
Unexpected Means of Protocol Inference

Justin Ma∗ Kirill Levchenko∗ Christian Kreibich†

Stefan Savage∗ Geoffrey M. Voelker∗

∗Dept. of Computer Science and Engineering †University of Cambridge
University of California, San Diego, USA Computer Laboratory, UK

{jtma,klevchen,savage,voelker}@cs.ucsd.edu christian.kreibich@cl.cam.ac.uk

ABSTRACT
Network managers are inevitably called upon to associate network
traffic with particular applications. Indeed, this operation is crit-
ical for a wide range of management functions ranging from de-
bugging and security to analytics and policy support. Tradition-
ally, managers have relied on application adherence to a well es-
tablished global port mapping: Web traffic on port 80, mail traffic
on port 25 and so on. However, a range of factors — including
firewall port blocking, tunneling, dynamic port allocation, and a
bloom of new distributed applications — has weakened the value
of this approach. We analyze three alternative mechanisms using
statistical and structural content models for automatically identi-
fying traffic that uses the same application-layer protocol, relying
solely on flow content. In this manner, known applications may
be identified regardless of port number, while traffic from one un-
known application will be identified as distinct from another. We
evaluate each mechanism’s classification performance using real-
world traffic traces from multiple sites.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols

General Terms
Algorithms, Measurement, Experimentation

Keywords
Application Signatures, Traffic Classification, Protocol Analysis,
Sequence Analysis, Network Data Mining, Relative Entropy, Sta-
tistical Content Modeling

1. INTRODUCTION
The Internet architecture uses the concept of port numbers to

associate services to end hosts. In the past, the Internet has relied
on the notion of well known ports as the means of identifying which
application-layer protocol a server is using [9]. In recent years,
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however, a number of factors have undermined the accuracy of this
association.

In particular, the widespread adoption of firewalling has made
some ports far easier to use than others (i.e., the commonly “open”
ports such as TCP port 80, used for HTTP traffic, TCP port 25,
used for SMTP, and UDP port 53, used for DNS). Thus, to en-
sure connectivity, there is an increasing incentive to simply use
these ports for arbitrary applications, either directly or using the
native protocol as a tunneling transport layer. Other applications
allocate ports dynamically to eliminate the need for application
layer demultiplexing. For example, streaming media protocols,
such as H.323 and Windows Media, Voice-Over-IP services such
as SIP, and multi-player games like Quake routinely rendezvous on
ports dynamically selected from a large range. The popular Skype
service initializes its listening port randomly at installation, en-
tirely abandoning the notion of well known ports for normal clients
[2]. Finally, some applications use non-standard ports explicitly
to avoid classification. Peer-to-peer (P2P) applications routinely
allow users to change the default port for this purpose, and some
use combinations of tunneling and dynamic port selection to avoid
detection [20]. We can expect this trend of unordered port use to
increase further in the future.

Unfortunately, this transformation has created significant prob-
lems for network managers. Accurate knowledge of the spectrum
of applications found on a network is crucial for accounting and
analysis purposes, and classifying traffic according to application
is also a key building block for validating service differentiation
and security policies. However, classification based on well known
port numbers remains standard practice. While newer tools are be-
ing developed that exploit packet content in their analyses, all of
these require ongoing manual involvement – either to create signa-
tures or to label instances of new protocols.

In this paper we tackle the problem of automatically classifying
network flows according to the application-layer protocols they em-
ploy. We do this relying solely on flow content. While flow-external
features such as packet sizes, header fields, inter-arrival times, or
connection contact patterns can be used to aid classification, we
argue that only the flow content itself can deliver unambiguous in-
formation about the application-layer protocols involved. We make
the following contributions:

• We propose a generic architectural and mathematical frame-
work for unsupervised protocol inference.

• We introduce three classification techniques for capturing sta-
tistical and structural aspects of messages exchanged in a
protocol: product distributions, Markov processes, and com-
mon substring graphs.

• We compare the performance of these classifiers using real-



world traffic traces in two use settings: semi-supervised post-
hoc classification and new protocol discovery, highlighting
the individual strengths and weaknesses of the three tech-
niques.

We believe that the most significant impact of our work will be
relieving network analysts from the need to classify unknown pro-
tocols or new protocol variants. We show that it is possible to au-
tomatically group protocols without a priori knowledge. Thus, la-
beling a single protocol instance is sufficient to classify all such
traffic. In effect, we have substituted the painful process of manual
flow analysis and classifier construction with the far easier task of
recognizing a protocol instance.

The remainder of this paper is structured as follows. We first
explore the problem space and position our work in Section 2. We
introduce protocol inference in Section 3 and show how our three
classifiers fit in this problem space in Sections 4 and 5. We have
implemented the classifiers in a single framework, and describe this
framework in Section 6. We present our evaluation in Section 7.
We discuss our approach and results in Section 8 and conclude in
Section 9.

2. RELATION TO EXISTING WORK
Traditionally, network-level application analysis has depended

heavily on identification via well known ports [4, 7, 18]. New ap-
plication patterns, particularly P2P use, undermined this assump-
tion, leading measurement researchers to seek workarounds. One
class of solutions focuses on deeper structural analyses of com-
munication patterns, including the graph structure between IP ad-
dresses, protocols and port numbers over time, and the distribution
of packet sizes and inter-arrival times across connections [3, 11, 12,
15, 23]. These approaches depend on the uniqueness of specific
communication structures within a particular application. While
this approach has been shown to work well for separate application
classes (e.g., Mail vs. P2P), it is most likely unable to distinguish
between application instances (e.g., one P2P system vs. another).

Another line of research has focused on payload-based classifi-
cation. Early efforts focused on using hand-crafted string classifiers
to overcome the limitations of port-based classification for various
classes of applications [6, 10, 20]. Thus, the Jazz P2P protocol
could be recognized by scanning for “X-Kazaa-*” in transport-
layer flows. Moore and Papagiannaki have shown how to further
augment such signatures with causal inference to improve classifi-
cation [14].

However, the manual nature of this approach presents several
drawbacks. First, it presupposes that network managers know what
protocols they are looking for. In fact, new application protocols
come into existence at an alarming rate and many network man-
agers would like to be alerted that there is “a new popular applica-
tion on the block” even if they have no prior experience with it. Sec-
ond, even for well known protocols, constructing good signatures
is a delicate job, requiring expressions that have a high probabil-
ity of matching the application and few false matches to instances
of other protocols. The latter of these problems has recently been
addressed by Haffner et al. [8], who automate the construction of
protocol signatures by employing a supervised machine learning
approach on traffic containing known instances of each protocol.
Their results are quite good, frequently approaching the perfor-
mance of good manual signatures.

Our work builds further upon this approach by removing the re-
quirement that the protocols be known in advance. By simply us-
ing raw network data, our unsupervised algorithms classify traffic
into distinct protocols based on correlations between their packet

content. Thus, using no a priori information we are able to create
classifiers that can then distinguish between protocols. In this sense
(i.e., of being unsupervised), our approach is similar in spirit to that
of Bernaille et al. [3], who suggest using the sizes of the first six
packets in a session as the protocol signature.

3. PROTOCOL INFERENCE
Below we define the problem background and basic terminol-

ogy and then describe the foundation of our approach to protocol
inference, namely statistical protocol modeling.

