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ABSTRACT

Many network applications have stringent end-to-end atae-
quirements, including VolP and interactive video confeieg, au-
tomated trading, and high-performance computing—whegen ev
microsecond variations may be intolerable. The resultimg§rain
measurement demands cannot be met effectively by exisily t
nologies, such as SNMP, NetFlow, or active probing. We psepo
instrumenting routers with a hash-based primitive that ai &
Lossy Difference Aggregator (LDA) to measure latencies roov
tens of microseconds and losses as infrequent as one iniarmill

Such measurement can be viewed abstractly as what we refer t
as acoordinated streaming problem, which is fundamentally harder
than standard streaming problems due to the need to cotedina
values between nodes. We describe a compact data strulcaire t
efficiently computes the average and standard deviatioatefty
and loss rate in a coordinated streaming environment. Garét-
ical results translate to an efficient hardware implemeéntadt 40
Gbps using less than 1% of a typical 65-nm 400-MHz networking
ASIC. When compared to Poisson-spaced active probing with s
ilar overheads, our LDA mechanism delivers orders of magieit
smaller relative error; active probing requires 50-60 sras much
bandwidth to deliver similar levels of accuracy.

Categories and Subject Descriptors

C.2.3 [Computer Communication Networks]: Network manage-
ment

General Terms
Measurement, algorithms

Keywords

Passive measurement, packet sampling

INTRODUCTION
An increasing number of Internet-based applications requi
end-to-end latencies on the order of milliseconds or evenaséc-
onds. Moreover, many of them further demand that latencyaiem
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stable; i.e., low jitter. These applications range fromyapmulti-
media services like voice-over-IP, multi-player gamingd aideo
conferencing to niche—but commercially important—maskéte
automated trading and high-performance computing. As aspeh
plications grow in significance, customers are placinggasing
demands on operators to provision and manage networks #&it m
these stringent specifications. Unfortunately, most ofciimeently
available tools are unable to accurately measure latentigese
magnitudes, nor can they detect or localize transient tanis or
loss spikes. Hence, we propose a new mechanism to measure la-
tency and loss at extremely small time scales, even tens -of mi
croseconds. We focus particularly on data-center netwavkere
such measurement is both useful (because many data-cppter a
cations can be hurt if latencies increase by even tens obsecr
onds) and feasible (because of small propagation delays)a@
proach can also be applied more generally, but the accuffaey o
isting techniques may be sufficient for many wide-area stena

As a motivating example, consider a trading network that con
nects a stock exchange to a number of data centers where auto-
matic trading applications run. In order to prevent unfaittage
opportunities, network operations personnel must enshatthe
latencies between the exchange and each data center arelGith
microseconds of each other [35]. (A recent Information\Waek
cle claims that “a one-millisecond advantage in tradindiapfions
can be worth $100 million a year to a major brokerage firm” [p5]

Current routers typically support two distinct accountimgch-
anisms: SNMP and NetFlow. Neither are up to the task. SNMP
provides only cumulative counters which, while useful ttreate
load, cannot provide latency estimates. NetFlow, on theroth
hand, samples and timestamps a subset of all received packét
culating latency requires coordinating samples at m@tipluters
(e.g., trajectory sampling [10]). Even if such coordinatie pos-
sible, consistent samples and their timestamps have torhenae
nicated to a measurement processor that subtracts theirsest t
tamp from the receive timestamp of each successfully deli/e
packet in order to estimate the average, a procedure wittiafun
mentally high space complexity. Moreover, computing aatair
time averages requires a high sampling rate, and detedtiog-s
term deviations from the mean requires even more. Unforély)a
high NetFlow sampling rates significantly impact routess\¥ard-
ing performance and are frequently incompatible with openal
throughput demands.

Thus, operators of latency-critical networks are forcedde ex-
ternal monitoring mechanisms in order to collect a sufficiam-
ber of samples to compute accurate estimates. The simplast t
nique is to send end-to-end probes across the network [24, 31
33]. Latency estimates computed in this fashion, howe\ar, e
grossly inaccurate in practice. In a recent Cisco studyiogir



probes sent at 1-second intervals computed an averageyasén
under 5 ms, while the actual latencies as reported by a haedwa

monitor were around 20 ms with some bursts as high as 50 ms [30,

Fig. 6]. Capturing these effects in real networks requingsciting

a prohibitively high rate of probe packets. For these ressoper-
ators often employ external passive hardware monitors, {@.ase
manufactured by Corvil [1]) at key points in their network.n-U
fortunately, placing hardware monitors between every @iinput

and output ports is cost prohibitive in many instances.

Instead, we propose the Lossy Difference Aggregator (L2A),
low-overhead mechanism for fine-grain latency and loss ureas
ment that can be cheaply incorporated within routers toesehihe
same effect. LDA has the following features:

e Fine-granularity measurement: LDA accurately measures
loss and delay over short time scales while providing strong
bounds on its estimates, enabling operators to detect-short
term deviations from long-term means within arbitrary con-
fidence levels. Active probing requires 50-60 times as much
bandwidth to deliver similar levels of accuracy, as demon-
strated in Section 4.3.

Low overhead: Our suggested 40-Gbps LDA implementa-
tion uses less than 1% of a standard networking ASIC and 72
Kbits of control traffic per second, as detailed in Sectidn 5.

Customizability: Operators can use a classifier to configure
an LDA to measure the delay of particular traffic classes to
differing levels of precision, independent of others, & di
cussed in Section 5.1.

Assists fault localization: LDA can operate link-by-link and
even segment-by-segment within a router, enabling direct,
precise performance fault localization. Section 5.2 dbssr

a potential fault-localization system based upon LDA.

While researchers are often hesitant to propose new rotiteip
tives for measurement because of the need to convince noaj@rr
vendors to implement them, we observe several recent tré&iids,
router vendors are already under strong financial pressora f
trading and high-performance computing customers to fimg o
latency measurement primitives. Second, next-gener&tenm
router chips have a large number of (currently unallocateat)-
sistors. Third, the advent of merchant silicon such as Broad
and Marvell has forced router vendors to seek new featuras th
will avoid commoditization and preserve profit margins. Eken
we suggest that improved measurement infrastructure rbiglain
attractive value proposition for legacy vendors.

2. PRELIMINARIES

A number of commercially important network applicationsdéa
stringent latency demands. Here, we describe three suchidem
and provide concrete requirements to drive our design aaldiav
tion of LDA. In addition, we present an abstract model of theam
surement task, an instance of what we term a coordinateansire
ing problem. We then show that some coordinated problems hav
fundamentally high space complexity as compared to tiauifi
streaming versions of the same problem.

2.1 Requirements

An application’s latency requirements depend greatly srinit
tended deployment scenario. We start by considering theifape
requirements of each domain in turn, and then identify trerall/
measurement metrics of interest.

