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ABSTRACT

Of the major factors affecting end-to-end service availability, net-
work component failure is perhaps the least well understood. How
often do failures occur, how long do they last, what are their causes,
and how do they impact customers? Traditionally, answering ques-
tions such as these has required dedicated (and often expensive)
instrumentation broadly deployed across a network.

We propose an alternative approach: opportunistically mining
“low-quality” data sources that are already available in modern net-
work environments. We describe a methodology for recreating a
succinct history of failure events in an IP network using a com-
bination of structured data (router configurations and syslogs) and
semi-structured data (email logs). Using this technique we analyze
over five years of failure events in a large regional network consist-
ing of over 200 routers; to our knowledge, this is the largest study
of its kind.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Opera-
tions

General Terms

Measurement, Reliability

1. INTRODUCTION

Today’s network-centric enterprises are built on the promise
of uninterrupted service availability. However, delivering on this
promise is a challenging task because availability is not an intrinsic
design property of a system; instead, a system must accommodate
the underlying failure properties of its components. Thus, provid-
ing availability first requires understanding failure: how long are
failures, what causes them, and how well are they masked? This is
particularly true for networks, which have been increasingly identi-
fied as the leading cause of end-to-end service disruption [2, 9, 15,
24, 30], as they exhibit complex failure modes.

Unfortunately, such analysis is rarely performed in practice as
common means of measuring network failures at fine grain presup-
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pose measurement mechanisms (e.g., IGP logging [23], pervasive
high-frequency SNMP polling, passive link monitoring [8], and
pair-wise active probing [26]) that are not universally available out-
side focused research-motivated efforts and which can incur signif-
icant capital and operational expense. Indeed, even in the research
community, it is common to use arbitrary synthetic failure models
due to the dearth of available empirical data [3, 20, 25, 28].

As a step toward addressing this issue, we describe a “cheap
and dirty” approach to extracting the requisite measurement data
from “lowest common denominator” data sources commonly found
in production networks today. In particular, we demonstrate a
methodology for reconstructing historical network failure events
inside of an autonomous system using three near-universal, yet
under-appreciated, data sources: router configuration files, syslog
archives, and operational mailing list announcements.

Router configuration files (e.g., as used to configure Cisco I0S
and JunOS routers) describe the static topology of a network at
a point in time and are commonly logged in networks of signifi-
cant size to support configuration management. Each configuration
file describes the set of interfaces enabled on a router and typically
enough information to infer its connectivity (e.g., via the short IP
network prefixes commonly assigned to point-to-point links). It is
by no means a perfect data source; it may omit topology out of its
purview (e.g., transparent optical cross-connects) and may include
topology that is illusory (e.g., entries can persist in a config file long
after a link has been decommissioned). However, in aggregate and
when combined with additional data it provides broad topological
coverage.

However, the long-term topology of a network by itself tells us
little about its failures. Here we turn to syslog which, as typically
implemented on modern routers, logs a plethora of events includ-
ing link status changes to a remote server. Thus, it complements
the router configuration data by describing the dynamic state of
the network—the status of all active links at every point in time.
However, reconstructing this state can be painful: First, the un-
structured quality of syslog messages requires parsing a diverse
assortment of message formats and correlating these events with
interface configuration records to obtain a complete description of
an event. Second, because of the “best effort” in-band nature of
syslog, some messages are necessarily lost (in particular, when a
link on the shortest path to the syslog server has failed). Yet, in
our experience, by exploiting natural reporting redundancy (i.e., a
link failure is usually reported by both endpoints), we can recover
instantaneous link status almost 90% of the time.

Finally, it is nearly universal practice for network operations staff
to maintain mailing lists and trouble ticket systems to share changes
in operational state (e.g., to document the response to a failure, ad-
vertise a planned maintenance activity, and so on). Such free-form



natural language data is both rich and incomplete: on the one hand,
it provides information not available from syslog, such as the cause
of a failure, but at the same time it is generated by non-deterministic
social processes and, thus, only reflects failures that are of a sub-
jectively sufficient magnitude and duration to warrant a broader no-
tice. However, this duality allows such announcement data to serve
two distinct purposes: as a classifier for failure causes and as an
independent source of “ground truth” that can be used to validate
our analyses. Following the methodology of Feamster and Balakr-
ishnan [12], we use a combination of keyword searches, regular
expressions and manual inspection to analyze announcements.

Taking these sources together we have analyzed five years of
archival data from the CENIC network—a production IP network
consisting of over two hundred routers serving most of the pub-
lic education and research institutions in California. Using syslog
and router configuration data, we extract failure events over this
period, infer causes from administrator email logs, and check our
results for consistency against three independent sources of net-
work failure data: active probes of our network from the CAIDA
Skitter/Ark effort, BGP logs collected by the Route Views Project,
and the administrative announcements from the CENIC operators.
Finally, we use our reconstructed failure log to present concrete
analyses of failure duration, cause, and impact, validating a num-
ber of widely held beliefs about network failure (e.g., the domi-
nance of link “flapping”) as well as describing new findings for
our dataset (e.g., the relative importance of planned maintenance
vs. unplanned failures and the role of third-party telco providers in
flapping episodes).

In summary, we believe our main contributions are:

K3

“ A methodology for combining router configuration files,
syslog messages and human-generated network operations
logs to derive a topological and dynamic failure history of
a network.

A detailed analysis of over five years of such data for a

large-scale network.

The rest of the paper is organized as follows. We begin in Sec-
tion 2 by discussing related work. Section 3 introduces the CENIC
network and the particular datasets we use in our study. Section 4
describes our methodology followed by a discussion of validation
methods in Section 5. Section 6 presents our analysis before we
conclude in Section 7 with a summary of our contributions.

2. RELATED WORK

The designers of computer networks have had to contend with
frequent failures—Ilink failures, router failures, interface failures
and so on—since the first networks were built [4]. However, for
practical reasons, most measurements of failure have taken place
from the edge of the network [6, 10, 11, 16, 18, 22, 32, 35]. Unfor-
tunately such tomographic techniques do not provide a complete
picture of the network; “a gap remains between research in net-
work tomography and practical systems for scalable network mon-
itoring,” according to Huang, Feamster and Teixeira [16]. Direct
measurement remains the gold standard for network failure data.