3.1 Background
The basic unit of communication between processes on Internet

hosts, be it a large TCP connection or a single UDP packet, is a ses-
sion. A session is a pair of flows, each a byte sequence consisting
of the application-layer data sent by the initiator to the responder
and the data sent by the responder to the initiator. Each session is
identified by the 5-tuple consisting of initiator address, initiator port
number, responder address, responder port number, and IP proto-
col number. Flows are identified by the same 5-tuple and the flow
direction, either from the initiator to the responder or from the re-
sponder to the initiator. We emphasize that a session consists only
of the data exchanged between two ports on a pair of hosts during
the session’s lifetime; it does not include packet-level information
such as inter-arrival time, frame size, or header fields.

All sessions occur with respect to some application protocol, or
simply protocol, which defines how communicating processes in-
terpret the session data. By observing the network we can identify
communication sessions, but we cannot directly learn the session
protocol. For this to be possible, sessions of different protocols
must “look different” from each other. To formalize what this prop-
erty means, we need the concept of a protocol model.

3.2 Protocol Models
Protocol inference relies, explicitly or implicitly, on a protocol

model: a set of premises about how a protocol manifests itself in
a session (i.e., a pair of flows, one from the initiator to the respon-
der and one from the responder to the initiator). From the network
view, a protocol is simply a distribution on sessions; that is, a pro-
tocol is described by the likelihood of each pair of flows.

To make the problem tractable, we restrict ourselves to finite dis-
tributions by bounding the length of a session. In other words:

Premise 1. A protocol is a distribution on sessions of length at
most n.

Another way to think of Premise 1 is that we are assuming that the
protocol to which a session belongs can be inferred from the first n
bytes of a session; in our experiments, we fix n to be 64 bytes as
in [8].

Unfortunately it is infeasible to work with n-byte session distri-
butions as these consist of 2562·n possible pairs of flows. To be
useful, a protocol model must be simultaneously (1) sufficiently
expressive to capture real-world protocols, and (2) compact so that
it can be learned from a small number of samples and described
efficiently.

Toward this end, we treat distributions on sessions as a pair of
distributions on flows, rather than a distribution on pairs of flows:

Premise 2. A protocol is a pair of distributions on flows (one from
the initiator to the responder and one from the responder to the ini-
tiator).



What we gain from Premise 2 is a drastic reduction on complex-
ity, from 2562·n to 2 · 256n values, to exactly describe a protocol.
Unfortunately this is still not enough to satisfy requirement (2), and
therefore it is necessary to further restrict the class of distributions
used by our classification models. For the statistical models (Sec-
tion 4), this class is given explicitly; for Common Substring Graphs
(Section 5), this class is implicit in the data structure.

3.3 A priori Information
The problem of protocol inference may be qualified by the type

of information about protocols available a priori. We recognize
three such variants of the problem:

Fully described. In fully described protocol inference, each proto-
col is given as a (possibly probabilistic) grammar. Identify-
ing the protocol used by a session is a matter of determining
which known description best matches the session.

Fully correlated. In fully correlated protocol inference, each pro-
tocol is assumed to be defined by some (possibly probabilis-
tic) class of grammars, but the exact grammar is unknown.
The grammar of each protocol must be learned from a set of
session instances labeled with the protocol.

Partially correlated. In partially correlated protocol inference, a
protocol is also assumed to be defined by some (possibly
probabilistic) class of grammars, but the exact grammar is
unknown. Unlike the fully trained case, however, only lim-
ited information is available about which sessions have a
common protocol.

The focus of this work is on partially correlated protocol infer-
ence, meaning that the training data consist of a set of unlabeled
sessions with additional information of the form “Session A and
Session B are using the same protocol.” This auxiliary information
is partial because not all sessions using the same protocol are iden-
tified as such, and only positive equivalences are given. In Section 6
we describe how such training data may be obtained using mild
real-world assumptions about protocol persistence on host ports.
Since all given correlations are positive (i.e., information that two
sessions share the same protocol) but partial, it is impossible to in-
fer any negative correlation between sessions through the absence
of positive correlation (unlike the fully correlated case). In the ab-
sence of negative correlation, there may be several hypotheses that
are consistent with the training data, ranging from all absent corre-
lations being negative (maximum number of distinct protocols) to
all absent correlations being positive (a single protocol for all ses-
sions). We describe how to distinguish between these two cases, as
well as the cases in between, next.

3.4 Protocol Construction
Constructing a protocol description requires some session in-

stances of each protocol extracted from the training data. The cor-
relation information in the training data allows us to group sessions
into protocol equivalence groups consisting of sessions known to
use the same protocol. We then construct a tentative protocol de-
scription, called a cell, in accordance with the protocol model. As
multiple cells may describe the same protocol, we cluster similar
cells and merge them to create a more stable protocol description.
The resulting cells define distinct protocols, and are used in the
second phase to classify new sessions. To implement the above
algorithm, a cell must support the following three operations.

Construct. Given a set of sessions of a protocol equivalence group,
construct a protocol description in accordance with the pro-
tocol model.

Compare. Given two cells, determine their similarity, namely the
degree to which we believe them to represent the same pro-
tocol.

Merge. Combine two cells believed to represent the same proto-
col. This operation should be the equivalent of constructing
a new cell from the original protocol equivalence groups of
the merged cells.

Relying on the above operations, we can describe construction
more rigorously.

1. Combine training data sessions into equivalence groups based
on the given correlations. Each group consists of sessions us-
ing the same protocol.

2. Construct a cell from each equivalence group.

3. Cluster similar cells together based on the result of the Com-
pare operation between pairs of cells.

4. Merge clustered cells into a single cell.

Steps 1, 2, and 4 are fairly straightforward in view of the four
cell operations described earlier. Step 3, however, requires further
elaboration. The objective of Step 3 is to correctly combine cells
representing the same protocol into one. This objective requires
that cells of the same protocol be “similar” and cells of different
protocols “dissimilar.” This premise is central to our work, so we
state it formally.

Premise 3. For some size threshold σ and similarity threshold τ ,
cells constructed from protocol equivalence groups containing at
least σ sessions must have similarity greater than τ if the underly-
ing protocols are the same, and less than τ if the underlying proto-
cols are different.

We base our protocol inference algorithms on this premise with
parameters σ and τ determined empirically. Note that we do not
claim that Premise 3 is always true in the real world, only that it
is a useful assumption for designing protocol inference algorithms.
Each of our three protocol models (Sections 4 and 5) defines its
own similarity measure.

3.5 Cells as Classifiers
Because in our model protocols are described by distributions,

we can classify unknown sessions by matching them with the max-
imum-likelihood distribution (cell). This is captured by the follow-
ing cell operation:

Score. Given a cell and a session, determine the likelihood that the
session is using the protocol described by the cell.

We use this as the basis for our classification experiment pre-
sented in Section 7.

4. STATISTICAL MODELS
In this section we describe our first two protocol models. Premises

1 and 2 tell us that a protocol may be viewed as a pair of distribu-
tions on byte strings (flows) of length n. With this in mind, it is
natural to view a protocol model entirely in a statistical setting. Be-
fore recasting cell operations in statistical terms, we introduce the
concept of relative entropy and likelihood with respect to a distri-
bution.



Definition. Let P and Q be two distributions1 on some finite set
U . The relative entropy between P and Q is

D(P |Q) =
X
x∈U

P (x) log2

P (x)

Q(x)
.

