = 0. 
Thus, taking as an example the inverse function f (x) = 1/x, x0 = ∞ (a result of f (x0) = 0), and so the line is 
marked ∞ at the left end, 8 at distance 1/8, 4 at distance 1/4, 2 at distance 1/2, 1 at distance 1, and so on. 
For the logarithmic function f (x) = log x (using common, or base 10, logs), x0 = 1, thus locating 1 at the 
left end (since log 1 = 0), 2 at distance 0.301 (since log 2 ≈ 0.301), 3 at distance 0.477, and more 
generally, number x at distance log x. The scale shown in Figure 1 is that of f (x) = log x. 
 
Note that our notion of distance has direction. Adopting the convention that distance increases from left to 
right on a horizontal line, if a value x is located to the right of the origin, then it is a positive distance 
away; to the left of the origin, a negative distance away. Consequently, in constructing a scale, it is 
important that distance does indeed increase from left to right when determining locations of values. In 
the example for f (x) = 1/x, the values for x decrease from left to right (∞, 8, 4, 2, 1, …) on the scale so 
that their distances, given by 1/x, increase from left to right (0, 1/8, 1/4, 1/2, 1, …). 
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As an example where the origin is beyond the end of the line of the scale, consider f (x) = 1 - sin x over 
the domain x = 0 to 45. To ensure that distance increases from left to right, the left end is assigned the 
value 45 so that x values will decrease from 45 to 0, resulting in the following sequence of (x, f (x)) pairs: 
(45, 0.293), (30, 0.5), (15, 0.741), (0, 1). While distance does indeed increase (from 0.293 to 1), the 
leftmost value, 45, is not located at distance 0. Consequently, the origin (whose value is x0 = 90 since 
f (90) = 0) is not at the left end of the scale, but beyond it to its left. Note that this is not a problem as the 
theory we develop allows the origin to be anywhere. 
 
From Two Dimensions to One  
 
This way of representing a function effectively compresses a two-dimensional graph of a function into a 
one-dimensional scale, i.e., a line of graduated marks. Consider the logarithmic function, f (x) = log x. Its 
two-dimensional and one-dimensional graphical representations are shown in Figure 2. 
 

 
Figure 2: The upper two-dimensional graph plots the function y = log x. The lower one-
dimensional graph is a scale for log x. Notice that the vertical rise at x = 2 in the upper 
graph equals the horizontal distance to x = 2 in the lower graph. 

 
The key property tying the two representations is that the vertical distance relative to the x-axis over 
which the curve rises at a certain value x in the two-dimensional graph is the same as the distance from 
the origin x0 (e.g., the left end of the line) to the same value x in the one-dimensional graph. It is this 
ingenious way of graphically representing functions that allows so much information to be packed in a 
small amount of space on the slide rule, and allows these functions to be part of calculations through the 
simple translational movement of the slide. 
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There is a major constraint that results from this compression. The function must be monotonic, at least 
over the domain of values x represented on the scale, so that each distance measured by f (x) corresponds 
to a unique value x. Examples include all of the functions mentioned so far: f (x) = x, f (x) = x2, f (x) = 1/x, 
and f (x) = log x. To illustrate the problem that arises if the function is not monotonic, consider f (x) = sin x 
over the domain x = 0 to 180. Since sin x = sin (180 – x), two values correspond to a single distance, e.g., 
45 and 135 at the distance 0.707 since sin 45 = sin 135 ≈ 0.707. This can be resolved by simply using two 
scales, each over a portion of the domain where the function is monotonic. Some slide rules solve this by 
using a single marked line for the scale, but with two values per mark distinguished by using color-coded 
labels, thus interpreting the single line as two scales. 
 
Scale Construction 
 
To construct a scale, it is useful to draw the two dimensional graph of f (x), using the left-end and right-
end domain values as the extremes of the x-axis. For these and intermediate x values, vertical lines are 
drawn to the curve corresponding to f (x). Where the vertical lines meet the curve, horizontal lines are 
drawn to the y-axis. Marks are placed where the horizontal lines meet the y-axis, and are labeled with the 
corresponding x values. The portion of the y-axis with these marks then becomes a slide rule scale. 
 
For f (x) = x2, this is shown in Figure 3, with the added vertical and horizontal lines drawn as dotted. The 
x-axis domain labels are shown on the right side of the y-axis where the corresponding horizontal lines 
meet it. 
 

 
Figure 3: A two-dimensional graph of f (x) = x2, with x values graphically located to the 

y-axis. 

 
Next, the graph is flipped about its diagonal so the x-axis is vertical and y-axis is horizontal, resulting in 
Figure 4. 
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Figure 4: The two-dimensional graph of f (x) = x2 flipped about its diagonal. 

 
Finally, keeping only the portion of the graph that contains the horizontal axis, we get Figure 5. 
 
 

 
Figure 5: The resulting scale for f (x) = x2. 