We are aware of three direct measurement studies in the last
decade. Shaikh er al. [27] studied OSPF behavior in a large en-
terprise network. Their dataset tracks 205 routers over a month in
2002. Although the aim of the study was OSPF behavior itself,
it also provided a valuable insight into the underlying component
failure characteristics. In particular, the authors observe that the
majority of apparent link failures in their network were caused by
a single misconfigured router. A similar study monitoring OSPF
behavior in a regional service provider was conducted by Watson,
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Figure 1: CENIC hub sites are connected by an optical
backbone. Long-haul fiber routes SVL to SAC, SVL to LAX,
TRI to LAX, LAX-SDG, and LAX-TUS-SDG use the Cisco 15808
DWDM & 15454 platforms. Metro-area networks use a combi-
nation of CWDM and Cisco 15530 & 15540 DWDM equipment.

Jahanian and Labovitz [33]. Their study tracked a network of fifty
routers, including internal and customer links, over the course of
one year. They observe that a small number of routers contribute
disproportionately to network instability, and that flapping links are
the predominant source of instability.

Markopoulou et al. [23] studied failure in the Sprint backbone.
Using passive optical taps and high-speed packet capture hard-
ware, they collected six months of IS-IS routing protocol messages
and were able to monitor “hundreds” of nodes interconnected by
a DWDM (dense wave-division multiplexing) optical backbone—a
design shared with our network. In addition to providing a charac-
terization of time-to-failure and time-to-repair distributions for the
Sprint backbone, they also observe that 2.5% of all links are respon-
sible for more than half of the individual failures. Furthermore, a
number of these links exhibit flapping behavior.

However, each of these previous studies have required
extensive—and often expensive—instrumentation not commonly
present in today’s production networks. In contrast, we focus on
using frequently available sources of implicit data, such as router
configurations, email archives and syslog records. While oth-
ers have also exploited these data sources (for example, Feam-
ster and Balakrishnan parse router configs to find BGP errors [12],
Labovitz et al. combine SNMP queries with operational logs to an-
alyze failures in the backbone of a regional service provider [19],
and Xu et al. parse syslog records to identify anomalies in data-
center operations [34]), we believe ours is the first effort that uses
this information to systematically identify and characterize network
failures.

3. DATA SOURCES

While we intend for our methodology to be generally applicable,
our current study focuses on one particular network, where we have
been able to obtain several years worth of configuration and log
information. In order to set the context for our analysis, we begin
by describing the network itself, and then detail the particular data
sources available.

3.1 The CENIC network

CENIC, the Corporation for Education Network Initiatives in
California, operates a common state-wide network providing In-
ternet access to California public education and research institu-
tions. Its members, with a combined enrollment of over six million,
include the University of California system, the California State
University system, community colleges, and K-12 school districts.
Physically, the CENIC network is an optical backbone with over
2,700 miles of fiber, connecting hub sites in major cities, as shown
in Figure 1. In addition, CENIC also manages equipment located
outside the hub sites for some of its smaller members.



interface GigabitEthernet0/0/0.23

description lax-sw-1 3/2 lax-isp ge-0/2/0.23
ip address 137.164.22.8 255.255.255.254

ip router isis

Figure 2: A Cisco 12410 configuration file entry describing a
Gigabit Ethernet interface. The description line is free-
form text; in the CENIC network, it used to record the end-
points of the connection.

Administratively, the CENIC network can be divided into three
major components: the Digital California (DC) network, the High-
Performance Research (HPR) network, and customer-premises
equipment (CPE), each described below.

e DC network. The Digital California (DC) network
(AS 2152) is CENIC’s production network, providing In-
ternet connectivity to University of California schools, Cal-
ifornia State Universities, California community colleges, a
number of private universities, and primary schools via their
respective County Offices of Education. At the end of our
measurement period (December 2009) the core network con-
sisted of 53 routers (mostly Cisco 12000 series) connected
by 178 links. We refer to these links as DC (core) links. The
DC network uses the IS-IS routing protocol for intra-domain
routing.

e HPR network. In addition to the production network,
CENIC also operates a High Performance Research (HPR)
network (AS 2153), which interconnects major California
research institutions at 10 Gb/s. It offers “leading-edge ser-
vices for large application users” [7]. At the end of 2009, it
consisted of six Cisco 12000 routers at the SAC, OAK, SVL,
SLO, LAX, and RIV hub sites connected by seven logical links
over the optical backbone. The HPR network runs its own in-
stance of the IS-IS routing protocol.

e CPE network. CENIC also manages customer-premises
equipment (CPE) for some of its smaller customers. A num-
ber of CPE routers (mainly those with redundant connectiv-
ity) run IS-IS on links to DC routers and other CPE routers.
There were 102 such routers and 223 links at the end of 2009.
We refer to these customer access links as CPE links.

There are also several statically configured access links in the
CENIC network. For these links, only events from the physical
layer and data link layer are recorded in syslog, as they are not mon-
itored by the routing protocol. In the absence of a network-layer
connectivity test provided by IS-IS, link semantics are unclear: in-
terfaces plugged into a switch or DWDM device may appear “up”
without the other endpoint being reachable. Given this fundamental
ambiguity, we do not include static links in our analysis.

3.2 Historical data

Our study uses three distinct forms of log information from the
CENIC network extending from late 2004 to the end of 2009.

e Equipment configuration files. CENIC uses RANCID [29],
a popular open-source system that automatically tracks
changes to router configurations. All changes are committed
to a revision control system, making it possible to recover the
configuration history of any router in the network. We were
granted access to this repository, consisting of 41,867 con-
figuration file revisions between June 2004 and December

Network
Parameter HPR! DC CPE
Routers 7 84 128
IS-IS links 14 300 228
Avg. config changes per router 255 178 54
Avg. syslog entries per link 748 187 595

Avg. BGP announcements per prefix ~ N/A 5504 4202
! Excludes RIV—SAC link (see Section 6.1).

Table 1: Summary of the CENIC network dataset.

Mar 6 15:55:46 lax-corel.cenic.net 767: >
RP/0/RP1/CPUO: Mar 6 16:56:08.660: IS-IS[237]: D
ROUTING-ISIS-4-ADJCHANGE: Adjacency to >

lax-core2 (TenGigE0/2/0/7) (L2) Up, Restarted

Figure 3: A syslog message generated by a Cisco CRS-8/S
router (split into multiple lines to fit). The message indicates
that IS-IS routing protocol has transitioned the lax—corel
link to the 1ax—core2 router on interface TenGigE0/2/0/7
to the up state.