Relative entropy is a measure of “dissimilarity” between two dis-
tributions. However, it is not a metric in the strict mathematical
sense. For more information on relative entropy and some of its
interpretations, see for example the text by Cover and Thomas [5].
In this paper, we use symmetric relative entropy, defined as

D(P, Q) = D(P |Q) + D(Q|P )

=
X
x∈U

(P (x)−Q(x)) log2

P (x)

Q(x)
.

There are other, semantically more natural ways of defining the
distance between two distributions. However, symmetric relative
entropy is the easiest measure to compute for the special distribu-
tions defined by our two statistical protocol models, and has pro-
vided excellent results in practice.

We can now describe cell operations defined in Section 3 in sta-
tistical terms. A cell consists of a pair of distributions (

⇀

P,
↼

P ), the
first representing the flow distribution from initiators to responders
and the second the flow distribution from responders to initiators
within the protocol.

Construct. Given a set of sessions of a protocol equivalence group,
create a cell (

⇀

P,
↼

P ) where
⇀

P is the distribution of flows from
initiators to responders in the set of sessions and

↼

P is the dis-
tribution of flows from responders to initiators in the set of
sessions.

Compare. Given two cells (
⇀

P,
↼

P ) and (
⇀

Q,
↼

Q), their distance is
D(

⇀

P,
⇀

Q) + D(
↼

P,
↼

Q). Their similarity is simply the negation
of their distance.

Merge. Given two cells as two pairs of distributions, the result of
the Merge operation is the weighted sum of the distributions,
equivalent to the result of a Construct operation on the pro-
tocol equivalence groups from which the original cells were
constructed.

Score. Given a cell (
⇀

P,
↼

P ) and a session (
⇀
x,

↼
x), the score is the

probability that both flows of the session are drawn randomly
from the pair of distributions defined by the cell. This is
⇀

P (
⇀
x) ·

↼

P (
↼
x).

Unfortunately, explicitly representing a pair of flow distributions
is not feasible (each distribution consists of 256n points!), nor is it
possible to reasonably learn such distributions approximately with
a polynomial number of samples. Instead, we compactly represent
flow distributions by introducing independence assumptions into
our models for an exponential reduction in space. Next we describe
two approaches, one that represents flow distributions as a product
of n independent byte distributions and a second that represents
them as being generated by a Markov process.

4.1 Product Distribution Model
The product distribution model treats each n-byte flow distribu-

tion as a product of n independent byte distributions. Each byte

1P being a distribution on a finite set U means that P (x) ≥ 0 and
the sum of P (x) over all x in U is 1.

offset in a flow is represented by its own byte distribution that de-
scribes the distribution of bytes at that offset in the flow. For this
reason, we expect this model to be successful at capturing binary
protocols, where distinguishing features appear at fixed offsets. Be-
ing a product of byte distributions means that each byte offset is
treated independently, as the following example illustrates.

Product Distribution Example. For the sake of example, let n =
4 and consider the distribution on flows from the initiator to respon-
der for the HTTP protocol. If the byte strings “HEAD” and “POST”
have equal probability, then the strings “HOST” and “HEAT” must
occur with the same probability; clearly this is not generally the
case. Fortunately, this is only a problem if if the strings “HOST”
and “HEAT” occur in another protocol, which would cause it to be
confused with HTTP.

4.1.1 Construct
Each individual byte distribution is set in accordance with the

distribution of bytes at that offset. For example, byte distribution
i for the initiator to responder direction would represent the distri-
bution of the i-th byte of the initiator to responder flow across the
sessions in the protocol equivalence group.

4.1.2 Compare
The relative entropy of two product distributions P1 × P2 and

Q1×Q2 is just the sum of the individual relative entropies; that is,

D(P1×P2 |Q1×Q2) = D(P1|Q2) + D(P2|Q2).

In fact, this property is why the relative entropy of two cells, which
consist of two independent distributions on flows per Premise 2, is
just the sum of each direction’s relative entropy.

4.1.3 Merge
The merge operation simply returns a weighted average of the

underlying distributions. That is, if Pi is the i-th byte distribution
in one flow direction of the first cell and Qi is the i-th byte distribu-
tion in the same flow direction of the second cell, then the resulting
cell’s i-th distribution in that flow direction is λ Pi + (1 − λ)Qi,
where λ is the number of sessions in the protocol equivalence group
from which the first cell was constructed divided by the total num-
ber of sessions in the protocol equivalence groups of the first and
second cells.

4.1.4 Score
Let (

⇀

P0×· · ·×
⇀

Pn−1,
↼

P0×· · ·×
↼

Pn−1) be a product distribution
cell and (

⇀
x,

↼
x) be a session. Then the probability of this session

under the distribution defined by the cell is

n−1Y
i=0

⇀

Pi(
⇀
xi) ·

n−1Y
i=0

↼

Pi(
↼
xi).

4.2 Markov process Model
Like the product distribution model, the Markov process model

relies on introducing independence between bytes to reduce the size
of the distribution. The Markov process we have in mind is best de-
scribed as a random walk on the following complete weighted di-
rected graph. The nodes of the graph are labeled with unique byte
values, 256 in all. Each edge is weighted with a transition proba-
bility such that, for any node, the sum of all its out-edge weights is
1. The random walk starts at a node chosen according to an initial
distribution π. The next node on the walk is chosen according to
the weight of the edge from the current node to its neighbors, that
is, according to the transition probability. These transition proba-
bilities are given by a transition probability matrix P whose entry
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1 1 1

1 1 1
0 0 0

0 0 0

1

1

Figure 1: A Markov process for generating the strings “HEAD”
and “POST” with each string chosen according to the probabil-
ity of H and P in the initial distribution. Irrelevant nodes have
been omitted for clarity.

H E A D
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Figure 2: Attempting to add the string “GET ” to a Markov
process for generating the strings “HEAD” and “POST.”

Puv is the weight of the edge (u, v). The walk continues until n
nodes (counting the starting node) are visited. The flow byte string
resulting from the walk consists of the names (i.e., byte values) of
the nodes visited, including self-loops.

In general, for a fixed sequence of adjacent nodes (corresponding
to a sequence of bytes), there may be paths of different lengths
ending with this sequence of nodes. This means that the process
can capture distinguishing strings that are not tied to a fixed offset.
As such, the Markov process model may be well-suited for text
protocols.

The probability distribution on length-n flows defined by the
above Markov process is described by the initial distribution π,
which consists of 256 values, and the transition probability ma-
trix P , which consists of 2562 values. To better understand this
distribution, consider the example used for the product distribution
model.

Markov process Example. Again, for the sake of example, let
n = 4 and consider the distribution on flows from the initiator to
responder for the HTTP protocol. Let the byte string “HEAD” occur
with probability p and the byte string “POST” with probability q.
The corresponding graph is shown in Figure 1, where the initial
distribution is π(H) = p, π(P) = q, and π(u) = 0 for u 6= H, P.

It seems we have avoided the problem we had with the prod-
uct distribution. However, if we try to add the string “GET ” we
quickly run into problems (see Figure 2). Now the byte strings
“GEAD” and “GET ” are also generated by our process!

4.2.1 Construct
The initial distribution π for some flow direction is constructed

in the straightforward manner by setting it to be the distribution
on the first byte of all the flows (in the appropriate flow direction).
The transition probabilities are based on the observed transition fre-
quencies over all adjacent byte pairs in the flows (again, in the ap-

propriate direction). That is, Puv is the number of times byte u is
followed by byte v divided by the number of times byte u appears
at offsets 0 to n− 2.