 
This, then, is the compressed one-dimensional graph of, or scale for, f (x) = x2, which gives the distance 
from the origin at the left end to a mark corresponding to x. As a check, we can visually observe that the 
distance between consecutive marks is the difference between the squares of their labeled values. For 
example, the distance from 0 to 1 is 1 (the result of 12 – 02), the distance from 1 to 2 is 3 (the result of 22 – 
12), the distance from 2 to 3 is 5 (the result of 32 – 22), and more generally, the distance from x to x + 1 is 
2x + 1 (the result of (x + 1)2 – x2). 
 
Calculating using Scales 
 
If we take two x2 scales and place them side by side and parallel to each other, and allow one to slide 
relative to the other along the same axis, we can calculate the length of a right triangle’s hypotenuse given 
sides x and y, which is √x2 + y2. For example, to calculate √32 + 42, we would configure the scales as 
shown in Figure 6. 
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Figure 6: Calculating √32 + 42 = 5 using two x2 scales. 

 
Since we are adding the distance from 0 to 3 on the lower scale, to the distance from 0 to 4 on the upper 
scale, the total distance coincides with the distance from 0 to 5 on the lower scale, which gives the 
solution, √32 + 42 = 5. 
 
This example demonstrates how a slide rule works based on the geometric property that line lengths are 
additive: length AB + length BC = length (AB + BC). It also shows that scales do not have to be 
logarithmic to work. 
 
Mathematical Principle of the Slide Rule 
 
We now consider the general form of a calculation with a pair of scales defined by the functions f (x) and 
g (y). By placing one scale next to another, we arrive at the following key property: 
 

 f (x˝) – f (x´) = g (y˝) – g (y´) (1) 
 
where x´ and y´ are vertically aligned, as are x˝ and y˝, as shown in Figure 7. This property appeared in [3] 
(in a slightly different form) and in [4]. 
 
By allowing one scale to slide, i.e., be repositioned, relative to the other, the relative locations of the 
origins of the upper and lower scales can change, so there is no fixed relationship between f (x´) and 
g (y´), nor between f (x˝) and g (y˝). And yet, the property stated in (1) is key because it remains invariant, 
regardless of where the sliding scale is set relative to the other. 
 

 
Figure 7: Two sliding scales defined by the functions f (x) and g (y) and marked with 
values x´, x˝, y´, and y˝, with the property that f (x˝) – f (x´) = g (y˝) – g (y´). 
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We can take advantage of the ability of sliding one scale relative to the other, as this allows us to 
effectively select the values of any three of x´, x˝, y´, and y˝, which will determine the fourth. For 
example, say that f (x) = x2 and g (y) = y2. To calculate √32 + 42, we would let x´ = 3, y´ = 0, and y˝ = 4, 
with the result that x˝ = 5, just as was shown in Figure 6. 
 
Equation (1) leads to the following main result. 
 

Mathematical Principle of the Slide Rule: A slide rule with two scales that are defined 
by the functions f (x) and g (y) can calculate any function of the form: 

 

 h (x, y, z) = f -1(f (x) + g (y) – g (z)) (2) 
 
The form of (2) is quite versatile in determining the types of functions that can be calculated. We begin 
with the simplest: x + y, i.e., addition of two numbers. Defining f (x) = x and g (y) = y, we get the desired 
result: h (x, y, 0) = f -1(f (x) + g (y) – g (0)) = f -1(x + y – 0) = x + y. To calculate the hypotenuse of a right 
triangle with sides x and y, we define f (x) = x2 and g (y) = y2: h (x, y, 0) = f -1(f (x) + g (y) – g (0)) = f -1(x2 + 
y2 – 0) = √x2 + y2. To calculate the resistance of two resistors R1 and R2 in parallel, we define f (x) = 1/x 
and g (y) = 1/y: h (R1, R2, ∞) = f -1(f (R1) + g (R2) – g (∞)) = f -1(1/R1 + 1/R2 – 0) = 1/(1/R1 + 1/R2). 
 
Logarithmic Scales and Slide Rule Calculations 
 
We have purposely avoided using logarithms in the above examples to emphasize the generality of (2) 
and that it does not depend on their properties. However, most slide rules have logarithmic scales. The 
reason is that by using logarithmic functions for f (x) and g (y), a wide range of very useful calculations 
can be performed (especially when used in conjunction with additional scales that are functions or inverse 
functions of f (x) and g (y), which we discuss below). 
 
For example, consider multiplication of two numbers x and y. The goal is to express h (x, y, z) so that it 
equals xy. This can be done by using logarithms, taking f (x) = log x and g (y) = log y, so that h(x, y, 1) =   
f -1(f (x) + g (y) – g (1)) = f -1(log x + log y – log 1) = 10log x + log y = xy. On a slide rule, the C and D scales, 
corresponding to g (y) and f (x), respectively, are typically used for multiplication. 
 