This message is to alert you that the CENIC >
network engineering team has scheduled >
PLANNED MAINTENANCE:

START 0001 PDT, FRI 8/17/07

END 0200 PDT, FRI 8/17/07

SCOPE: Power breaker upgrade

IMPACT: Loss of power redundancy at Level 3/ >
Triangle Court, Sacramento

COMMENTS
CENIC Engineering team has scheduled >
remote-hands at Level 3/ Triangle Court, >

Sacramento to swap out breakers.

Figure 4: An operational announcement. Announcements are
a combination of fixed-format elements (START and END) and
free-form text.

2009. Figure 2 shows an example of an interface description
for a Cisco 12410-series router.

o Syslog messages. All CENIC network routers are configured
to send syslog [21] messages over the network itself to a cen-
tral server located at the Tustin (TUS) hub site. The messages
announce link failures at the physical link layer, link proto-
col layer, and network layer (IS-1S), covering the first three
layers of the network protocol hierarchy. Unlike many local
logs, messages in the centralized syslog are timestamped to
only whole-second granularity. We obtained an archive of
these messages from November 2004 to December 2009, of
which 217,498 pertained to the networks in this study. Un-
fortunately 176 days of syslog data ( 9/23/2007 to 3/17/2008)
are absent from the archive. Figure 3 shows a syslog message
generated by IS-IS.

e Administrator notices. We also obtained archives of two
mailing lists used to disseminate announcements about the
network. Together the mailing lists contained 7465 an-
nouncements covering 3505 distinct events from November
2004 to December 2009. Figure 4 shows a typical adminis-
trator notice.
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Figure 5: Our failure event reconstruction work flow. The BGP
validation process is described in Section 5.

Finally, in order to help validate our conclusions about when fail-
ures occur, we extract BGP announcements relating to the CENIC
networks from the Route Views Project [31]. In particular, we col-
lect all BGP messages received by the Peering and Internet Ex-
change (PAIX) listener in Palo Alto, California that pertain to ad-
dress blocks belonging to or serviced by the CENIC network. Note
that our analyses do not depend on the BGP data—we instead use it
as ground-truth regarding the small subset of externally visible fail-
ures. Table 1 provides a brief overview of the cumulative dataset
that we consider for the remainder of the paper.

4. METHODOLOGY

The main goal of our work is to develop a general procedure to
mine the three “low quality” sources of historical data to construct
a crisp timeline of failures, where each failure event is annotated
with a start and end time, set of involved links, and, if possible, a
potential cause. Moreover, where appropriate, we seek to aggre-
gate multiple simultaneous link failures into larger events such as
router and point-of-presence (PoP) failures, and coalesce frequent
back-to-back link failures into enclosing flapping episodes. In ad-
dition to this annotated failure timeline, we also produce statistical
information about link lifetimes that serves as input to our analysis
(Section 6). Figure 5 depicts the extraction process, as well as our
validation experiments discussed in the next section.

4.1 Recovering the topology

Before beginning to catalog failures, we must first build a topo-
logical model of the network under study. While it is possible that a
map may be readily available (indeed, the current CENIC topology
is available on the Web'), we instead choose to infer the topology
from the historical data. Our reasons are two-fold: First, previous
work has shown that topological databases rapidly become out of
date as operators change the physical topology to increase capacity
or in response to failures [17]. Second, we need to cross-correlate
syslog information with physical network entities; extracting the
actual identifiers used in the configuration files significantly sim-
plifies this task.

We begin by attacking the latter issue. In particular, we map en-
tities described in the syslog files to individual routers and links in
the network topology. This process is not entirely straightforward
however, as layer-3 syslog messages identify both endpoint routers
of a link, but only the particular interface for the router that gener-
ates the syslog message. In several cases this is insufficient to fully
describe a link, for example when two routers have multiple links
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between them. To accurately identify the interfaces at both ends of
a link, we consult the router configurations. Each configuration file
describes the kinds of interfaces present on the router and how they
are configured; Figure 2 shows an example interface description.

Our collection of router configuration files is not just a single
snapshot in time, but rather a series of configuration files for each
router, where each file version is annotated with its update time.
Thus, router configurations give us a meaningful way to define link
“lifetime” as the period of time between its first mention in a con-
figuration file and its last.

We identify the ports associated with each link using a straight-
forward iterative process similar to previous work on on extracting
global network state from configuration files [13, 14]. For each ac-
tive interface running IS-IS, we determine the set of IP addresses
on the same subnet. The overwhelmingly common case is that an
interface’s subnet is 255.255.255.254 (i.e., a point-to-point link)
making it obvious which interfaces are communicating with each
other. An important caveat is that IP addresses are often changed
and re-used on different routers, so it is critical to allow interfaces
to be part of multiple different links throughout the analysis.

4.2 Identifying failures

Armed with the set of links in the network, we process the fail-
ure history of the network in several steps. We begin with the sys-
log archive under the assumption that it contains an accurate—if
incomplete—enumeration of link failures.

4.2.1 Defining failure

For our purposes, a failure is any event that causes a routing-state
change (layer-3) syslog message to be recorded. As a result, our re-
constructed event history reflects the routing state of the network,
i.e., a link is considered to have failed whenever a router refuses to
send traffic over it. As such, our event history may not accurately
capture the physical state of the network components. For example,
a router may refuse to route traffic over a link because a hold-down
timer has yet to expire rather than because of an actual disconnec-
tion. We define the duration of a failure event to extend from the
first layer-3 “down” message in syslog (we may receive messages
from routers at both ends of the link) to the first “up” referring to
the same link.

Recall that syslog also contains failure messages generated at
the physical link layer and at the link protocol layer. We choose to
focus on the network layer, as opposed to the link layer, because
it more faithfully captures the state we are interested in, namely
whether the link can be used to carry traffic. The bias is, of course,
one-sided: if the physical layer reports the link is “down,” then it
is necessarily also “down” at the network layer; on the other hand,
a link may be “up” at the physical layer, but not at the network
layer (e.g., an Ethernet link plugged into a switch with incorrectly
configured VLANS).