4.2.2 Compare
The relative entropy of two Markov process distributions is some-

what involved. For brevity, we omit the proof of the following
fact. Let π and ρ be the initial distribution functions of two Markov
processes and let P and Q be corresponding transition probability
functions. The relative entropy of length-n byte strings generated
according to these processes isX

u

π(u) log2

π(u)

ρ(u)
+

X
u,v

ξ(u) · P (u, v) log2

P (u, v)

Q(u, v)
,

where

ξ(u) = π(u) +

n−2X
i=1

X
t1..ti

π(t1) ·
iY

j=1

P (tj−1, tj) · P (ti, u).

4.2.3 Merge
Just as in the case of the product distribution model, the merge

operation involves a convex combination of the initial distributions
and the transition probability matrix of the two sessions in each of
the two directions.

4.2.4 Score
The probability of a string x0, . . . , xn−1, according to some

Markov process distribution given by initial distribution π and tran-
sition probability matrix P , is given by a straightforward simulation
of the random walk, taking the product of the probability according
to the initial distribution and the edge weights encountered along
the walk:

π(x0) ·
n−1Y
i=1

P (xi−1, xi).

5. COMMON SUBSTRING GRAPHS
We now introduce common substring graphs (CSGs). This rep-

resentation differs from the previous two approaches in that it cap-
tures much more structural information about the flows from which
it is built. In particular, CSGs:

• are not based on a fixed token length but rather use longest
common subsequences between flows,

• capture all of the sequences in which common substrings oc-
cur, including their offsets in the flows,

• ignore all byte sequences that share no commonalities with
other flows,

• track the frequency with which individual substrings, as well
as sequences thereof, occur.

A common subsequence is a sequence of common substrings be-
tween two strings; a longest common subsequence (LCS) is the
common subsequence of maximum cumulative length. We denote
the LCS between two strings s1 and s2 as L(s1, s2) and its cumu-
lative length as |L(s1, s2)|.

The intuition for CSGs is as follows: if multiple flows carry-
ing the same protocol exhibit common substrings, comparing many
such flows will most frequently yield those substrings that are most
common in the protocol. By using LCS algorithms, not only can we



Figure 3: Constructing a CSG: introduction of a new path with
subsequent merging of nodes. (a) A CSG with a single, three-
node path. (b) An LCS (in white) is inserted as a new path.
(c) New node A already exists and is therefore merged with the
existing node. (d) New node D overlaps partially with existing
nodes B and C. (e) Nodes B, C, and D are split along the
overlap boundaries. (f) Identically labeled nodes resulting from
the splits are merged. The insertion is complete.

identify what these commonalities are, but we also expose their se-
quence and location in the flows. By furthermore comparing many
of the resulting LCSs and combining redundant parts in them, fre-
quency patterns in substrings and LCSs will emerge that are suit-
able for classification.

We will now formalize this intuition. A CSG is a directed graph
G = (N, A, P, ns, ne) in which the nodes N are labeled and the
set of arcs A can contain multiple instances between the same pair
of nodes: a CSG is a labeled multidigraph. P is the set of paths
in the graph. We define a path p = (n1, ..., ni) as the sequence of
nodes starting from n1 and ending in ni in the graph, connected by
arcs. P (n) is the number of paths running through a node n. (If
context does not make it clear which graph is being referred to, we
will use subscripts to indicate membership, as in NG, PG, etc.) A
CSG has fixed start and end nodes ns and ne. Each path originates
from ns and terminates in ne, i.e., PG(ns) = PG(ne) = |PG|.
We ignore these nodes for all other purposes; for example, when
we speak of a path with a single node on it, we mean a path orig-
inating at the start node, visiting the single node, and terminating
at the end node. Along the path, a single node can occur multi-
ple times; that is, the path may loop. The node labels correspond
to common substrings between different flows, and paths represent
the sequences of such common substrings that have been observed
between flows. CSGs grow at the granularity of new paths being
inserted. For ease of explanation we liken nodes with their labels.
Thus for example when the say that a node has overlap with an-
other node, we mean that their labels overlap, and L(n1, n2) is the
LCS of the labels of nodes n1 and n2. |ni| denotes the length of

Figure 4: Scoring a flow against a CSG. The labels of nodes
A, B, and C occur in the flow at the bottom. The shaded
area in the graph indicates all paths considered for the scor-
ing function. While the path containing A-C would constitute
the largest overlap with the flow, it is not considered because A
and C occur in opposite order in the flow. The best overlap is
with the path containing A-B: the final score is (a + b)/f .

the label of node ni. Labels are unique, i.e., there is only a single
node with a given label at any one time.

We make extensive use of a variant of the Smith-Waterman lo-
cal alignment algorithm for subsequence computation [21]. Given
two input strings, the algorithm returns the longest common sub-
sequence of the two strings together with the offsets into the two
strings at which the commonalities occur. Our software implemen-
tation of Smith-Waterman requires O(|s1| · |s2|) space and time
given input strings s1 and s2. Significant speed-ups are possible by
leveraging FPGAs or GPUs [16, 22]. We use linear gap penalty
with affine alignment scoring and ignore the possibility of byte
substitutions, i.e., we compute only exact common subsequences
interleaved with gap regions.

To fulfill the requirements of a cell (
⇀

P,
↼

P ), we put two CSGs
into each cell, one per flow direction. We will now describe the
realization of the four cell methods in CSGs.

5.1 Construct
Insertion of a flow into a CSG works as follows. A flow is in-

serted as a new, single-node path. If there are no other paths in the
CSG, this completes the insertion process. Otherwise, we compute
the LCSs between the flow and the labels of the existing nodes.
Where nodes are identical to a common substring, they are merged
into a single node carrying all the merged nodes’ paths. Where
nodes overlap partially, they are split into neighboring nodes and
the new, identical nodes are merged. We only split nodes at those
offsets that do not cause the creation of labels shorter than a mini-
mum allowable string length.

For purposes of analyzing protocol-specific aspects of the flows
that are inserted into a graph, it is beneficial to differentiate between
a new flow and the commonalities it has with the existing nodes in
a graph. We therefore have implemented a slightly different but
functionally equivalent insertion strategy that uses flow pools: a
new flow is compared against the flows in the pool, and LCSs are
extracted in the process. Instead of the flow itself we then insert
the LCSs into the CSG as a path in which each node corresponds
to a substring in the LCS. Figure 3 shows the node merge and split
processes during insertion of an LCS.

Since many flows will be inserted into a CSG, state management



becomes an issue. We limit the number of nodes that a CSG can
grow to using a two-stage scheme in combination with monitoring
node use frequency through a least recently used list. A hard limit
imposes an absolute maximum number of nodes in the CSG. If
more nodes would exist in the graph than the hard limit allows,
least recently used nodes are removed until the limit is obeyed. To
reduce the risk of evicting nodes prematurely, we use an additional,
smaller soft limit, exceeding of which leads to node removal only
if the affected nodes are not important to the graph’s structure. To
quantify the importance of a node n to its graph G we define as the
weight of a node the ratio of the number of paths that are running
through the node to the total number of paths in the graph:

WG(n) =
PG(n)

|PG|

We say a node is heavy when this fraction is close to 1. As we
will show in Section 7.1, only a small number of nodes in a CSG
loaded with network flows is heavy. Removal of a node leads to a
change of the node sequence of all paths going through the node;
redundant paths may now exist. We avoid those at all times by
enforcing a uniqueness invariant: no two paths have the same se-
quence of nodes at any one time. Where duplicate paths occur, they
are suppressed and a per-path redundancy counter is incremented.
We do not currently limit the number of different paths in the graph
because it has not become an issue in practice. Should path elimi-
nation become necessary, an eviction scheme similar to the one for
nodes could be implemented.