2.1.1 Domains

Wide-area multi-media applications have demands on therord
of a few hundred milliseconds (100-250 ms). Latency require
ments in the financial sector are tighter (108—1 ms), but the
most stringent requirements are in cluster-based higfoeance
computing which can require latencies as low as 1#40

Interactive multi-media: Games that require fast-paced interac-
tion such as World of WarCraft or even first-person shootenem
like Quake can be severely degraded by Internet latencidsleW
techniques such as dead-reckoning can ameliorate the tisyeac
tencies of more than 200 ms are considered unplayable [greTh
has also been a large increase in voice-over-IP (VoIP) atedl-in
active video. While pre-recorded material can be buffeirgdrac-
tive applications like video conferencing have strict isron buffer
length and excess jitter substantially diminishes the esgeri-
ence. For example, Cisco’s recommendations for VoIP anelovid
conferencing include an end-to-end, one-way delay of nertr@an
150 ms, jitter of no more than 30 ms, and less than 1% loss [34].

Automated trading: Orders in financial markets are predomi-
nantly placed by machines running automatic trading allyors
that respond to quotes arriving from exchanges. For exanple
September 2008, the London Stock Exchange announced a ser-
vice that provided frequent algorithmic trading firms withbs
millisecond access to market data [21]. Because machines—n
people—are responding to changing financial data (a recevi\s
indicates that 60—70% of the trades on the NYSE are conducted
electronically, and half of those are algorithmic [25])lades larger
than 100 microseconds can lead to arbitrage opportunitescan
be leveraged to produce large financial gains.

Trading networks frequently connect market data distdtsito
trading floors via Ethernet-switched networks. A typicabigem
encountered while maintaining these networks is a satli@iee
1-Gbps link that increases latency by 10s of microseconhs.sit-
uation could be addressed (at significant cost) by upgratimtink
to 10-Gbps, but only after the overloaded link is detectediian-
lated. Hence, a market has emerged for sub-microsecondireeas
ment. For example, Cisco resells a passive device manuéachy
Corvil [30] that can detect microsecond differences infaye35].

High-performance computing: The move from supercomputing
to cluster computing has placed increased demands on eaterc
networks. Today, Infiniband is the de-facto interconnecthigh-
performance clusters and offers latencies of one microskco
less across an individual switch and ten microseconds @eahd.
While obsessing over a few microseconds may seem excessive t
an Internet user, modern CPUs can “waste” thousands ofumistr
tions waiting for a response delayed by a microsecond. Back-
storage-area networks have similar demands, where Fitatr@h
has emerged to deliver similar latencies between CPUs anotee
disks, replacing the traditional 1/0 bus.

As a result, many machines in high-performance data centers
are connected to Ethernet, Infiniband, and Fiber Channelanks.
Industry is moving to integrate these disparate technetgis-
ing commodity Ethernet switches through standards suchbas F
Channel over Ethernet [16]. Hence, the underlying Etheneét
works must evolve to meet the same stringent delay requitesne
on the order of tens of microseconds, as shown in the specifica
tions of recent Ethernet switch offerings from companike 1iVo-
ven Systems [37] and Arista [4].

2.1.2 Metrics

Each of these domains clearly needs the ability to measere th
average latency and loss on paths, links, or even link segmen
However, in addition, the standard deviation of delay isdntgnt
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Figure 1: An path decomposed into measurement segments.

because it not only provides an indication of jitter, buttfer al-
lows the calculation of confidence bounds on individual padle-
lays. For example, one might wish to ensure that, say, 98% of
packets do not exceed a specified delay. (The maximum p&epac
delay would be even better but we show below that it is imfbssi

to calculate efficiently.)

2.2 Segmented measurement

The majority of operators today employ active measurement
techniques that inject synthetic probe traffic into theitwaek to
measure loss and latency on an end-to-end basis [24, 3M3&E
these tools are based on sound statistical foundatiorigse auea-
surement approaches are inherently intrusive and can $utistan-
tial bandwidth overhead when tuned to collect accuratediagied
measurements, as we demonstrate later.

Rather than conduct end-to-end measurements and therpattem
to use tomography or inference techniques [2, 6, 8, 17, 27386
to isolate the latency of individual segments [18, 39], wapose to
instrument each segment of the network with our new measamem
primitive. (We will return to consider incremental deplognt is-
sues in Section 5.2.) Thus, in our model, every end-to-ettuqam
be broken up into what we catheasurement segments. For exam-
ple, as shown in Figure 1, a path from endpaihto endpointB
via two switches,S1 and S2, can be decomposed into five mea-
surement segments: A segment betweeand the input port of
S1, a segment between the ingress porSéfand the egress port
of S1, a segment between the egress po§ baind the ingress port
of S2, a segment between the ingress por§2fand the egress port
of S2, and a final segment between the egress posadnd B.

A typical measurement segment extending from just aftexprec
tion on a router’s input port to just before transmission loe dut-
put side has the potential for significant queuing. Howeder,
ployments concerned with low latency (e.g., less than€)hec-
essarily operate at light loads to reduce queuing delaystaus]
latencies are on the order of 10s of microseconds. Such arrout
segment can be further decomposed as shown in the bottorg-of Fi
ure 1 into several segments corresponding to internal jpetiageen
key chips in the router (e.g., forwarding engine to the queae-
ager, queue manager to the switch fabric). Such decompuositi
allows the delay to be localized with even finer granularitthim a
router if queuing occurs and may facilitate performanceudging
within a router.

Thus, we focus on a single measurement segment between a
senderA and a receiveB. The segment could be a single link,
or may consist of a (set of) internal path(s) within a routet ton-
tains packet queues. We assume that the segment providés FIF
packet delivery. In practice, packets are commonly loadrizdd
across multiple component links resulting in non-FIFO lvédra
overall, but in that case we assume that measurement is caadu
at resequencing points or separately on each component\Wek
further assume that the segment endpoints are tightly tymehso-
nized (to within a few microseconds). If the clocks at seratet
receiver differ bye, then all latency estimates will have an additive
error ofe as well.

Microsecond synchronization is easily maintained within a
router today and exists within a number of newer commercial
routers. These routers use separate hardware buses for time
synchronization that directly connect the various syncization
points within a router such as the input and output portssehe
buses bypass the packet paths which have variable delayseHe
the time interval between sending and receiving of syndhation
signals is small and fixed. Given that most of the variablaytel
and loss is within routers, our mechanism can immediatelgidse
ployed within routers to allow diagnosis of the majority aféncy
problems. Microsecond synchronization is also possihiesacsin-
gle links using proposed standards such as IEEE 1588 [15].

We divide time into measurement intervals of lengthover
which the network operator wishes to compute aggregateenie
visage values of” on the order of a few hundred milliseconds or
even seconds. Smaller valuesiofvould not only take up network
bandwidth but would generate extra interrupt overheadrigisaft-
ware processing control packets. For simplicity, we assiinatethe
measurement mechanism sends a single (logical) contrképac-
ery interval. (In practice, it may need to be sent as multifees
due to MTU issues.)