4.2.2 Grouping

Once individual failure events have been identified, we further
consider whether failure events overlap. We define simultaneous
failures to be two or more failures on distinct links occurring or
healing within 15 seconds of each other. In keeping with the liter-
ature [23], we identify three types of simultaneous failures: router-
related, PoP-related, and other. A simultaneous failure is deemed
router-related if all involved links share a common router, PoP-
related if all links share a common PoP but not a common router,
and “other” if the failures has no common PoPs.

In addition to grouping simultaneous failures across multiple
links, we also aggregate back-to-back failure events on a single
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Classification | Example causes or explanations

Power “City-wide power failure”, “UPS failure”
Hardware “Replacing line card” , “Replacing optical amplifier”

External Failure of non-CENIC equipment (e.g., leased fiber)
Software “Upgrading 10S”

Configuration | “Modifying IGP metrics” , “adding IPv6 capability”
Other “DoS attack” , “flooded machine room”

Unknown Failures with unknown or unreported causes

Table 2: Operational announcement failure classification.

link into an enclosing flapping event. Link flapping has long been
understood as a challenge for routing protocols [33]. Based on our
experience with the CENIC dataset in this study, we liberally define
flapping as two or more up/down state changes where the down-to-
up periods last no longer than 10 minutes. (We justify our particular
parameter choice in Section 6.2.4.)

4.2.3 Dealing with loss

In contrast to Markopoulou et al. [23], who used a specialized
IS-IS listener, we glean routing state information entirely from sys-
log messages generated by the routers themselves. Unfortunately,
because of the unreliable nature syslog’s UDP-based transport, not
all router log messages make it to the syslog server. As aresult, it is
common to hear about a failure from one side of a link but not the
other. For this reason, we consider a link down if at least one end-
point reports it being down, and up if at least one endpoint reports
it coming up.

It is also common to see two “up” messages with no interven-
ing “down” message, and vice versa. In one instance, for exam-
ple, the syslog shows a link between the LAX and RIV routers in
the HPR network fail (reported “down” by RIV but not LAX), and
then, 36 days later, the same link is reported down by LAX, with no
intervening messages about the link. We discard such anomalous
periods—between consecutive “up-up” or “down-down” messages
where it was impossible to infer when a link changed state—from
the dataset. We choose this conservative approach in order to fa-
vor correctness over completeness. In the case of our dataset, the
excluded time periods account for 12.6% of the link-hours on HPR
links, 9.5% of the link-hours on DC links, and 16% of the link-
hours on CPE links.

4.3 Categorizing failures

So far, we have determined when failures occur and how long
they last, but nothing more. Inferring the probable cause of these
failures requires additional inference and additional data.

Over and above the syslog entries, operational announcement
archives contain a wealth of information that, when available, can
turn simple failures into well described events (for example, see
Figure 4). After manually reviewing a number of announcements,
we observed that most events can be categorized into a small num-
ber of classes.

We classify the administrator notices into seven categories, listed
in Table 2. We manually labeled each announcement based on
matching keywords, phrases, and regular expressions. In some in-
stances, there may be multiple announcements pertaining to the
same failure event. Grouping these multiple announcements into
a single event requires some piece of information to be repeated
in each announcement. Luckily, the first announcement about an
event contains the start time of the event in an easy to identify
and parse format. From there, each additional announcement ei-
ther contains the original announcement or restates the start time of
the event. Also the final announcement contains the time that the
event officially ended.

Armed with failure start and end times from syslog as well as
failure causes tagged with start time and end time from the op-
erational announcements archives, we use temporal correlation to
match failures (computed by processing the syslog) with potential
causes (based on administrator notices). To find matches, we widen
the start and end times from the operational announcements by fif-
teen minutes to compensate for potential issues with clock syn-
chronization, conservative time windows, and delayed reporting.
Unfortunately, blindly assigning causes to syslog failures that fall
within an announcement’s window leads to a large number of false
positives. To minimize such errors we extract router names or ab-
breviations from announcement messages and ensure that at least
one router in a link was mentioned in the message before match-
ing it to a corresponding syslog-based inference. For our CENIC
dataset, we discard 1,335 of the 2,511 messages (53%) that, while
contemporaneous with a failure event in syslog, do not explicitly
mention a router involved in the failure. It is likely that manual
inspection could salvage a significant percentage of these.

S. VALIDATION

Unfortunately, there is no free lunch. Syslog data was never in-
tended to be used for our purposes; consequently certain omissions
and ambiguities are inevitable. Validating network failure data in
general is challenging, and especially so when dealing with events
five years in the past. Thus, we take an opportunistic approach,
checking for consistency against data we do have with an under-
standing that there will be noise and errors that reflect the different
vantage points between these diverse data sources. In particular,
our approach has two major shortcomings: it is neither complete
nor 100% accurate: there are likely to be failures that our log does
not include, and it may be the case that failures we do include are
spurious, misclassified, or improperly timestamped. We discuss the
potential biases that result from our choice of data source, as well
what we did to validate our results and help quantify our errors.

5.1 Measurement bias

As discussed earlier, some link status change messages may
be missing from the syslog due to its unreliable nature. Thus, a
“down” link state transition may not have a preceding “up” or vice
versa. In our use to date we have found that such gaps are rela-
tively minor (accounting for less than 13% of link time) but this
could also be an artifact of our particular network and hardware.

Additionally, our definition of link failure is based on adjacency
status reported by the underlying routing protocol. For example, to
ensure connectivity, the IS-IS protocol requires routers to send and
receive hello messages. By default, a router sends a hello message
once every ten seconds and declares a link disconnected if no hello
message is received for thirty seconds. Hence, we may under-count
failure duration by up to thirty seconds per failure. Conversely, IS-
IS considers a repaired link down until a configurable hold-down
timer expires (this process is dynamic, but should create biases of
similar magnitude).

Another ambiguity arises in pinpointing the “age” of each link
to allow annualized statistics to be calculated. The natural defini-
tion of age is simply the amount of time between when a link was
added to the network and when it was removed. One minor issue
with this definition is that some links are added to the network be-
fore our syslog data begins (left censored), are not removed until
after our syslog data runs out, and/or continue to operate during
the months where syslog data was lost (right censored). To combat
these issues we do not allow any links to be added to the network
before the syslog data starts, remove all links from the network af-
ter the syslog data ends, and ignore any operational time for the



period of time missing in our syslog data. A second version of this
problem that cannot be overcome directly is the granularity with
which router configuration files are maintained. Since interfaces
are not tagged with creation or removal times, we rely on the first
and last configuration file that contains a valid interface description
for these times. Unfortunately, configuration updates are logged
periodically—rather than instantaneously—thus, we are prone to
add links to our network later than they have actually been added
and remove them after they have likely been removed.

