
Counting Solutions of Polynomial Equations
Kirill Levchenko and Yi-Kai Liu

In “Improved Range-Summable Random Variable Construction Algorithms” [1] it was claimed
that a range sum of a Reed-Muller hash function can be computed in polynomial time; however
the proof was incorrect. In fact, only second-order Reed-Muller hash functions are known to be
efficiently range-summable; the problem of range-summing Reed-Muller hash functions of order
three and above is essentially #P-complete, in the sense that the number of solutions of the #P prob-
lem is a linear function of the range range sum, where the function is determined by the reduction.
The remainder of this note establishes this fact. It is worth noting that this sort of result has been
known for at least ten years, see, e.g., [2].

Recall that an order-r Reed-Muller hash function from {0, 1}n to {0, 1} is an n-variable degree-
r polynomial over GF(2). Computing the range-sum of the hash function is thus equivalent to
counting the number of times the polynomial evaluates to zero. We show that we can reduce #SAT
to the problem of counting the number of roots of a degree-3 polynomial. The number of solutions
to the polynomial will be a linear function of the number of solutions of the 3CNF formula, where
the function will be determined by the reduction.

Claim 1. Let φ be an n-variable 3CNF formula. Then φ can be transformed, in polynomial time, to a
polynomial π such that

|{~x : φ(x) = 1}| = |{~x : π(x) = 1}|.

Proof. Recall that for a pair of Boolean variables x and y, we have

x̄ = 1 + x
x ∨ y = x + y + xy
x ∧ y = x · y

where “+” and “·” are over GF(2). Now replace each clause Ci of φ with the equivalent polynomial
ci(~x). For example,

x1 ∨ x̄2 ∨ x3 =
(
x1 + (1 + x2) + x1(1 + x2)

)
∨ x3

= (1 + x2 + x1x2) ∨ x3

= 1 + x2 + x1x2 + x3 + (1 + x2 + x1x2) · x3

= 1 + x2 + x1x2 + x2x3 + x1x2x2.

Note that each ci(~x) has degree at most 3 because each clause Ci has at most three literals. Taking
the product of the ci(~x) gives the desired polynomial

π(~x) = ∏
i

ci(~x).

1

The resulting polynomial π(~x) is, in general, of arbitrary degree. We transform it to a degree-3
polynomial p on n + ` variables, such that the number of solutions to p is related to the number of
solutions to φ. To do this, we first transform π into a system of polynomial equations where each
equation has degree at most 2.

Claim 2. An n-variable polynomial π given as a product of m degree-3 polynomials, can be transformed, in
polynomial time, into a system of at most ` = 3m + 1 polynomial equations, each of degree at most 2, such
that π and the resulting system of equations have the same number of solutions.

Proof. We start with the system of equations containing only π(~x) = 1. We then reduce the degree
of π at the cost of introducing additional equations into the system.

Each clause polynomial ci(~x) contains at most one term of degree 3, say x1x2x3. We replace it
with x1y23 and introduce constraint equation y23 = x2x3. Thus, each clause polynomial ci(~x) may
be transformed into a degree-2 polynomial c′i(~x) at the cost of introducing m equations into the
system.

Next, replace each clause c′i(~x) with a single variable zi and introduce k equations zi = c′i(~x) to
the system, so that we now have π(~x) = ∏i zi. Finally, introduce a third set of equations given by
z′1 = z1 and z′i = z′i−1zi for i > 1. The initial equation π(~x) = 1 thus becomes z′m = 1.

By construction, each assignment to ~x forces a unique assignment to the variables yi, zi, and
z′i. Furthermore, each equation introduced into the system has degree at most 2, and the initial
equation is replaced with z′m = 1, and each of the three steps introduced at most m equations.

It remains to turn the system of ` degree-2 polynomials into a single polynomial whose solutions
are related to solutions of the system.

Claim 3. Consider an n-variable system of ` degree-2 polynomial equations qi(~x) = 0. The system can
be transformed into a single degree-3 polynomial on n + ` variables such that if the number of satisfying
assignments the system of equations is a and then number of roots of the polynomial is b, then a = 21−`b −
2n.

Proof. Define

si(~x) =
1
2 ∑

w∈GF(2)
(−1)w·qi(~x).

Note that si(~x) is 1 if an assignment to ~x satisfies qi(~x) = 0 and 0 if it does not. It follows that
S(~x) = ∏i si(~x) is 1 if an assignment to ~x satisfies all the equations, and 0 if it does not. Thus, we’re

2

after the sum of S(~x) over all possible assignments to ~x. Now

∑
~x

S(~x) = ∑
~x

`

∏
i=1

si(~x)

= ∑
~x

`

∏
i=1

1
2 ∑

wi

(−1)w·qi(~x)

= ∑
~x

1
2` ∑

~w

`

∏
i=1

(−1)w·qi(~x)

=
1
2` ∑

~x,~w

`

∏
i=1

(−1)w·qi(~x)

=
1
2` ∑

~x,~w
(−1)p(~x,~w)

=
1
2`

[
|{(~x, ~w) : p(~x, ~w) = 0}| − |{(~x, ~w) : p(~x, ~w) = 1}|

]
=

1
2`

[
2|{(~x, ~w) : p(~x, ~w) = 0}| − 2n+`

]
where p is a degree-3 polynomial on n + ` variables. So ∑ S(~x) is

21−`|{(~x, ~w) : p(~x, ~w) = 0}| − 2n.

References

[1] A. R. Calderbank, A. Gilbert, K. Levchenko, and S. Muthukrishnan. “Improved Range-
Summable Random Variable Construction Algorithms.” Proc. of the 16th Annual ACM-SIAM
Symposium on Discrete Algorithms. pp. 840–849 (2005).

[2] A. Ehrenfeucht and M. Karpinski. “The Computational Complexity of (XOR,AND)-Counting
Problems.” Technical Report TR-90-031, International Computer Science Institute, Berkeley,
1990.

3