5.2 Compare
To compare two CSGs, a graph similarity measure is needed.

The measure we have implemented is a variant of feature-based
graph distances [19]: the two features we use for the computation
are the weights and labels of the graph nodes. Our intuition is that
for two CSGs to be highly similar, they must have nodes that ex-
hibit high similarity in their labeling while at the same time having
comparable weight. We have decided against the use of path node
sequencing as a source of similarity information for performance
reasons: the number of nodes in a graph is tightly controlled, while
we currently do not enforce a limit on the number of paths.

When comparing two CSGs G and H , we do a pairwise com-
parison (ni, nj) ∈ NG ×NH , finding for every node ni ∈ NG

the node nj ∈ NH that provides the largest label overlap, i.e., for
which |L(ni, nj)| is maximized. Let the LCS yielding ni’s maxi-
mum overlap with the nodes of NH be denoted as Lmax(ni, NH).
The score contributed by node ni to the similarity is then the ratio
of the best overlap size to the node label’s total length, multiplied
by PG(ni) to factor in ni’s importance. The scores of all nodes are
summarized and normalized, resulting in our similarity measure
S(G, H) between two graphs G and H:

S(G, H) =

X
ni∈NG

PG(ni)
|Lmax(ni, NH)|

|ni|X
ni∈NG

PG(ni)

5.3 Merge
The way the merge operation proceeds depends on whether the

CSG that is being merged into another one needs to remain intact
or not. If it does, then merging a CSG G into H is done on a path-
by-path basis by duplicating each path p ∈ PG, inserting it as a
new LCS into H , and copying over the redundancy count. If G is
no longer required, we can just unhook all paths from the start and

end nodes, re-hook them into H , and make a single pass over G’s
old nodes to merge them into H .

5.4 Score
To be able to classify flows given a set of CSGs loaded with

traffic, one needs a method to determine the similarity between an
arbitrary flow and a CSG as a numerical value in [0, 1]. Intuitively
we do this by trying to overlay the flow into the CSG as well as
possible, using existing paths. More precisely, we first scan the
flow for occurrences of each CSG node’s label in the flow, keeping
track of the nodes that matched and the locations of any matches.
The union of paths going through the matched nodes is a candidate
set of paths among which we then find the one that has the largest
number of matched nodes in the same order in which they occurred
in the input flow. By carefully numbering each path’s links we can
do this without actually walking down each candidate path. Note
that this gives us the exact sequence, location, and extent of all sub-
strings in the flow that are typical to the traffic the CSG has been
loaded with—when using a single protocol’s traffic, we can expect
to get just the protocol-intrinsic strings “highlighted” in the flow.
Finally, to get a numerical outcome we sum up the total length
of the matching nodes’ labels on that path and divide by the flow
length, yielding 1 for perfect overlap and 0 for no similarity. Fig-
ure 4 describes the process.

6. CLASSIFICATION FRAMEWORK
In this section we present a cell-based framework for classifying

traffic based on the notions and premises of constructing protocol
models as presented in Section 3. Our purpose here is to describe
in concrete terms how to implement a classification system based
on our models. Moreover, the modularity of this framework al-
lows us to evaluate different protocol models (e.g., product distri-
butions, Markov Processes, and Common Substring Graphs) while
allowing them to share common components such as surrounding
cell construction, clustering, and matching implementations. Fig-
ure 5 summarizes the overall operation of our protocol description
construction algorithm, from training cells starting with processing
input sessions to merging cell clusters.

Equivalence Groups. We begin with the first step of assem-
bling sessions into equivalence groups to construct cells, as illus-
trated in Figure 5a. For our implementation we assume that all
communication sessions sharing the same service key belong to the
same protocol. Here, we define a service key as the 3-tuple (respon-
der address, responder port, and transport protocol). We believe
this key produces a sensible equivalence group because hosts typi-
cally communicate with servers at specified address-port combina-
tions. In our experience, the granularity of this equivalence group
is coarse enough to admit enough sessions in each group to form
statistically significant models. Moreover, it is fine enough so that
it does not approach the generality of more coarse (and potentially
more inaccurate) equivalences such as treating all sessions destined
for the same port as the same protocol—the very assumption that
we argue is losing traction with today’s protocols.

Augmenting Equivalence Groups with Contact History. We
augment service key equivalence groups by making a real-world as-
sumption about the protocol persistence between an initiating host
and a responding port. In particular, we assume that within a short
time period, if an initiating host contacts multiple responders at the
same responder port, then the cells corresponding to those service
keys are using the same protocol. Thus, we keep a contact history
table that maps initiator-address/responder-port pairs to cells, and
merge under the following circumstance: whenever host A contacts
the responder at B : p, and contacts another responder at C : p,



Figure 5: The Cell framework. (a) Flows are mapped to flow keys, stored in a hash table. Each flow key points to a cell; the cells are
only lightly loaded and have not yet been promoted. (b) More flows have been added, multiple flow keys now point to the same cells.
The first cells have been promoted for merging. (c) Cells have begun merging.

then we merge the cells corresponding to service keys B : p and
C : p. This approach is partly inspired by previous work such as
BLINC [12], although our application of external sources of equiv-
alence information is relatively mild and not used during the clas-
sification process.

Cell Promotion, Comparison, and Merging. After insert-
ing sessions into their respective cells, we need to promote them in
preparation for clustering (Figure 5b). However, observing a single
session within a cell is insufficient to accurately infer the underly-
ing protocol. Thus, we find it useful to allow the cell to receive
sufficient traffic to construct a reasonable model. For our imple-
mentation, we set the promotion threshold to a minimum of 500
flows (not sessions) per cell.

Finally, we perform clustering on the cells with the goal of form-
ing compact descriptions of the observed protocols. We currently
perform an agglomerative (bottom-up) clustering to construct a hi-
erarchy of cells, and build larger cells by iteratively merging the
closest pair of cells according to the classifier Compare operation.

Summary. The Cell framework is a realization of the proto-
col inference approach described earlier, providing a modular plat-
form for evaluating various aspects of the traffic classification prob-
lem. Cell construction could benefit from more elaborate schemes
of inferring equivalence groups. Moreover, the framework would
provide us the flexibility to experiment with a variety of machine-
learning approaches outside of agglomerative clustering to merge
cells.

In the context of this paper, the framework allows us to flexibly
evaluate the viability of product distributions, Markov processes,
and Common Substring Graphs as protocol models independently
of the schema for constructing equivalence groups or the clustering
algorithms used after construction.

7. EVALUATION
We implemented the cluster construction and flow matching com-

ponents of the Cell framework in C++ using 3800 lines of code.
The CSGs were simultaneously developed in the Cell framework
and the Bro IDS [17] to allow for more flexible testing of input
traffic and because we anticipate using CSGs for other uses than
traffic classification. We ran all experiments on a dual Opteron 250
with 8 GB RAM running Linux 2.6.