Thus in our model, the sender starts a measurement intdrval a
some absolute timeés by sending a Start control message. The
sender also begins to compute a synopsan all packets sent be-
tweents andts + 1. Attimets + T, the sender also sends an
End control message. If the receiver gets the Start contesbage
(since control messages follow the same paths as data nesssag
they can be lost and take variable delay), the receiverssthet
measurement process when it receives the Start Controlagess
The receiver computes a corresponding synops@n all packets
received between the Start and End Control messages. Ttersen
sends synposiS to the receiver in the End Control Message. This
allows the receiver to compute latency and loss estimatesras
function of S andR.

Note that the receiver can start much later than the sentleg if
Start Control message takes a long time, but the goal is ynérat
the sender and receiver compute the synopses over the same se
of packets. This is achieved if the link is FIFO and the Stad a
End Control messages are not lost. Loss of control packetbea
detected by adding sequence numbers to control packetihéf e
the Start or End Control packets are lost, the latency egtiria
an interval is unusable. Note that this is no different frasihg a
latency estimate if a periodic probe is lost.

We assume that individual packets do not carry link-levaks-
tamps. If they could, trivial solutions are possible whéwe $sender
adds a timestamp to each packet, and the receiver subtradietd
from the time of receipt and accumulates the average andnai
using just two counters. Clearly, IP packets do not carresm
tamps across links; the TCP timestamp option is end-to-@fidle
timestamps could be added or modified within a switch, adding
32-bit timestamp to every packet can add up to 10% overhead to



the switch-fabric bandwidth. Further, loss would still dee be
computed with state accumulated at both ends. We will shatv th
by adding only a modest amount of state beyond that requined f
loss measurements, we can also provide fine-grain measoteme
of the average and standard deviation of latency.

2.3 Coordinated streaming

LDA; at the end of a measurement period—in our experiments we
consider 1 second—the sender sends its LDA to the receigkr an
the receiver computes the desired statistics. The onlytiaddl re-
quirements are tight time synchronization between sena@ére-
ceiver (which is required by all one-way delay measuremesttim
anisms) and consistent packet ordering at the sender aeideec

We measure the goodness of a measurement scheme by its ac3.1 ~ The data structure

curacy for each metric (in terms of relative error), its ag® over-
head, bandwidth requirements, and its computational easthA
naive solution to the measurement problem is for the sendztote

a hash and timestamp of each sent packet and for the receider t
the same for each received packet. At the end of the intethal,
sender sends the hashes and timestamps fa¥ gdhckets to the
receiver, who then matches the send and receive timestdraps-o
cessfully received packets using the packet hashes, angutesn
the average. Indeed, Papagianreikil. used a similar approach in
their study of router delays [28]. Unfortunately, the nadeéution

is very expensive in terms of our performance measures alkast
O(N) state at the sender aft{ V') bandwidth to communicate the
timestamps N can be large. For example, if measurement interval
is one second, and the segment operates at 40 Gbpsiytican be
as large as 125 million 40-byte packets. We aim for a scheate th
is well within the capabilities of today’s ASICs.

The quest for efficient solutions suggests consideringstiieg
algorithms. Several streaming algorithms are already lpopo
the networking community for various applications such adifig
heavy hitters [11], counting flows [12], estimating entr¢p§], and
computing flow-size distributions [19, 22]. The standartiseg
for streaming problems considers a single computatioréyehat
receives a stream of data: The goal is to compute a fungtioha
single set of NV values using a synopsis data structure that is much
smaller thanv.

Latency measurement, by contrast, is what we terooadi-
nated streaming problem with loss. In the general setting, we have
two computational entitieslt and B. There are two streams of
data values:, andb;; a, is the time packet: left A, andb, is
the time it is received aB. Some packets are lost, 8¢ may be
undefined. The goal here is to compute some funcfioof the
set of(az, b)) pairs. For measuring average latency, the function is
>~ . (be —a.) over the cardinality of the set of packets for which
is defined (i.e., packets that are received and not lost)nfeasur-
ing variance, the function i3__ (b — a.)? over the received pack-
ets. For measuring, say, the maximum delay, the functiondvou
be max(b, — as). In all cases, the function requires a pairwise
matching between a received data item and the corresposdirtg
item—a requirement absent in the standard streaming gettin

The coordinated streaming setting is strictly harder tharstan-
dard setting. To see this, observe that computing the maridata
item in the stream is trivial in a standard streaming using)
space and)(1) processing. However computing the maximum
delay require€2(N) space, even without the assumption of loss.
(The proof is a straightforward reduction from Set Disjoigs as
in Alon, Matias and Szegedy [3].) Despite this negative ltefsu
the maximum delay, we will show that approximating both ager
and standard deviation of delay can be done efficiently. émixt
section, we describe the Lossy Difference Aggregator, aharec
nism that estimates these statistics.

3. LDA

A Lossy Difference Aggregator (LDA) is a measurement data
structure that supports efficiently measuring the averaggydand
standard deviation of delay. Both sender and receiver iaian

To better explain the LDA, we begin with the simplest average
delay measurement primitive—a pair of counters—and then de
velop the full LDA as shown in Figure 3.

3.1.1 Noloss

To start, consider the problem of (passively) measuringathe
erage latency between a sendérand a receiverB. A natural
approach is a pair of timestamp accumulators, adding upgpack
timestamps on the sender and receiver sides, and a packdercou
The average delay is then just the difference in timestanep-ac
mulators between sender and receiver, divided by the nuwiber
packets: (Ts — Ta)/N. Of course, if packets are lost, this ap-
proach fails: The sender’s timestamp accumuldemwill include
the timestamps of the lost packets while the receiver’snuatl

3.1.2 Lowloss

Consider the case of exactly one loss. If we randomly spdit th
traffic into m separate “streams” and compute the average latency
for each such “stream” separately, then a single loss wiyl orake
one of our measurements unusable; we can still estimatevénalb
average latency using the remaining measurements.

Practically speaking, we maintain an array of several times
tamp accumulators and packet counters (collectively dalbank).
Each packet is hashed to one of theaccumulator-counter pairs,
and the corresponding timestamp accumulator and packeterou
are updated as before. By using the same hash function on the
sender and receiver, we can determine exactly how many sacke
hashed to each accumulator-counter pair as well as how nfany o
them were lost. Note that the sum of the receiver’s packetteos
gives us the number of packets received and the sum of theisend
packet counters, the number of packets sent; the differgives
the number of lost packets.

If a packet is lost, the sender’s packet counter at the infléxeo
lost packet will be one more than the corresponding packetteo
on the receiver. We call such an indemusable and do not use it
in calculating our average delay estimate. The remainiraples
indices give us the average delay fosubset of the packets. With
a single lossmm accumulator-counter pairs are roughly equivalent
to sampling roughly everyn — 1 in m packets, providing a very
accurate estimate of the overall average latency. The nuofbe
packets that hashed to a usable index iseffiective sample size
of the latency estimate. In other words, it is as if we had dachp
that many packets to arrive at the estimate. In general, fonall
number of lossed, the expected effective sample size is at least a
(1 — L/m) fraction of the received packets.