We can also exploit the fact that functions f (x) and g (y) can be different. Consider raising x to the y 
power, i.e., xy. By defining f (x) = log log x and g (y) = log y, we obtain the desired result: h (x, y, 1) =        
f -1(f (x) + g (y) – g (1)) = f -1(log log x + log y – log 1) = 10y log x = xy. Leaving the third parameter z as a 
variable produces h (x, y, z) = xy/z. On a “log log” slide rule, the LL scales, corresponding to f (x) = log log 
x over a number of continuous and non-overlapping domains, and the C scale corresponding to g (y) = log 
y, are used for xy. 
 
Functions of Scales 
 
Many of the other scales on a general-purpose slide rule can act as either f (x) or g (y) in other types of 
calculations. They can also act as functions of the C or D scales (or even other scales), or as inverse 
functions, thus allowing the C or D scales to be functions of them. When used in this way, the C and D 
scales act as reference scales with respect to these other scales. The mathematical formulas that capture 
these other scales when they act as functions or inverse functions of their reference scales are as follows. 
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Consider the case where a scale z (w) is a function u (x) of the domain values of reference scale f (x). The 
goal is to find a formula for z (w) = f (x) such that w = u (x). The result is z (w) = f (u-1(w)). For example, 
say we want to determine the function for the A scale, which gives squares of the D scale, its reference 
scale. Since the D scale’s function is f (x) = log x, and u (x) = x2 (i.e., we want squares of the D scale), 
then the A scale’s function is z (w) = f (u-1(w)) = log √w = ½ log w. By inspecting a slide rule, one can see 
that the location of 4 on the A scale is indeed at the same distance as the location of 2 on the D scale, 
since ½ log 4 = log 2. 
 
The other case is where a reference scale f (x) is a function v (w) of the domain values of scale z (w). The 
goal is to find a formula for z (w) = f (x) such that v (w) = x. The result is z (w) = f (v (w)). For example, say 
we want to determine the function for the S scale, which gives inverse sines of the C scale, its reference 
scale; alternatively, the C scale gives sines of the S scale. The C scale’s function is f (x) = log 10x (since 
we want to interpret its x values as going from 0.1 to 1, rather than 1 to 10, thus providing sine values for 
angles from 5.74 to 90 degrees) and v (w) = sin w (i.e., we want sines of the S scale), then the S scale’s 
function is z (w) = f (v (w)) = log (10 sin w). Checking some values, the location of 90 on the S scale is at 
the same distance as that of the location of 1 on the C scale, at the right end, since log (10 sin 90) = log 
(10×1.0); and the location of 45 on the S scale is at the same distance as that of the location of 0.707 on 
the C scale, since log (10 sin 45) = log (10×0.707). 
 
Determining Distances in Measurement Units 
 
Throughout the paper, we have referred to distances simply as pure numbers. To express them in some 
unit of measure (e.g., inches) and in a practical form so that an actual scale line can be demarcated using a 
ruled measure and assigned values, the following formula can be used. It determines the distance from the 
left end of the scale (which need not be the origin, thus the formula is general), to the point that 
corresponds to x: 
 

 d (x) = m (f (x) – f (xL)) / (f (xR) – f (xL)) (3) 
 
where xL and xR are the desired x values at the left and right ends of scale, respectively, and m is the 
desired length of the scale in a chosen unit of measure. Checking the formula’s correctness at the ends: 
d (xL) = 0, and d (xR) = m. 
 
To illustrate with the function f (x) = x2, say that xL = 0 and xR = 5, and the total length of the scale is 10 
in. Then, d (x) = 0.4 x2 in. For f (x) = 1 - sin x over the domain x = 0 to 90, xL = 90 and xR = 0 since f (90) = 
0 < f (0) = 1, and d (x) = 10 (1 – sin x) in. Checking values, d (90) = 0 in., d (30) = 5 in., and d (0) = 10 in., 
which correspond to the left end, middle, and right end of the scale, respectively, as expected. Again 
taking f (x) = 1 - sin x but limiting the domain to x = 0 to 45, the formula works correctly: xL = 45 and xR = 
0 since f (45) = 0.293 < f (0) = 1, and d (x) = 14.14 (0.707 – sin x) in. Checking values, d (45) = 0 in., 
d (30) = 2.93 in., d (15) = 6.34 in., and d (0) = 10 in. 
 
Conclusion 
 
In addition to its overwhelming practical success as the engineer’s calculating tool, the slide rule is also 
an interesting theoretical object in its own right, whose mathematics is worthy of study. We have 
presented some of the mathematical foundations of the slide rule, culminating in a Mathematical Principle 
of the Slide Rule that allows one to determine what calculations become possible as a result of the simple 
geometrical addition of line lengths and the construction of scales based on one-dimensional graphs. 
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Upon further study, one can only marvel at the wide variety of calculations made possible by the slide 
rule, a simple mechanical device of few moving parts, manipulated by the hand, but powered by the mind. 
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