We used three traces for our experiments, each representing dif-
ferent network locations and traffic mixes. The “Cambridge” trace
includes all traffic of the Computer Laboratory at the University
of Cambridge, UK, over a 24-hour period on November 23, 2003.
“Wireless” is a five-day trace of all traffic on the wireless network
in the UCSD Computer Science and Engineering building starting
on April 17, 2006. Finally, the “Departmental” trace collects over
an hour of traffic from a UCSD department backbone switch at
noon on May 23, 2006.

To obtain session data out of raw packets, we reassembled TCP
flows and concatenated UDP datagrams using Bro. Session life-
times are well defined for TCP through its various timeouts; for
UDP we used a timeout of 10 seconds. We chose this value for
two reasons: first, it is the default setting that Bro uses, and second,
smaller timeouts translate into more sessions to analyze. Note that
erring on the early side only makes the classification task harder
since we will pick up a mid-stream session as a novel one. Next
we filtered out all flows containing no payload (essentially failed
TCP handshakes) because we cannot classify them using a content-
based flow classifier.

We then used Ethereal 0.10.14 [1] as an oracle to provide a proto-
col label for each of the flows in the trace. Additionally, we filtered
any flows that Ethereal could not identify because we want to com-
pare our classifications to a ground truth provided by an oracle.
Specifically, whenever Ethereal labeled a flow generically as just
“TCP” or “UDP,” we filtered it out of the trace. From the combined
traces, flows labeled “TCP” comprised 1-6% over the three traces.
Flows labeled “UDP” comprised 5% of the Cambridge traffic, 34%
of the Wireless traffic, and 14% of the Departmental traffic. We
attempt to classify excluded flows for the Departmental trace in
Section 7.4.

After preprocessing, we stored the first k bytes of each reassem-
bled flow in a trace ready for consumption by the Cell classifier.
For this paper we set k = 64, as was done by Haffner et al. [8].

7.1 CSG Parameterization
CSGs have four parameters: soft/hard maximum node limits,

eviction weight threshold, and minimum string length. We used
a soft/hard node limit of 200/500 nodes, a minimum weight thresh-
old of 10%, and 4-byte minimum string length. To validate that
these are reasonable settings, we selected four major TCP protocols
(FTP, SMTP, HTTP, HTTPS) and four UDP protocols (DNS, NTP,
NetBIOS Name service, and SrvLoc). For each of them, picked a
destination service hosting at least 1000 sessions. We then manu-
ally inspected the services’ traffic to ensure we did indeed deal with
the intended protocol. In three separate runs with minimum string
lengths of 2-4 bytes, eight CSGs were loaded with each session’s
first message while we recorded node growth and usage. We have
found that in no case was the hard limit insufficient and the soft
limit was violated only by HTTP and NTP. We also measured the
frequency distribution of each CSG’s nodes after 1000 insertions.
In all CSGs except for the FTP one, at least 75% of the 200 nodes
carry only a single path. The FTP CSG only grew to 11 nodes in
the 2-byte run, explaining the cruder distribution. Minimum string
length seems to matter little. Thus, our CSG settings seem tolerant
enough not to hinder natural graph evolution.

7.2 Classification Experiment
In our classification experiment, we examine how effective our



Cambridge Wireless Departmental
total learned unlearned total learned unlearned total learned unlearned

Product 1.68% 0.50% 1.18% 1.78% 1.28% 0.51% 4.15% 3.03% 1.12%
Markov 3.33% 2.15% 1.18% 4.26% 3.75% 0.51% 9.97% 8.85% 1.12%
CSG 2.08% 0.90% 1.18% 4.72% 4.21% 0.51% 6.19% 5.06% 1.12%

Table 1: Misclassification for the three protocol models over the Cambridge, Wireless, and Departmental traces.

Protocol Product Markov CSG
% Err.% Prec.% Rec.% Err.% Prec.% Rec.% Err.% Prec.% Rec.%

À DNS 26.28 0.09 99.94 99.78 0.61 97.89 99.97 0.45 98.82 99.52
HTTP 12.24 0.07 100.00 99.99 0.09 100.00 99.98 0.74 99.91 99.99
NBNS 44.89 0.35 100.00 99.25 0.40 99.82 99.31 0.17 99.71 99.99

NTP 5.29 0.00 100.00 100.00 1.19 99.96 77.84 0.25 99.83 95.65
SSH 0.22 0.14 68.39 100.00 1.10 17.39 100.00 0.05 99.22 100.00

Á DNS 23.14 0.04 99.88 99.93 0.29 98.88 99.99 1.97 94.37 97.59
HTTP 0.67 0.27 76.02 97.54 0.09 90.68 99.93 0.22 76.87 99.38
NBNS 6.94 0.00 100.00 100.00 1.96 78.06 100.00 0.81 90.34 99.97

NTP 0.57 0.01 99.95 99.72 0.51 100.00 11.29 0.40 86.65 48.76
SSH 0.44 0.17 75.28 100.00 0.00 99.63 100.00 0.00 99.99 100.00

Â DNS 54.78 0.26 99.90 99.95 1.90 97.13 99.98 1.43 98.47 99.15
HTTP 9.17 0.38 97.46 99.62 0.33 97.21 99.72 1.21 95.14 97.19
NBNS 7.03 0.01 100.00 99.81 1.25 85.66 99.81 0.33 96.04 99.45

NTP 6.70 0.02 99.99 99.94 5.39 78.07 29.61 0.36 99.82 96.58
SSH 0.08 0.08 68.81 81.82 0.09 0.00 0.00 0.03 95.40 82.01

Table 2: Error, precision and recall rates of select protocols. The second column is the proportion
of the protocol in the entire trace. Trace key: À = Cambridge (226,046 flows), Á = Wireless
(403,752 flows), Â = Departmental (1,064,844 flows).

three models (product distribution, Markov process, and CSG) are
at classifying flows in a trace. We proceed in two phases. The first
clustering phase accepts a training trace for training and produces
a definitive set of clusters for describing protocols in the trace. The
second classification phase then labels the flows in a testing trace
by associating them with one of the definitive clusters produced
in the first phase. The purpose of this experiment is to simulate
the process by which a network administrator may use our system
— by first building a set of clusters to describe distinct protocols
in the traffic, and then using those clusters to construct classifiers
that recognize subsequent instances of the same protocols. Thus,
if the system functions as intended, it is sufficient for the network
administrator to label an instance of each protocol and thereafter all
future traffic will be labeled correctly. We describe the automated
phases of this experiment in more detail below.

7.2.1 Clustering Phase
Clustering is the process of producing a set of clusters (merged

cells) that succinctly describes the traffic in a trace according to a
clustering metric. In the current implementation, this involves in-
serting the input trace into cells and merging cells according to host
contact patterns as described in Section 6. Then, the cell frame-
work promotes cells that meet the promotion threshold, and prunes
the rest from the cell table. In these experiments we promote cells
that contain at least 500 flows. Afterward, we create a hierarchy of
cell merges using agglomerative clustering (described in Section 6),
and stop merging when the distance between all remaining clusters
is greater than the pre-specified merge threshold. The distance met-
ric is the weighted relative entropy for Product and Markov (Sec-
tion 4), and approximate graph similarity for CSGs (Section 5.2).
For our experiments, we set the merge threshold to 250 for Product,
150 for Markov, and 12% graph similarity for CSGs.

If more than one cell has a majority of flows with a Protocol
X , then we include the cell with the largest number of Protocol X
flows in the final set of cells and delete the others where X is in
the majority. This accounting ensures that only one cell represents

a protocol, and makes this experiment more challenging. (Again,
recall that we apply labels to the flows after merging.)