Example. Figure 2 shows an example configuration with= 4
and exactly one lost packet that hashed to the second acatamul
counter pair. The sum of packet delays from the other thrables
accumulator pairs i6180 — 120) + (37 — 15) + (14 — 6) = 90;
the effective sample size {5+ 2 + 1 = 8. The estimated delay is
thus90/8 = 11.25.

3.1.3 Known lossrate

For larger loss rates, we need to sample the incoming packets
to reduce the number of potentially unusable rows. Sampmlarg



timestamp acc. > | 120 180 60 bank at the end of the measurement period for computing the es
packet counter » p 5 sy timate. However, we can structure a multi-bank LDA so thdyon
one bank needs to be updated per sampled packet.
234 348 114 < éggffe‘ibclgums The trick is to havedisioint sample sets, so that each packet is
10 9 1029! don’t match sampled by a single bank, if at all. This way, only a singlekban
15 37 2 needs to be updated and later, during post-processing,aketpia
double-counted. Furthermore, as a practical matter, deshogy
2 2 2¢ hash function can be shared by all banks. Each packet is thashe
6 14 8 to a row uniformly and to a bankon-uniformly according to bank
1 1 v sampling probabilitie®+, ps, . .., pn. For non-uniform sampling
probabilities that are powers af/2, this can be implemented by
Sender Receiver  Difference hashing each packet to an integmiformly and using the number

of leading zeros to determine the one bank that needs to be up-
dated. We can compute the average delay by combining alblesea
elements across all banks. The full x n LDA is shown in Fig-

ure 3.

Example. Consider two banks having sampling probabilities
p1 = 1/2% andp> = 1/27. Each packet is hashed to an integer.
If the first seven bits are zero, then bank 2 is updated. Otkerw
if the first three bits are zero, then bank 1 is updated. Otisexvif
the first three bits are not all zero, the packet is not sampled

3.2 Update procedure

Figure 2: Computing LDA average delay with one bank of four
timestamp accumulator-counter pairs. Three pairs are usale
(with 5, 2, and 1 packets), while the second is not due to a paek
loss. Thus, the average delay i€60 + 22+ 8) /(5 +2+1).

tEL%tzjagc\tfrz Si?;gléng Only one bank Formally, the update procedure is as follows. ketlenote a
different loss rates updated per packet,h(x_) the row hash function, _angl(x) the bank samp_ling
R ) ) packet hash function. The row hash functidr{z) mapsz to a row in-
‘ dex distributed uniformly betweeh andm. The sampling hash
function g(x) mapsz to bankj, whereg(xz) = j with probability
B B _ Timestamp p;. In our analysis we assume thaendg are 4-universal (which
" accumulator is amenable to efficient implementation), although in pcacthis
% 1 Packet may not be necessary. We use the special valug = 0 to de-
= - - counter note that the packet is not sampled. Upon processing a packet
E at time 7, timestampr is added to the timestamp accumulator at
-- -- - position(h(z), g(z)), and the corresponding packet counter is in-
cremented. lfy(x) = 0, the the packet is simply ignored. Using
T to denote then x n array of timestamp accumulators afdo
n banks denote corresponding array packet counters, the procéiure
i — h(z)
Figure 3: The Lossy Difference Aggregator (LDA) withn banks Jj— g(x)
of m rows each. if j > 0then

Tli, j] < T[i,j] + 7
Sli, j] < S[i, j] +1
end if

3.3 Average latency estimator

easily be done in a coordinated fashion at receiver and sdxyde
(once again) hashing the packet contents to compute a sampli
probability. Thus we ensure that a packet is sampled at thegver
only if it is sampled at the sender. At sample ratewe expect

oukhwnpE

the number of lost packets that are recorded by the LDA tplhe From the discussion above, estimating the average latency i

so that the expected number of usable rows is at leastpL. Of straightforward: For each accumulator-counter pair, weckhf

course, packet sampling also reducesatreeall number of packets  the packet counters on the sender and receiver agree. iditheye

counted by the LDA, reducing the accuracy of the latencyrese. subtract the sender’s timestamp accumulator from thevecsi If

In Section 3.3 we will address this issue formally; intuétiy how-  they don't, this accumulator-counter pair is considesedsable.

ever, we can see that fpron the order ofn/L, we can expect at ~ The average delay is then estimated by the sum of thesedtitfes

least a constant fraction of the accumulator-counter paissiffer divided by the number of packets counted.

no loss and therefore be usable in the latency estimator. Formally, letTa[-,-] andT's[-, -] denote them x n timestamp
accumulator arrays of the sender and receiver, respegtiaad

3.1.4 Arbitrarylossrate Sal-, -] andSz[-, -] the corresponding packet counters. Call a posi-

So far we have seen that a single bank of timestamp accurmailato 0N (4, 7) usableif Sali, j] = Spli, j]. Letu;; be an indicator for
and packet counters can be used to measure the averagey latendhiS event, thatisy;; = 1if (i, j) is usable andi;; = 0 otherwise.

when the loss rate is knowanpriori. In practice, of course, this is Define

not the case. To handle a range of loss rates, we can use leultip m m

LDA banks, each tuned to a different loss rate (Figure 3).o(n Ta = wiTali,j] and T =y ui;Tsli, jl;
experiments, we found that two banks are a reasonable choice i=1 i=1

At first glance, maintaining multiple banks seems to require T4 and T are the sum of the of the useable timestamp accu-
maintaining each bank independently and then choosingeéle b  mulators on the sender and receiver, respectively. By diefini



uijSA[i,j] = uijSB[i,j], so let

m m 2
S:ZUUSA[Z,]] :ZUZ]SB[Z7,]] (Zszbz —Zszaz) (4)
i=1 i=1 z z
2
The estimate, then, is = <Z So(by — az))
1 xT
D= o(Ts —Ta). =3 S50 (be — an) (b — aur)

The quantityS is is theeffective sample size from which the av- @’
erage latency is calculated. In other words, if one were mopba = Zsi(bw —a.)* + Z 5280 (e — @z) (byr — Ggr)

andstore packet timestamps, the number of packets sampled would
need to be at least to achieve the same statistical accuracy as the

LDA. Using a Hoeffding inequality [13], it can be shown that
(1) So far this implies that we keep a separate signed timestamp a
o cumulator. Also, to deal with loss we would have to keep aayarr
wherey ando are the actual mean and standard deviation of the de- of sych counters, doubling the number of timestamp accutorsla
lays. Wheno ~ 1 the estimate is very accurate given areasonable Fortunately, we can mine the existing LDA. Observe that tge s
effective sample size. Let andL be the number of received and  pashs, above can be computed using the low-order bit of the hash

rHx!