5.2 Internal consistency

Because our data is historical, and the CENIC network operators
did not collect or maintain any additional logs that we can use as
ground truth regarding the timing or causes of failure, we are forced
to search for alternate means of validation. We use two qualitatively
different approaches. The first is to cross-validate the records we
do have; any inconsistencies or disagreement between syslog and
the operational email announcements increases the likelihood of er-
ror. While we cannot say for certain that the lack of inconsistency
implies correctness, we can quantify the degree of inconsistency
to provide an approximate upper bound on the accuracy of our ap-
proach. Second, certain failures may be externally visible, in which
case we can leverage logs collected by third parties.

Focusing first on internal consistency, we use the administrator
notices (Section 4.2.3) to validate the event history reconstructed
from the syslog archive. In reconstructing this history, we used the
administrator notices to label failures with causes when available—
in particular, if there is an announcement that pertains to the partic-
ular failure. Understandably, only a small subset of the link failures
are discussed by the operators on the email list. Here, we attempt
the opposite mapping. Specifically, we check whether the recon-
structed event history also records the corresponding event.

Ideally, we would confirm that each of the 3,505 distinct events
mentioned in an administrative announcement appears in the log.
Due to the difficulties in extracting precise details from free-form
email messages, the matching must be done manually. Hence, we
verify a random subset of the events. Of the 35 (roughly 1%) events
we inspected, only one could not be matched to a corresponding
(set of) failure(s) in the event history (i.e., 97% accuracy).

5.3 Externally visible events

In a well-designed network, most failures are masked by re-
dundant links and protocols. Hence, while network operators are
clearly interested in knowing about failures so they can address the
fault and restore proper operation, users of the network may not
even notice when failures occur. A certain class of catastrophic
failures, however, cannot be hidden: those that result in network
partitions. The CENIC networks are connected to the larger Inter-
net and, hence, any network partitions in those networks would be
observable from the commercial Internet.

We are aware of two publicly available datasets concerning
reachability that go back far enough in the past to validate our fail-
ure logs: the CAIDA Skitter/Ark active traceroute measurements,
and the University of Oregon’s Route Views BGP logs. Here, we
develop a methodology to validate our failure log—at least in the
limited case of failures that result in a network partition—by check-
ing against publicly available traceroute and BGP records.

5.3.1 CAIDA Ark/Skitter traceroute

One direct method of ascertaining whether a link is down or not
is to attempt to use it. Most commercial network operators con-
duct periodic active end-to-end probes [26] to do just that for their
own networks. CAIDA’s Ark (né Skitter) project conducts sporadic

traceroutes to numerous destinations throughout the Internet from
various traceroute servers [5]. Occasionally, Skitter probes desti-
nations within the CENIC network. While the actual route itself is
of little interest to us, the reachability of the end point is. In partic-
ular, for all Skitter probes to a destination within CENIC, we can
validate our failure log by comparing the success or failure of the
Skitter probe to our event records: for all successful Skitter probes,
we verify that all of the links traversed (which are conveniently enu-
merated by the Skitter record) were “up” at the time of the probe
according to our failure log. Conversely, should a Skitter probe
fail, we verify that either 1) the probe failed before reaching or af-
ter passing through the CENIC network, or 2) the link leaving the
last successful hop was “down” at the time of the probe according
to our log.

CAIDA provided us with the Skitter traceroute data covering six
months (January—June 2007) of our study—already over four giga-
bytes of compressed data. From the data, we extracted 75,493,637
probes directed at 301 distinct destinations within the CENIC net-
work from 17 different traceroute servers, covering 131 links and
584 distinct paths through the CENIC network. The outcome of
each of these 75 million Skitter probes was consistent with the link
states reflected in our event history. Unfortunately, none of the Skit-
ter probes failed within the CENIC network itself—in other words,
while the log is completely consistent with the Skitter data, Skitter
does not positively confirm any failure events in the log.

5.3.2 Route Views BGP archive

Unlike traceroute, which requires active probing to detect fail-
ures, passive BGP listeners are asynchronously informed of reach-
ability information. Hence, to the extent a link’s connectivity is
monitored by BGP, its failure history is likely to be far more com-
plete. The University of Oregon’s Route Views project has de-
ployed ten BGP listeners throughout the world to collect BGP up-
dates, and makes their logs publicly available. The main challenge
with BGP data, however, is its coarse granularity. BGP speaks in
terms of networks or IP prefixes as opposed to individual layer-3
links like traceroute. Hence, a BGP listener will only detect when
an entire network becomes unreachable.

When considering the particular case of the CENIC network,
we must bear in mind that multiple core routers in multiple cities
would have to fail simultaneously to partition the core of the net-
work. It is not surprising, then, that we do not observe a partition
in the CENIC core network during the course of our study. How-
ever, most customer sites—places with CPE routers—have only
one router and only one or two links to the CENIC core. There-
fore, if all of the links between CENIC and a CPE router fail, the
site becomes partitioned from the network. Such events are infre-
quent, but do occasionally occur.

We identified the IP prefixes for 60 distinct networks (i.e., cus-
tomer sites) served by CENIC. Unfortunately, we can only use BGP
to validate a subset of these sites because CENIC does not withdraw
prefixes of customers residing in CENIC address space (these are
typically small customers like K-12 school districts). We identified
19 customer sites in the CENIC failure logs that have their own au-
tonomous system (AS) and for which CENIC generates BGP with-
draw messages. We identify network partitions for these sites in
our reconstructed event history by searching for multi-link failure
events that involve all of a CPE router’s links to CENIC. We de-
clare such customer sites to be isolated for the duration of the fail-
ure. One issue with this approach is that some customers may be
multi-homed—in other words, have access links to networks other
than CENIC. In such an instance, we would assert that a site is iso-
lated when in fact it is only suffering degraded service. We have



Sites Events Pw Hw Sw N/A

Isolation 14 51 2 1 13 36
Path change 19 105 4 2 24 73

Table 3: Summary of the CENIC network partitions
validated against the Route Views BGP data.

not, however, uncovered any evidence of such sites in our logs or
interactions with CENIC operators.