7.2.2 Classification Phase
The goal of this phase is to associate each flow from the test trace

with the cell that corresponds to the flow’s protocol. To perform this
classification, we take the clustered cells produced in Section 7.2.1,
classify each flow with the protocol label of the closest matching
cell, and compute the classification error rate.

7.2.3 Classification Results
Table 1 summarizes the misclassification rates for our framework

under the three protocol models. For each of the Cambridge, Wire-
less and Departmental traces, we trained on the first half (in terms
of duration) and tested on the second half. “Total” error encom-
passes all misclassified flows, including flows belonging to proto-
cols that were absent from the training trace. “Learned” error rep-
resents the percent of all flows that were misclassified and belonged
to a protocol present in the training trace. Finally, “unlearned” er-
ror is the percent of all flows that belonged to protocols absent from
the training trace (not surprisingly, this last number stays consistent
across all protocols).

Overall, product distributions yielded the lowest total misclassi-
fication error across the traces (1.68–4.15%), while Markov Pro-
cesses had the highest (3.33–9.97%) and CSGs fell in the middle
(2.08–6.19%).

Table 2 presents misclassification, precision, and recall rates for
select protocols within the three test traces. The product distribu-
tion model performed well over all protocols, particularly popu-
lar ones such as DNS, NTP, NBNS. This model benefited strongly
from the presence of invariant protocol bytes at fixed offsets within
the flow. However, the largest number of misclassified flows re-
sulted from false positive identifications for DNS. The precision
and recall numbers are high for DNS because it comprised the ma-
jority of flows across the traces. Nevertheless, much of the misclas-
sification error came from binary protocols being misidentified as



DNS because of the uniformity of its byte-offset distributions (due
in part to its high prevalence).

The greatest weakness of Markov is misclassification of binary
protocols such as NTP and NBNS. Unlike Product, Markov cannot
take advantage of information related to multiple byte offsets—
hence protocols that contain runs of NULL bytes, regardless of
their offset, are undesirably grouped together.

CSGs also struggled slightly with binary protocols that product
distribution successfully classified, such as NTP, but did best over-
all on SSH.

7.3 Unsupervised Protocol Discovery
The purpose of the protocol discovery experiment is to determine

whether we can use our technique to automatically identify new and
unknown protocols. Premise 3 suggests that new protocols will
emerge as clusters that are distinct from any known protocol. To
test this hypothesis, we perform the following experiment.

We split the trace into two equal parts, choose a protocol that
is present in both parts, remove it from the first part, cluster both
halves independently, and then match clusters in the two halves
greedily. By greedily, we mean that the algorithm matches the
closest pair of clusters between the two halves, removes them from
consideration, and iterates on the remaining clusters. Finally, we
assign protocol labels to each of the clusters afterwards to evalu-
ate the effectiveness of the matching phase. Thus, if our system
works perfectly, it will correctly place the missing protocol into a
single homogeneous cluster that could then be labeled by the net-
work administrator. Unlike the classification experiment we do not
eliminate multiple cells labeled with the same protocol.

We expect that clusters of the same protocol straddling the two
halves will match each other within the matching threshold. By
contrast, we expect the protocol that we withheld from the first half
would stand out, i.e., the withheld protocol present in the second
trace would not have a close match from the first half.

Table 3 shows the results of the protocol discovery experiment
over the two halves of the Departmental trace. We modeled pro-
tocols using product distributions, and withheld HTTP from the
first half. The promotion threshold was 500 flows per cell, and the
merge threshold was a weighted relative entropy of 250 (the same
parameters as the classification experiment).

Our results indicate that there is a robust matching threshold for
which nearly all protocols from the first trace match nearly all pro-
tocols from the second trace (covering 99% of all flows), while
the new protocol is left unmatched. Specifically, the distance be-
tween the first incorrectly matched cells (RTSP and the previously
excluded HTTP at 131.3) is three times larger than the distance be-
tween the last correctly matched cells (SNMP-SNMP at 44.5). An
unintentional result was that two protocols that were not present in
the first half, RIPv1 and RADIUS, appeared in the second half with
a very distant match from the remaining cells of the first half (more
than 300).

7.4 Classifying Excluded Traffic
For the experiments in Sections 7.2 and 7.3, we used Ethereal as

an oracle to identify the protocols used by the flows in the clusters
created by our models. Ethereal is not a perfect oracle, however,
and there were flows that it could not identify, classifying them
generically as “TCP” or “UDP”. In the above experiments, we ex-
cluded those flows from the analyses because we could not compare
clusters against a ground truth.

As a demonstration of the utility of our methodology for iden-
tifying flows using unknown protocols, next we identify these ex-
cluded flows. Specifically, we used product distributions to build

First Half w/o HTTP Second Half
Cum. % Ind. % Protocol Dist. Protocol Ind. % Cum. %

0.49 0.49 Slammer 0.000 Slammer 0.43 0.43
1.07 0.58 ISAKMP 0.250 ISAKMP 0.44 0.87
9.01 7.93 NBNS 0.300 NBNS 7.12 7.99
9.66 0.65 TFTP 0.300 TFTP 0.42 8.41

70.52 60.87 DNS 0.399 DNS 56.46 64.87
71.37 0.85 SMB 0.595 SMB 0.72 65.59
71.40 0.03 SSDP 0.616 SSDP 0.03 65.62
72.22 0.82 SNMP 1.235 SNMP 0.80 66.42
76.22 4.00 SMTP 1.315 SMTP 4.00 70.41
76.52 0.30 SMB 1.548 SMB 0.27 70.68
77.02 0.50 DCERPC 2.011 DCERPC 0.47 71.15
77.12 0.10 SNMP 4.166 SNMP 0.09 71.24
78.08 0.96 BROWS. 4.168 BROWS. 0.82 72.06
78.15 0.08 Mssgr. 4.551 Mssgr. 0.43 72.49
78.47 0.32 KRB5 4.867 KRB5 0.29 72.78
79.39 0.92 DHCP 4.972 DHCP 0.78 73.56
79.52 0.13 LDAP 5.136 LDAP 0.11 73.67
86.39 6.87 SSL 5.900 SSL 5.72 79.39
86.47 0.08 SSL 6.127 SSL 0.04 79.43
87.39 0.91 YPSERV 6.509 YPSERV 0.82 80.25
87.49 0.11 SRVLOC 6.785 SRVLOC 0.09 80.35
89.00 1.50 POP 7.024 POP 1.24 81.58
89.19 0.19 SSL 8.136 SSL 0.06 81.65
89.49 0.30 SNMP 13.321 SNMP 0.28 81.93
89.55 0.06 SSH 15.871 SSH 0.07 82.00
89.60 0.05 KRB5 16.613 KRB5 0.03 82.03
89.64 0.04 IMAP 18.535 IMAP 0.04 82.08
89.85 0.20 CLDAP 19.496 CLDAP 0.15 82.23
89.91 0.06 Syslog 24.436 Syslog 0.06 82.29
98.01 8.10 NTP 38.452 NTP 6.84 89.13
98.16 0.15 NFS 44.493 NFS 0.04 89.18
99.52 1.36 SNMP 44.510 SNMP 1.23 90.40
99.58 0.06 RTSP 131.352 HTTP 9.46 99.87
99.88 0.30 SNMP 312.578 RIPv1 0.03 99.89

100.00 0.12 DAAP 470.046 RADIUS 0.11 100.00

Table 3: Unsupervised Protocol Discovery: Matched cells using
Product Distributions between two halves of the Departmental
trace where HTTP (in bold) was removed only from the first
trace, ranked by match distance (strongest match to weakest).
Protocol labels for cells were not available until after the match-
ing was performed. Each row summarizes information for each
pair of matching cells including their distance, their cumulative
and individual percentage of flows in their respective halves,
and the protocol label for the cell. The italicized protocols were
also absent from the first half, although by coincidence and not
by construction.

protocol models over the excluded traffic using a promotion thresh-
old of 500 and a merge threshold of 250 (as in the previous section).
We then examined the clusters and manually identified several pro-
tocols unknown to Ethereal, including SLP (Service Location Pro-
tocol) Advertisements, game traffic, an implementation of Kadem-
lia [13], HTTP over SSL, as well as various Web exploits. The
flows using each of these protocols fell into separate clusters, once
again showing that (1) our methodology can identify flows from
one unknown application as distinct from another, and (2) it is suf-
ficient for the network administrator to identify an instance of each
protocol rather than all flows using a protocol.