The expectation of the cross tertigs. s,/ ] is zero, giving us an
o unbiased estimator for the square of the delays squared.
Pr{|D — p| > ep] < 2¢7 /2

lost packets, respectively, so tha#-L = N. For a single bank and
L > m, setting the packet sampling probability= am /(L + 1),

function we use to compute a row index in the full LDA. To acleie
the same effect without adding additional memory, we usselth-

wherea is a parameter to be optimized, gives an expected effective grder bit of the row hash value(z) as the sign bit, “collapsing”

sample size of

m
E[S] > a(l—a) ;7 R @
Note that if we were tcstore the sampled packets, the expected
sample size would be jupR with a tight concentration around this
value; however because we ama storing the packets but record-
ing them in the LDA, we pay a constant factdr — «) penalty in
the effective sample size and a higher variance. To maxithiee
bound, we setv = 0.5, the value we use in our experiments.

3.4 Latency standard deviation

Note that we exploited the fact that the sum of the differerafe
receive and send packet time stamps is the same as the niiftere
of their sum. While this reshuffling works for the sum, it doez
work for the sum of squares. Despite this obstacle, we now sho
that the LDA can also be used to estimate the standard daviati
of the packet delays. This is crucial because an accuratsurea
for standard deviation allows a network manager to compghe t
confidence intervals on the delay, a highly desirable feainra
trading or high-performance computing applications.

Again, let's start by assuming no loss; we can correct fos los
later using the same hashing technique as we used for thegaver

adjacent rows. (Thus the estimator uéea rows.)
Define the collapseém x n timestamp accumulator and packet
counter arrays as:

Tai,5) = Tal2i, 4] - Tal2i - 1,]]
To(i,5) = Tn[2i,5] - Ts[2i — 1, ]
8a(i,5) = Sal2i,4] + Saf2i — 1,5]
S5(i,5) = Sp[2i,4] + Sp[2i — 1,]]

Let @;; be an indicator for a position being usable; thatig, = 1

if Sa(i,j) = Ss(4,7), andu;; = 0 otherwise. As in the aver-
age latency estimator, & = > 4;;54(i, 7). Our latency second
frequency moment estimator is

m/2

F:%qu’j(TB(i:ai) - Ta(i,)”. ®)

It is straightforward to show that
1
E[F] = R Z(bm - aw)2

We can then estimate the standard deviation of the delayg (3).

Consider the two timestamp sums we already keep at the sendefrhe variance of is upper-bounded by

and receiver’s andTx. If we take the difference, this is just the
sum of packet delays. If we now square this difference, we get

T z#z!

- aw/)

The first sum (of delays squared) is exactly what we need fior co
puting the standard deviation, since

0-2 = Z(bl‘ - al‘)2 - /1‘27

x

(©)

but we also get unwanted cross terms. Fortunately, the tzoss
can be eliminated using a technique introduced by Alon, &4ati
and Szegedy [3]. The idea is to keep a slightly different stamp
accumulator on the sender and receiver: instead of simglingd
the timestamp, we adat subtract with equal probability based on
a consistent hash. Using to denote thet1 hash of the packet,
we now have:

1 R_ S rec'd rec'd
Var[F| = o <T Zwi +2 Z wiwi/).

x xF#x!

For comparison, the basic estimator (4), which does not Ileand
packet loss, has variance

rec'd

2 2 2
ﬁ Z Wa Wy .
rHx!

By averaging several instances of the estimator as in [8)vaini-
ance can be reduced arbitrarily. In our experiments, hokeve
use the estimator (5) directly with satisfactory resultsis worth
remembering that this standard deviation estimate coneedrée”
by mining the LDA data structure (designed for estimatingrage)
for more information.



4. EVALUATION

Our evaluation has three major goals. First, we wish to @mpir
cally validate our analyses of an optimal LDA'’s estimatesthiin
terms of average delay and standard deviation. Second, alyzen
various tuning options to select a set of practical configjomaop-
tions. Finally, we use the resulting parameter settingotopare
the efficacy of a practical LDA to the current cost-effectaleer-
native: Poisson-modulated active probing. (We do not compa
against special-purpose passive monitoring devices @Slthey
are prohibitively expensive to deploy at scale.)

We have implemented a special-purpose simulator in C++to fa
cilitate our evaluatioh The simulator generates packet traces with
various loss and delay distributions and implements seudéfar-
ent variants of the LDA data structure, as well as active ipgphnd
the associated estimators needed to compare LDA with tleact
probing approach.

In an effort to evaluate LDA in realistic scenarios, we use de
lay and loss distributions drawn from the literature. Intjgaitar,
Papagiannakeét al. report that packet delays recorded at a back-
bone router are well modeled by a Weibull distribution [28ith a
cumulative distribution function

PX<z)=1- e(—e/o)”
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Figure 4. The sample size obtained by a single-bank LDA as a
function of loss rate.

of 250-byte packets is arbitrary and results in round nusjkibe
functionality of LDA is not impacted by packet size.) We simu
late a measurement interval of one second Asc= 5,000, 000
and an average delay of Q.®). For different distributions, we en-

with o and 3 representing the scale and shape respectively. Unlesssure consistency by adjusting the scale parameters afgedpito

otherwise noted, all of our experiments consider a Weihistirid
bution with their recommended shape parameidgr € 3 < 0.8).
For comparison purposes, we also simulated Pareto digtnibu
generated according to the functish X < z) = 1 — (z/a)~?

match the mean delay of 0;.

In order to isolate the effects of packet loss, for each ewpent,
we first generate a packet trace according to the desireg dila
tribution using a particular random seed, and then imposgng

with o and 3 representing the scale and shape parameters respecievels of loss. Each graph presented in this section usesatine

tively and 8 chosen between 3 to 5 so that the delay values do
not become too skewed and to ensure that the distributiovs ha
bounded variance.

In order to ensure that sampled delay values do not causetpack
reordering, we assign timestamps to packets such that teaesu
sive packets always differ by more than the delay of the faskpt
drawn from the distribution. In other words, we ensure thaté
is always only one packet in flight at any given instant by enfo
ing that a given packet begins transmission only after theipr
ous packet has reached the receiver. This does not biassuisre

random seed for the delay distribution.

We first verify empirically that the actual sample size ofai
using our data structure matches expectation. For the pespaf
this experiment, we assume that we krepriori the loss raté; we
compute the number of lost packdts= N -1 and set the sampling
probability accordingly ap = am /(L + 1), wherea = 0.5.

Figure 4 shows the number of samples captured by the LDA as
we vary the loss rate from 0.5% to 20%, as well as the expected
value given by Equation 2. Two main observations can be made
from the figure: First, as expected, the sample size deeamse

in any way since LDA does not care about the actual timestamps loss rate increases. Second, our analytical bound is oatier,

themselves; it's only the differences that matter.

LDA performance is independent of loss distribution withim
interval, so most experiments use a uniform loss model fopkc-
ity. For our comparisons with active probes—whose perforcea
depends on the loss distribution—we use exponentiallyibiged
loss episodes (as suggested by Migral. in their study of TCP
behavior [26]), where each episode involves dropping atlnfrs
packets (following the model of Sommaeatsal. [33]).