The geographically closest Route Views BGP listener to the
CENIC network is housed at the Peering and Internet Exchange
(PAIX) in Palo Alto, California. Unfortunately, the BGP listener’s
network (AS6447) does not directly peer with the CENIC network
(AS2152), but it does peer with several ASes that directly peer
with CENIC. To accommodate the idiosyncrasies of BGP conver-
gence between all of the peers of the Route Views listener?, we de-
clare a CENIC site isolated according to BGP if at least four peer
ASes withdraw all of the site’s prefixes. In addition to these iso-
lation events, we also observe instances where two or three ASes
withdraw all of a site’s prefixes but several other ASes will adver-
tise multiple paths of monotonically increasing length to a site’s
prefixes. We refer to this second type of event as a BGP path
change. While isolation is a strong proof of network partition, BGP
path change events are also likely due to externally visible failures
within the CENIC network and are therefore also useful for vali-
dating our error log.

Of the 147 isolating events in our event history that should be vis-
ible in BGP (see Table 7 for a breakdown), we were able to match
51 to complete BGP isolations—i.e., fully converged route with-
drawals (Table 3). If we more conservatively consider BGP path
changes, however, we are able to confirm 105 of the 147 events.
Notably, of the remaining 42 events, 23 of them pertain to a sin-
gle link. It is possible that this link is backed up by a statically
configured link that is not reflected in our IS-IS dataset.

6. ANALYSIS

By applying the methodology described in the previous sections
to the CENIC syslogs and operational announcement email logs,
we obtain over half-a-decade worth of failure data for a moder-
ately sized production network. Hence, we are in the position to
ask several fundamental questions regarding the operation of a real
network. In particular, we consider:

< How often do failures occur? How long do they last?

“ What are the causes of failures? Are some types of links
more failure-prone than others?

< What is the impact of link failures? Does the network adapt
without significant service disruption?

While we make no claims regarding the generality of our results,
we believe that a study of this scope and duration is unprecedented
in the literature, and that our findings are likely to be representative
of a larger class of educational and research networks.

6.1 Event history at a glance

Figure 6 shows the reconstructed event history at a glance. Links
are ordered lexicographically along the y axis. Each failure is rep-
resented by a single point on the plot, located according to the start
of the event. Two aspects bear note:

*BGP announcements are modulated by local router policy, which
may differ between peers.
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Figure 7: Failures per link per year, excluding links up for less
than 30 days.

Vertical banding. Several vertical bands are apparent in the figure,
which correspond to system-wide events. For example, the band
in September 2005 labeled V4 in the figure is a network-wide IS-
IS configuration change requiring a router restart. (The scale of
the figure makes the link failures appear simultaneous; the band
actually spans about a week.) Another band in March 2007 (labeled
V3) is the result of a network-wide software upgrade. The third
band, V3, occurs in February 2009 as a network-wide configuration
change in preparation for IPv6.
Horizontal banding. Figure 6 also contains several horizontal
segments. The nearly solid segment labeled H in the middle of the
figure corresponds to a series of failures on a link between a core
router and a County of Education office. The segment is made up
of many short failures happening only a few times a day. After at
least one unsuccessful attempt to diagnose the problem, the cause
was ultimately found to be faulty hardware.

The horizontal segment labeled Hy in the figure corresponds to
a RIV-SAC link between two HPR routers. Between July 2006 and
January 2007 this link experienced over 33,000 short-duration fail-
ures. While the initial cause was a fiber cut, the repair process
damaged an optical device leading to instability that was difficult
to diagnose. Because this single flapping event accounts for 93%
of all link failures in the HPR network, we remove it from the data
set to avoid skewing further analyses.

6.2 Aggregate statistics

We begin our analysis by computing aggregate statistics about
the frequency and duration of failures on a per-link basis, both in
terms of individual failure events and cumulative link downtime.
Table 4 shows the average, median, and 95th percentile of each
distribution. For all annualized statistics, we excluded links in op-
eration fewer than 30 days because of their inflated variance.

6.2.1 Failure rate

Perhaps the most natural first question we might ask is, “How
many failures are there?” Figure 7 shows the cumulative distribu-
tion function (CDF) of the number failures per link per year. We
compute the number of failures per year for each link by dividing
the number of failures by the lifetime of the link (excluding links
in operation for less than 30 days).

In the DC network, most links experience few failures, as one
might expect of a production network. The CPE network, consist-
ing of access links and routers on customer premises, is somewhat
less reliable, with a median annual failure rate of 20.5 failures per
link. The HPR network experienced considerably more failures.
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Figure 6: Overview of reconstructed link failure dataset. Links are enumerated along the y axis. A mark indicates the beginning of
a link failure event. No syslog data is available for the seven-month period from late 2007 to early 2008.

Annual failures

Annual downtime

Time to repair

Avg Med 95% Avg Med 95% Avg Med 95%
DC 162 5.1 577 27d 24m 34h 174m 130s 152m
CPE 302.0 202 2767 16d 72m 163h 36m 3.0s 26m
HPR 585 395 1551 12d 497m 125h 161m 4.0s 237m
Internet2 129 143 291 02d 112m 19h 207m 54.0s 755m

Table 4: Annual number of failures per link and annual link downtime for links in operation 30 days or more. As noted in Section 6.1,
the HPR network statistics exclude the RIV-SAC. The Internet2 Network is discussed in the Appendix.

In all three networks, however, the distributions are heavy-tailed:
the 95th percentile statistics (Table 4) reveal that the most failure-
prone links are roughly an order of magnitude less reliable than the
majority of links.

Overall, we found that five links are responsible for more than
half of the link failures observed. This result is consistent with past
studies documenting the same phenomenon. Watson et al. [33] ob-
serve that a few routers are responsible for most of the updates in a
regional ISP, a finding also documented by Markopoulou et al. [23]
in the Sprint backbone, and Shaikh et al. [27] in a large enterprise
network (there, a single router was found to be responsible for most
of the apparent failures in the entire network). In some sense, this
is good news because it suggests that there are a small number of
“hot spots” in the network that require attention.

6.2.2 Downtime

We can also quantify a link’s reliability in terms of its total down-
time (i.e., the sum of repair times). Figure 8(a) shows the cumula-

tive distribution of annual link downtime by network, again exclud-
ing short-lived links. The median annual downtimes for the DC and
CPE network are 24 and 72 minutes, respectively, corresponding to
four nines of reliability. This difference confirms an intuitive belief
we held, namely that backbone links would be more reliable than
access links. The most natural explanation for this is that back-
bone links affect more customers and are thus better maintained
and more closely monitored than access links. The median link
in the HPR network, on the other hand, is closer to three nines of
reliability—most likely reflecting its experimental status and more
frequent upgrades. Once again, the 95th percentile shows all dis-
tributions have a long tail (note the tails are in terms of hours, not
minutes).