8. DISCUSSION
We have presented a systematic framework for unsupervised pro-

tocol inference—protocol inference based on partial correlations
which are derived from unlabeled training data using simple as-
sumptions about protocol behavior. In the remainder of this sec-
tion, we discuss our experience with this framework, what we have
learned in evaluating three different protocol inference algorithms,
and how we envision our approach would be applied in practice.

Framework. While from an engineering point of view, a net-
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Figure 6: Individual byte distributions for the first 20 bytes of SSH (based on the Wireless trace) in both initiator-to-responder
and responder-to-initiator directions. Non-printable characters are shown in hexadecimal. When more than one byte value occurs
frequently at a given offset, the relative frequency (percent) is shown. The SSH Transport Layer Protocol specification (RFC 4253)
dictates: “When the connection has been established, both sides MUST send an identification string. This identification string MUST
be SSH-protoversion-softwareversion SP comments CR LF.”
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Figure 7: Five samples of a Markov process distribution of both directions of SSH. Sequences like “SH” and “SSSSSH” appear
because transitions S→ S and S→ H occur with roughly the same probability in the process.

work protocol is an intricate set of rules dictating the interaction
between two processes, to the network, a protocol is just a distri-
bution on byte sequences induced by real implementations and us-
age. It is on this ability to learn and distinguish these distributions
that our protocol inference system is built. Doing so requires not
only that protocol distributions differ measurably, but also that we
be able to represent these distributions compactly while remaining
completely oblivious to their design. This is the main challenge
of designing protocol models. In our three models we have ex-
plicitly or implicitly relied on two techniques for overcoming this
challenge and reducing the size and complexity of session distribu-
tions.

The first is to introduce independence assumptions into the model,
as in the Naive Bayes assumption. For example, rather than treating
the 64-byte distribution as a whole, we factor it into a product of
64 individual byte distributions—the product distribution model.
At the cost of discarding correlations between bytes, we achieve
an exponential reduction in space. Our product distribution model
shows that this technique is remarkably effective, suggesting that
the presence of certain attributes (rather than their correlation) is
sufficient to distinguish protocols.

The second technique is to ignore infrequent features. In other
words, the model assumes that distinguishing features are also fre-
quent features. This plays a central role in the CSG model, which
preserves more correlation by focusing on common high-frequency
substrings.

Models. Our most successful model is product distribution. Be-
cause it is offset-based, we expected it to perform well on binary
protocols where protocol “anchors” (i.e., byte sequences with low
variance) occur at fixed offsets. Indeed, it did quite well on pro-
tocols such as NTP, and, surprisingly, also textual protocols like
HTTP and SMTP. It turned out that these text protocols have a

small number of distinguishing initial sequences that induce well-
discriminating byte distributions. Figure 6 shows the individual
byte distributions for SSH.

Our Markov process model was expected to capture “floating”
strings — those not tied to a particular offset — as might appear in
text protocols such as HTTP and SMTP. Unfortunately, a first-order
Markov process cannot capture such strings perfectly. Moreover,
it turned out that for many protocols we saw, the distinguishing
strings do occur at fixed offsets (e.g., “GET ” for HTTP or “SSH”
for SSH). Figure 7 shows some samples of the Markov process
distribution of SSH.

CSGs offer the unique benefit of providing protocol-intrinsic sub-
strings in their entirety and with precise information about the loca-
tion of their occurrence along with their frequencies. CSG’s main
strength, the focus on common substrings, is also its main weak-
ness: only substrings that were observed during training can later
be used for classification. Binary protocols make the presence of
such strings less certain, though the fact that we used a minimum
string length of 4 bytes shows that this is not a fundamental hurdle.
Figure 8 shows a CSG model for the SSH protocol.

Applications. We envision two usage scenarios for partially-
correlated protocol inference. The first, modeled by the classifica-
tion experiment (Section 7.2), is one in which protocol models are
learned in a semi-supervised manner. Rather than labeling training
instances, as in the case of fully-supervising learning, only the con-
structed protocol models need to be labeled — a dramatic reduction
in complexity. Our results show that our approach is competitive
with existing supervising techniques (i.e., Haffner et al. [8]).

In the protocol discovery experiment, we explored an aspect of
partially-correlated protocol inference not possible using supervised
techniques, namely the discovery of new protocols. In this sce-
nario, a new protocol would appear as a new cluster distinct from
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Figure 8: The CSG model for SSH, showing nodes with at least
50 paths. Redundant paths are aggregated into single arcs;
darker nodes carry more paths.

known protocols (whether labeled or not). This allows for rapid
discovery and description of new protocols. Our results show that
our approach is effective for this problem as well.

Putting these together, consider a scenario in which a large in-
crease in traffic is caused by a new peer-to-peer file sharing applica-
tion and a new network worm outbreak. Using our approach, a net-
work administrator could automatically determine that 70 percent
of this otherwise “unknown” traffic belonged to one protocol and
30 percent to another. Moreover, the generated classifiers would be
sufficient to discriminate future traffic using these protocols. Thus,
after examining a single instance of each protocol and determining
its associated application for labeling purposes, the administrator
would once again have a comprehensive description of the traffic
carried on their network.

Future Work. Our work naturally leads to several future di-
rections of research. Perhaps most immediately, our models can be
further improved to be more accurate and space-efficient. Although
performance was not our primary objective, both the product distri-
bution and Markov process models may be suitable for on-line pro-
cessing; we plan to explore the performance aspect in future work.
CSG’s higher complexity makes operating at line-speeds challeng-
ing. However, we believe the unique strengths of CSGs can be put
to use in related but less time-critical settings.

9. CONCLUSION
Identifying application-layer protocols has become an increas-

ingly manual and laborious task as the historical association be-
tween ports and protocols deteriorates. To address this problem,
we propose a generic architectural and mathematical framework for
unsupervised protocol inference. We present three classification
techniques for capturing statistical and structural aspects of mes-
sages exchanged in a protocol: product distributions of byte offsets,
Markov models of byte transitions, and common substring graphs
of message strings. We compare the performance of these classi-
fiers using real-world traffic traces from three networks in two use

settings, and demonstrate that the classifiers can successfully group
protocols without a priori knowledge. Thus, labeling a single pro-
tocol instance is sufficient to classify all such traffic. In effect, we
have substituted the painful process of manual flow analysis and
classifier construction with the far easier task of recognizing a pro-
tocol instance.
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