4.1 Validation

The main goal of the set of experiments described in thisestibs
tion is to empirically validate our analytical bounds usagimple
single-bank LDA. In particular, we study the accuracy of LBA
estimates over different delay and loss distributions.

For these simulations, we configure the LDA to use= 1
bank ofm = 1,024 counters. We simulate a 10-Gbps OC-192
link which, assuming an average packet size of 250 bytesiesar
roughly five million packets per second at capacity. (Theigho

1The main advantage of standard packages like ns2 is theylibra
of prexisting protocol implementations like TCP, the vagijonity

of which are not needed in our experiments. Thus, we feel the
remaining benefits are outweighed by the simplicity andifigamt
speed up of a custom solution.

LDA captures nearly twice as many samples in simulation.

In Figure 5(a), we plot the average relative error (defined as
[true — estimated|/|truel) of LDA as we vary the loss rate. We
obtain the ground truth by maintaining the full delay distition.
Each point corresponds to the average of the relative ecrosa a
set of ten independent runs—i.e., the packet trace is the,daum
the LDA selects a different random set of packets to samplieglu
each run. The LDA is optimally configured for each loss rate as
in the previous subsection. As expected, the relative afrdne
estimate increases as the loss rate increases becausertberrof
available samples decreases with loss rate. While the sale
follow the same general trend, the estimates for the WeitigH
tributions are less accurate compared to Pareto. For theyar
lar shape parameters we simulated, the Weibull distribugidfers
from a larger variance than Pareto—variancé.i3 at 5 = 0.6
for Weibull as compared 10.013 at 3 = 3 for Pareto. LDA there-
fore requires more samples for Weibull to obtain the samaracy
level as Pareto. Even in the worst case of 20% loss, howéwer, t
estimates have less thdf% error on average. At low loss rates (
0.1%), LDA estimates have less than 0.3% error. Results &iom
ilar experiments with a variety of random seeds are quinéiyt
similar; the relative error at loss rates of even 6% acrofsrdint
traces is never more than 3% with an average of about 0.2%.
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Figure 5: Average relative error and 98% confidence bounds of
the delay estimates computed by LDA as a function of loss rate
Actual mean delay is0.2 us in all cases. In (b), each curve rep-
resents an LDA with different random seed on the same trace.

Low error in expectation is nice, but some applications irequ
guarantees of accuracy in every instance. To validate aor er
bounds, we focus on the delay distribution with the leastieate
estimates from above, namely the £ 0.133, 5 = 0.6) Weibull
distribution. In Figure 5(b), rather than report relativeoe, we
graph the actual delay estimate computed by a represenfatd/
of the ten constituent runs in Figure 5(a). In addition, wet phe
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Figure 6: Average relative error of LDA'’s standard-deviation
estimator as a function of loss rate.

Pareto- and Weibull-distributed traces is about 0.35 aidd @e-
spectively. Hence, the absolute error of LDA’s standandat®n
estimator is similarly small in both cases. Delays in Ing¢mouters
are reported to be well-modeled by a Weibull distributio&][Z0
relative error is likely to be small in practice.

4.2 Handling unknown loss rates

Up to this point, we have configured each LDA optimally for
the actual loss rate. Obviously, any real deployment widcho
be configured for a range of loss rates. Here, we evaluateffihe e
cacy of various configurations of multi-bank LDAs over a rang
of loss rates. In particular, each bank within the LDA is tdine
(p = am/(L + 1),a = 0.5 as before) to a different target loss
rate. We consider three alternatives, each with the sarakenom-
ber (1,024) of counters: two banks of 512 counters tunedrasva
loss rates of 0.005 and 0.1, three banks with roughly orre-tifi
the counters tuned towards loss rates of 0.001, 0.01 andr®d]fi-
nally, four banks of 256 counters each tuned for loss rat@s0fl,
0.01, 0.05 and 0.1, respectively. These particular cordiipnms are
arbitrary; operators may find others better suited for theiworks.

We present results along the same three dimensions coedider
previously—effective sample size, relative error of deda stan-
dard deviation estimates—in Figure 7. To facilitate corrguar,
we continue with the same uniform loss and Weibull delayridist
butions and replot the optimal single-bank case configunedhie
actual loss rate as shown in Figures 5 and 6.

Figure 7(a) shows that while practical configurations aille

98%-confidence bounds computed using Equation 1. The actualfewer samples than optimal, the absolute value is not tofrdan
confidence bound depends on the number of samples obtained byour analytical estimates for the single-bank case. Theydmtal

each LDA, and, therefore, varies across instances. Eaoh lear

standard deviation curves in Figures 7(b) and 7(c) follownalar

shown in the figure corresponds to the most conservativeoun trend. The LDAs perform comparably across the ranges of loss

computed based on the run that collected the smallest nuaiber

although the four-bank LDA performs the worst of the threeewh

samples across the ten runs from Figure 5(a). While confadenc the loss rates are high. The number of buckets invested Hptine

decreases with higher loss rates, all of the individuahests re-
ported in our simulation remain quite close to the actual@aRe-
sults of other distributions are even tighter.

bank LDA tuned towards high loss rates (10%) is low, so itgstru
gles to keep up. We note, however, that most real networkatpe
at low loss rates—typically substantially less than 5%. dnatu-

For the same setup as above, we also measure the accuraey of thsion, we expect a two-bank LDA configuration tuned to re&iv

LDA's standard-deviation estimator (obtained from theaace es-
timator). We plot the average relative error incurred fdfedent
distributions in Figure 6. Estimates suffer from about 294trela-
tive error for Pareto to less than 10% error for Weibull disttions,
independent of loss rate. The magnitude of the relativer elvai-
ously depends on the actual standard deviation of the uidgrl
distribution, however. The true standard deviation of glefathe

low loss rates will be appropriate for most deployments.

4.3 Comparison with active probes

We compare the accuracy of the delay and standard deviation e
timates obtained using the two-bank LDA to those that arainbtl
using Poisson-distributed active probes (such as thoskehysthe
well-knownzi ng tool [24]) for various probe frequencies. The ac-
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Figure 8: Sample size, delay and standard deviation estimas obtained using a two-bank LDA in comparison with active pobing at
various frequencies. Log-scale axes.

curacy of the active probing approach depends criticallynuihe
frequency, so we provide a selection of natural comparisntg.
One approach is to hold communication overhead constargt, Fi
we consider an active-probing mechanism that communicees
frequently as LDA—once an interval, or 1 Hz. In practice, how
ever, the LDA data structure is too large to fit into one MT@esi
packet—an Ethernet implementation would actually neecetal's
seven separate packets per interval assuming 1x022 bits~ 72
Kbits for the data structure and 1,500-byte packets. Thudet
fair in terms of number of packets per second, we also usela pro
ing frequency of 7 Hz. Moreover, probe packets are much small
(containing only one timestamp and no counters), so holdangl-
width constant—as opposed to packet count—results in arob
rate of about 144 Hz (assuming probe packets of size 64 bytes) LDA decreases more rapidly, the sample size remains faeldarg
As we shall see, however, none of these rates approach the acc than those obtained by all but the most aggressive activieingo
racy of LDA; hence, we also plot a frequency that delivergtiy
equivalent performance: 10,000 Hz.
We generate Poisson-modulated active probes by injectoigep
packets at intervals distributed according to a Poissoocga®with
the desired average inter-arrival time, and then subjg¢kie probe
packets to the same delay distribution as the regular traffia nor-
mal queue, adding an active probe affects the queuing dysami
for example, it may cause packets behind to experience haghe
lays and in some cases, even be dropped. We do not, however, reestimates is not as stable as the average delay estimatésisLD
create such effects on packets behind active probes, lepaaket
delays are already based on a distribution and simulatinly at
fects will cause delays to deviate from the distribution.u3hthe
delays of regular packets are not impacted by the preseramioé

probes; only their timestamps are shifted.