6.2.3 Time to repair

The annual downtime and failure rate statistics suggest that the
“outlier” links in the long tail have much shorter failures than “nor-
mal” links (represented by the median). Figure 8(b) shows the cu-



100% 100%

90% 90% —
80% 80%
70% 70%—
60% 60%
50% 50%
40% 40%

L
309 30% - - i

20%-| 20% 1}
— bc
............... - CPE

0% o HPR 0%

10% | 0% T

00%— s
90%-|
80%-|
70%-|
60% |
50%-|
40%
30%-|

T

I
|
|
|

I

T
|
I
I
I
I
|
|
|
20% |
I

— bc
! - - CPE
0% flapping } isolated oo HPR

10%...0

T T T T T
10s im 10m 1h 6h  1day

(a) Annualized link downtime.

T T
1 week 1s 10s

T
im

(b) Time to repair.

T T T T T T T T
10m 1h 6h 1s 10s  1m 10m  1h

(c) Time between failures.

T T T T
6h 1day 1week 1year

Figure 8: CDFs of individual failure events, by network, for links in operation 30 days or more. (Log-scale x-axes.)
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Figure 9: Total downtime within a flapping episode.

mulative distribution of individual repair times. The sharp spike
in the DC network is due to a single highly periodic flapping link.
Other than this anomaly, the most striking feature of the graph is
the low failure durations. Remarkably, over 70% of the failures in
the CPE and HPR networks last less than 10 seconds. In the DC
network, 70% of failures last less than 100 seconds, with a median
duration of 13 seconds.

6.2.4 Grouping

So far, we have considered each link failure independently. As
discussed in Section 4.2.2, however, we also group link failures into
larger events based upon temporal correlation. In particular, we ag-
gregate simultaneous failures, when appropriate, into PoP or router
failures, and combine back-to-back failures into flapping episodes.
In the case of the CENIC network, however, the former are rela-
tively infrequent, so we focus exclusively on the latter.

Figure 8(c) plots the CDF of time between failure events on a
single link. We draw a vertical line at 10 minutes, which serves as
our definition of “flapping:” two or more consecutive failure events
on the same link separated by less than 10 minutes are grouped to-
gether into a larger flapping episode. 10 minutes is just past the
knee of the curve for each network—the distributions appear mem-
oryless for longer intervals. More than 50% of all flapping episodes
constructed in this manner consist of only two failures, but 5% of
the episodes contain more than 19 individual failures (not shown).
Figure 9 shows the amount of downtime within flapping episodes—
note that this is not the duration of the episode, only the periods
within the episode when the link was actually down. Comparing to
Figure 8(b), we see that flapping episodes, on the whole, are more
disruptive than typical failure events.

Again, our findings reinforce those of prior studies. Both Wat-
son et al. [33] and Markopoulou et al. [23] also find that link flap-
ping is a predominant source of instability. It is unlikely that all
three studies reflect anomalous networks and instead we suggest
that short time scale and oscillatory behavior may simply be “nor-
mal” in large networks. Thus, network protocols and routing algo-
rithms should be prepared to handling flapping as a common case.

6.3 Causes of failure

Now that we have quantified how often failure occurs, we turn
our attention to its causes. We consider whether particular types of
links are more likely to fail, and then examine the instances where
operators explicitly place blame.

6.3.1 Link type

Each constituent CENIC network is composed of a number of
different link technologies, including Ethernet, SONET, and serial
lines. Figure 10 breaks down the individual failure events not by
network (c.f. Figure 8), but instead by the type of hardware in-
volved. Figure 10(a) suggests that Ethernet links are more reliable
than other technologies. Figure 10(b) shows that while Ethernet
failures are not as quick to repair as serial lines, they are far less
frequent (Figure 10(c)). This is undoubtedly in part due to Ether-
net’s predominance for short-haul links, which are less exposed to
external failure processes.

Figure 11 presents a similar breakdown, separating links into
intra-PoP and long haul. Perhaps not surprisingly, Figure 11(a)
shows a clear separation in reliability, with intra-PoP links being
markedly more available than long-haul links. This may be due to
the fact that many intra-PoP links are carried over Ethernet; indeed,
comparing Figures 11(b) and 11(c) to Figures 10(b) and 10(c) sug-
gests that long-haul failures are dominated by serial links.

6.3.2 Labeled causes

For a subset of link failures, we are able to annotate them with
information regarding their causes by matching them to adminis-
trator notices. We were able to match 5,237 (out of 19,046) events
to such a notice, accounting for 37.5% of the total downtime. Fig-
ure 12 shows the breakdown of these events according to the stated
cause. The plurality of failure events are due to software upgrades,
with hardware upgrades the next most frequent cause. Figure 13,
however, shows that while hardware-related events account for the
lion’s share of the downtime, software upgrades are responsible for
much less of the total downtime; indeed, external factors including
power disruptions have a more significant footprint. The data is
also summarized in Table 6.

Table 5 provides some basic statistics regarding the duration
of individual failure events for each category. Most events are
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Figure 10: CDFs of individual failure events, by link hardware type, for links in operation 30 days or more. (Log-scale x-axes.)
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Figure 12: Failure events that matched administrator notices
during the entire measurement period, broken down by cause.

short, but the median hardware and power outages are substantially
longer—over twenty minutes. Almost all categories have heavy
tails, however, which cause the average failure duration to be an
order of magnitude longer than the median.

In addition to identifying the cause of the failure, administra-
tor notices also indicate whether or not the failure is anticipated or
“scheduled”. While most of the failure events found in the admin-
istrator announcements are scheduled, most of the actual downtime
can be attributed to unexpected failures—Ilikely because the opera-
tors take care to make sure planned downtime is as limited as pos-
sible. Indeed, the median planned outage lasts less than 5 minutes
(not shown). Interestingly, it appears network operators frequently
are not notified by external entities ahead of incidents that impact
the network’s operation.
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Figure 13: Cumulative downtime of the failures that matched
administrator notices over the entire measurement period, cat-
egorized by failure.