posed to uniform) loss episodes with each episode congisfin
about 100 packets. We plot two sets of graphs. First, in Ei§uwe
compare the effective sample size, average relative errirei de-

lay and standard deviation estimators using active probesi@us
frequencies as well as LDA. In Figure 9, we show the confidence
bounds obtained for LDA. (We refrain from presenting conficke
intervals for active probes, as the bounds that can be dedvwe
unfairly loose.)

Figure 8(a) clearly shows the impact of increased probe fre-
quency: more samples. As before, each point representvéhe a
age of ten runs. The number of samples collected by activeegro
decreases by a small amount as the loss rate increases e to t
lost probes. While the number of effective samples obtaimgd

rates under significant( 1%) loss. Consequently, the average rel-
ative error observed by LDA (0.2—-4%) is significantly lowkah

that for active probes with an equivalent number of packatadst
100%) as shown in Figure 8(b). Even when we hold the measure-
ment bandwidth steady across LDA and active probes (144 Hz),
we observe at least an order of magnitude (11% compareddo les
than 1% at loss rates less than 1%) difference in the relative
ror between the two. While the improvement in standard dieria

still considerably more accurate (3%—-9% %515%) over realistic

(< 5%) loss rates. Overall, only the 10,000 Hz probing rate pro-

vides accuracy approaching LDA. Said another way, actigbipg

requires 50-60 times as much bandwidth to achieve simialtse
Perhaps more importantly, however, LDA is significantly mor

For these experiments, we continue to use the same Weibull de reliable. Figure 9 shows that the 98%-confidence intenalisHe
lay distribution as before, but with exponentially distried (as op-

constituent LDA runs from Figure 8(a) are quite small—geifigr
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Figure 9: Delay estimates and 98% confidence bounds from a
two-bank LDA. Actual mean delay is 0.2us.

within 25% of the mean (for loss rates less than 0.1%) and less
than a factor of two even at 10% loss. Empirically, howevache
estimate is well inside the analytical envelope. Focusindoss

rate regimes that the LDA was tuned for, e.g., 0.16%, the mami
relative error across all runs of LDA was 0.17%. The same a@nn
be said for active probing, however, which had runs withtieta
errors as large as 87% for 7 Hz and 13% for 144 Hz. Once again,
only 10,000-Hz probes were competitive, with a maximumtieta
error of 0.15%.

5. REALIZATION

In this section, we discus two separate aspects of LDA deploy
ment. First, we explain how LDAs can be implemented within a
router by presenting a sample design. Then, we describe Bévg L
could be deployed across routers (i.e., to measure linkduaad
for fault localization.

5.1 Hardware implementation

We have sketched out the base logic for LDA that we estimate
takes less than 1% of a low-end 10 nx11.0 mm networking ASIC,
based on the standard 400-MHz 65-nm process currently leaing
ployed by most networking chipset vendors. The logic is flow-
through—in other words, it can be inserted into the path afila |
between the sender and receiver end without changing amy oth
logic—allowing LDA to be incrementally deployed within ating
router designs.

A minimal implementation would place a single LDA together
with MAC logic at ingress and egress links; ingress-egregbs
pass through a number of points within a router where padeets
be queued and, therefore, delayed or lost. We envision, \@we
that deployed LDAs will contain a packet classifier that iifés
a particular class of traffic, such as flows to a specified TQR po
Hence, it may be useful to include multiple LDAs on a singteli
card. Most mid-range ASICs should be able to afford up to ten
separate copies of the LDA logic to handle various trafficstes
and/or priority levels. Finally, we observe that while maoyters
internally stripe packets at various points in the routeicihvould
break our FIFO assumption, packets are resequenced atizario
points. Thus, rather than placing LDA logic on every strijpadth,
it may be cheaper to place the LDA receiver logic where resectu
ing takes place.

Figure 10 shows a schematic of our initial design. The logic a
sender and receiver is nearly identical. At the sender ifregethe
first X bytes of the packet—say fifty—are sent to the logic. The

Control Logic
Bank 1 Bank M
Packet
{ Control ’?J
Counter| TS_Sur Count%r TS_Sum
. o0
Classifier
Extract

Hash Update Logic

Figure 10: Potential LDA chip schematic

logic first determines if it is a control or data packet usisay, an
Ethernet type field.

If the received packet is a data packet, a classifier is used-to
lect the type of packet being measured. The update logiaestr
some fixed bytes from the packet (say bytes 50—-100) and cesput
a hash. H3 hash functions [29], for example, can be impleedent
efficiently in hardware using XOR arrays and can be easilyimod
fied. Our estimates use a Rabin hash whose loop is unrollaghto r
at 40 Gbps using around 20,000 gates.

The hash output supplies a 64-bit number which is passectto th
update logic. The high-order bits select the sampling priiba
which in turn determines which bank is selected. For exaniple
there are two banks, that are selected with probabiliti@sabhd
1/64, the six high-order bits are used. If the first six bits z&ro,
the second bank is selected; if the first six bits are non-zedithe
first bit is zero, the first bank is selected.

If a bank is selected, the low-order bits of the hash are used t
post a read to the corresponding bank. For example, if eatk ba
has 1,024 counters, we use the ten low-order bits. The upmizite
then reads the 72-bit value stored at the indicated localibe first
32 hits are a simple packet counter that is incremented. asielD
bits are a time stamp sum (allows nanosecond precision) ichwh
the current value of the hardware clock is added. The updaiee
is then written back to the same location.

The sender-side logic conceptually generates control giack
at the end of each measurement interval. Control packets are
sequence-numbered so that loss of control packets trarisiat
a measurement interval being ignored. When the receivés teg
ceives the sender’s control packets and updates its owendss
the control packets to a line-card processor which compieéssy,
loss, and variance estimates in software which it can theort¢o
a management station on demand.

The control logic can work in two ways. The simplest way is to
keep two copies of each counter so that the control logic aak w
on reading and zeroing LDA counters for a prior interval iotm-
trol packet(s) concurrently with the update process. Ahezly,
two control packets can be used: one to record the end of an in-
terval, and a second control packet séhseconds later to denote
the start of the next interval. During the intervening pédrithe up-
date logic is disabled to allow the control logic to read allisters.
The disadvantage is that thou@h can be small, a small number of
samples (say 100) are ignored.

The logic for counters is placed in SRAM while the remaining
logic is implemented in flops. In a 65-nm 400-Mhz process0@,0



SRAM counters of 72 bits each takes 0.13 faw/hile the size for
the hash logic is about 20,000 gates, we conservativelynastian-
other 30,000 gates for the classifier (a simple mask-andracarto
one specified header), header extraction, and counter updatd; y
ing a total of around 50,000, or approximately 0.1 frima 65-nm
process. The grand total is arourd0.23 mm?. Even if we dou-
ble the width of the counters and keep two copies of the edtta
structure (to handle sender and receiver logic), an LDArggire-
sents less than 1% of the area of the lowest-end (10xt@ mm)
ASICs on the market today.

5.2 Deployment and fault localization

The easiest path to deployment is to first deploy within iittiv
ual routers where the majority of loss and delay occur. It alap
be useful to deploy across links because of optical deviag, (e
SONET) reconfigurations and degradations. The difficultyde-
ploying across links is the need for microsecond precisiwhtae
need for a protocol change. Fortunately, a solution to boskop
lems can be found in terms of a new precision time-synchedioiz
standard called IEEE 1588 [15] being deployed by major moute
vendors. IEEE 1588 uses synchronization messages thattare i
cepted by hardware. IEEE 1588 can easily be extended todandl
LDA using a few extra control message types and the logic de-
scribed above.

Significant benefits can be derived from a full deploymentereh
LDAs are deployed at each and every router and link. In par-
ticular, performance fault localization—traditionallyvary chal-
lenging problem [18, 39]—becomes straightforward. We siovi
the presence of a centralized monitoring station which ccasle

a topology monitor (such as OSPF monitor [32]) to decompose a 7.

misbehaving end-to-end path into segments, and query eaeh s
ment to isolate the misbehaving (e.g., high-delay) segm®&oal-
ing to hundreds or even thousands of collectors seems Istfiaig
ward, as each summary structure is only a few kilobits in. d&xen
maintaining one-second intervals—which may be overkilléoge
deployments—the bandwidth requirement at the collectioimtp

would be on the order of a megabit per second for a thousand mea

surement points.
Even stopping short of pervasive deployment, LDA can be ex-

tended to include virtual links between pairs of upgradedens, in

an overlay topology consisting of just upgraded routersxected

via legacy router hops. We omit the details for lack of spéce,
our experiments with RocketFuel topologies show that uligta
1/6th of the routers in the Sprint topology reduces the Iaatibn
granularity (the average path length between upgrade@ngjuto
around 1.5.

6. RELATED WORK

Traditionally, network operators determined link and hogper-
ties using active measurement tools and inference algasitt-or
example, the work by Chesat al. [6] and Dulffieldet al. [8] solve the
problem of predicting the per-hop loss and latency charisties
based on end-to-end measurements (e.g., conducted usivg ac
probing tools [33, 24]) and routing information obtainedrfr the
network (e.g., using OSPF monitoring [32]). The advantajesir
approach in comparison are two fold. First, LDA computespat
and link properties by passively monitoring traffic in a ®tso
it does not interfere with measurements or waste bandwiglih-b
jecting any active probes. Second, LDA captures fine-getanicy
measurements that can be only be matched by extremely td@gh fr
quency active probes (as discussed in Section 4.3). Fuitheur
evaluation, we compared against localized active probes Ge-
tween every pair of adjacent routers), which are more firéagr

than the current best practice (end-to-end probing) asds dmt
scale, requiring the monitoring 6(m) ~ O(n?) segments where
m is the number of linksy is the number of routers.

We are not the first to suggest router extensions in support of
fine-grain measurement. For example, Machireijwal. argue
for a measurement-friendly network architecture wheravide
ual routers provide separate priority levels for activeba®[23].
Duffield et al. suggest the use of router support for sampling packet
trajectories [10]. Passive measurement of loss and deldirégtly
comparing trajectory samples of the same packet observeif at
ferent points has been studied by Zsa\al. [40] and Duffield
et al. [9]. Many high-speed router primitives have also been sug-
gested in the literature for measuring flow statistics arteéatag
heavy-hitters [7, 11].

Papagiannakdt al. used GPS-synchronized (to microsecond ac-
curacy) passive monitoring cards to trace all packets imgtemd
leaving a Sprint backbone router [28]. Each packet gererate
fixed-size time-stamped record, allowing exact delays, el as
other statistics, to be computed to within clock accuraapnia
measurement standpoint, their approach represents thle @@ct
packet-for-packet accounting. Unfortunately, as theynbaves
point out, such an approach is “computationally intensive de-
manding in terms of storage,” making wide-spread productie-
ployment infeasible. Hohet al. describe a mechanism to obtain
router delay information using the amplitude and duratibbusy
periods [14]. While their approach provides only an apprate
distribution, it can be effective in determining the ordénmagni-
tude of delay.

CONCLUSION

This paper proposes a mechanism that vendors can embed di-
rectly in routers to cheaply provide fine-grain delay and loea-
surement. Starting from the simple idea of keeping a summf se
timestamps and a sum of receive timestamps which is noteesil
to loss, we developed a strategy to cope with loss using pheilti
hash buckets, and multiple sampling granularities to detl wn-
known loss values. Further, we adapt the classic approatB-to
norm estimation in a single stream to also calculate thedatah
deviation of delay. Loss estimation, of course, falls outidily
from these data structures.

We emphasize that our mechanism complements—but does not
replace—end-to-end probes. Customers will continue toense
to-end probes to monitor the end-to-end performance of #pgili-
cations. Further, it is unlikely that LDA will be deployedatt links
along many paths in the near future. However, LDA probes can
proactively discover latency issues, especially at verg finales,
that a network manager can then address. Further, if anceadet
probe detects a problem, a manager can use the LDA mechanism
on routers along the path to better localize the problem.

While our setting begs comparisons to streaming, we intedu
a new streaming problem: two-party coordinated streamiitg w
loss. In this setting, problems that were trivial in the $#apgarty
streaming setting (such as identifying the maximum valvehaw
provably hard. Thus, we believe coordinated streaming n&y b
an interesting research area in its own right: Which coateid
functions can be computed with low memory? Further, theee ar
functions which would be useful in practice (e.g., lossréistions)
that we do not yet know how to compute efficiently.

From a router-vendor standpoint, the efficiency of the psepo
techniqgue seems acceptable. Moreover, we observe thati-all m
crochips today have a component called JTAG whose overhead
chip vendors happily pay for the benefit of increased easemf c
figuration and debugging. Our broader vision is that all reking



chips should also have a small “MTAG” component to faciétat
fine-grain measurement of latency and loss. The LDA priregiv
described in this paper would be a candidate for such an MTAG
component. With such a component universally deployednéte
work manager of the future could pin-point loss spikes argngh

in the networking path of a critical network application kvitni-
crosecond accuracy.
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