6.4 Failure impact

In general, it is extremely difficult for us to tell from the failure
log what—if any—impact a failure had on users of the network.
For the set of events that are annotated with administrator notices,
however, we can report if the notice explicitly stated whether or
not the event was supposed to have an impact on the network. The
third column of Table 6 indicates what fraction of the events were
supposed to have some impact—however brief—on the network. In
almost all cases, the operators indicate some link downtime may re-
sult. This phenomenon is perhaps due to self selection on the part of
the operators, however. Non-impacting failure events—especially
unscheduled ones—seem far less likely to motivate an operator to
send an announcement.



Time to repair

Cause Events  Avg Med
Hardware 20% 95 m S5m
Power 6% 93 m 18 m
External 15% 6lm 4.6m
Software 32% 10m 4m
Configuration 9% S5m 1m
Other 12% 46 m 6m
Unknown 5% 52m 6 m

Table 5: Major causes of failure according to administrator
announcements, ordered by median time to repair.

Cause Notices Scheduled Impacting
Hardware 25% 65% 71%
Power 20% 4% 99%
External 15% 29% 95%
Software 12% 84% 99%
Other 12% 69% 82%
Configuration 8% 91% 45%
Unknown 7% 0% 99%

Table 6: Breakdown of administrator notices by failure cause.

Sites Events Pw Hw Sw N/A

AS2152 41 361 28 12 39 287
Other AS 19 147 6 5 26 105

Table 7: Summary of the CENIC network partitions.

Cause Avg Med 95%

Power 5h 20.6m 33h
Hardware 8.2h 32 m 3.7d
Software 6m 27m 139m
N/A 8h 32m 3.7d

Table 8: Duration of network partition for all isolating events.

As discussed in Section 5, the only type of impact we can infer
are isolating network partitions. Table 7 presents the 508 isolat-
ing failures we identify in the failure log, separates them into net-
works with and without their own AS, and provides the cause an-
notation if available. Interestingly, the breakdown of failure causes
for partition events is somewhat different than for all events—here,
software failures dominate. Table 8 summarizes the distribution of
times to repair for different causes of isolating failures, independent
of the AS involved. As with non-isolating events, power and hard-
ware events have significantly longer durations than those caused
by software failures.

6.5 Time dynamics

Like most complex systems, the CENIC network is continually
evolving. The most significant change, starting in 2008, was to des-
ignate some DC routers as “core” routers and the rest as “access”
routers. This resulted in the decommissioning of 235 links and the
introduction of 432 new links. A natural question, then, is whether
the network qualities examined earlier have changed as well. Fig-
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Figure 14: Annualized link downtime, in seconds, in the DC
network, by year. From top to bottom, the lines show the 75th
percentile, median, and 25th percentile.

ure 14 shows the annualized link downtime in the DC network for
each year in the measurement period. We expected to find a trend in
the basic statistics presented in Section 6.2. In fact, we found that
these performance indicators varied from year to year with no dis-
cernible trend. The year 2006, and to a lesser extent 2008, stands
out for having lower link downtimes than the preceding and fol-
lowing years. The annualized number of failures per link varied
accordingly, with the lowest median of 0.0 in 2006 and the highest
median of 6.0 in 2005.

Investigating further, we find that the distribution of causes stud-
ied in Section 6.3.2 varies as well. Several network-wide events
are responsible for a significant variation in the number of link fail-
ures. Most notably, software-related link failures and configuration
changes were a significant source of link failures in some years and
not others. The three vertical bands in Figure 6 due to network-
wide upgrades and configuration changes (see Section 6.1) had a
significant impact on the median number of failures and median
link downtime in 2005, 2007, and 2009. Longitudinal trends, if
present, are thus dwarfed by major but infrequent events.

7. CONCLUSION

In this paper we present a methodology for inferring and analyz-
ing the link failure history of a network absent dedicated monitor-
ing infrastructure. In particular, we show that existing “low qual-
ity” data sources already widely gathered in production networks—
syslog, router configs and operational mailing lists—can be oppor-
tunistically combined to reconstruct topology, dynamic state and
failure causes. Using this approach we have analyzed five years
of link failure history from the CENIC network, a large California
Internet service provider, and both validated existing understand-
ings about failure (e.g., the prevalence of link flapping) and doc-
umented less appreciated issues (e.g., the large amounts of down-
time attributable to 3rd-party leased line problems). We believe our
overall approach is fairly general and should be straightforward to
adapt to a wide variety of IP networks.
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APPENDIX

While the primary focus of this paper is the CENIC network, we
also applied our methodology to the Internet2 network to establish
a point of comparison [1]. As an added benefit, this allowed us to
assess the effort required to apply our methodology to a different
network. Here we briefly describe the Internet2 network and its
measurement data, how we adapt the methodology for this dataset,
and highlights of the results.

The Internet2 network. The Internet2 network (AS 11537) con-
sists of nine Juniper T640 routers located in nine major US cities.
These routers are interconnected with either 1-Gb/s or 10-Gb/s
Ethernet links. The Internet2 network most closely resembles the
CENIC HPR network, however HPR is more experimental in na-
ture, while the Internet2 network is a production network. Like the
CENIC network, the Internet2 network uses the IS-IS protocol. The
network has been in operation since 1996 and serves 330 member
institutions. We obtained router configuration snapshots and syslog
message logs for the period 01/01/2009 to 12/31/2009. Internet2
operational announcements were also available, but because these
required additional manual labor and were not essential to the anal-
ysis, we did not use them. We also did not use available IS-IS LSA
logs because our methodology does not use this data source (it was
unavailable for the CENIC network).

Adapting the methodology. The main challenge to processing
Internet2 data is dealing with a different data format: the Internet2
network uses Juniper routers while the CENIC network uses Cisco
routers. This required writing about 300 lines of new parsing code.
Brief summary. Table 4 in Section 6.2 shows the number of fail-
ures, downtime, and link time to repair in the Internet2 network. Its
performance is somewhere between the DC network and HPR net-
work with respect to number of failures and annual link downtime,
with a longer time to repair. The Internet2 network also differs from
the CENIC networks in the shape of the distribution of the time be-
tween failures (not shown): the CENIC networks have many short
failures—indicative of flapping—while the Internet2 network has
no such bias (the 25th percentile time between failures in the latter
is over a minute and about 10 seconds in the DC network).
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