
Compressing Network Graphs

Anna C. Gilbert
AT&T Labs-Research

180 Park Avenue
Florham Park, NJ 07932
agilbert@research.att.com

Kirill Levchenko∗

University of California, San Diego
9500 Gilman Drive Dept 0114

La Jolla CA 92093-0114
klevchen@cs.ucsd.edu

ABSTRACT
Graphs form the foundation of many real-world datasets
ranging from Internet connectivity to social networks. Yet
despite this underlying structure, the size of these datasets
presents a nearly insurmountable obstacle to understanding
the essential character of the data. We want to understand
“what the graph looks like;” we want to know which ver-
tices and edges are important and what are the significant
features in the graph. For a communication network, such
an understanding entails recognizing the overall design of
the network (e.g., hub-and-spoke, mesh, backbone), as well
as identifying the “important” nodes and links.

We define several compression schemes, including vertex
similarity measures and vertex ranking. We present a sys-
tem for condensing large graphs using both auxiliary infor-
mation (such as geographic location and link type in the
case of communication networks), as well as purely topolog-
ical information. We examine the properties of these com-
pression schemes, demonstrate their effects on visualization,
and explore what structural graph properties they preserve
when applied to both synthetic and real-world networks.

1. INTRODUCTION
Massive graphs are everywhere, from social and commu-

nication networks to the World Wide Web. The geometric
representation of the graph structure imposed on these data
sets provides a powerful aid to visualizing and understanding
the data. However even with this aid, these graphs are too
large to comprehend without additional processing. In this
paper, we consider creating graphical summaries of the large
graphs arising in the domain of enterprise IP networks. Our
methods do not limit us to this domain; rather, this domain
is rich in large highly engineered graphs.

We do this by transforming the original graph into a smaller
one using structural features of the graph that have well-
understood semantics in our domain. The resulting smaller,

∗ A significant portion of this work was done while Kirill
Levchenko was visiting AT&T Labs–Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

and usually annotated, graph can then be visualized, and,
we hope, understood, by a human being confronted with
such a dataset. We refer to this process as graph com-
pression, or, more properly, semantic graph compression,
to distinguish it from algorithmic graph compression where
a graph is compressed in order to reduce the time or space
complexity of a graph algorithm.

We define two categories of compression schemes, one
based on the notion of vertex importance and another on the
notion of vertex similarity, which we describe in Section 3,
after discussing related work in the next section (Sec. 2). In
Section 4 we experimentally verify our results on two syn-
thetic and four real-world datasets, using Arc [6], a graph
compression tool expressly developed for this purpose, and
whose description we omit due to space constraints. Finally,
Section 5 concludes the paper.

2. RELATED WORK
Algorithmic Compression. Previous work in graph

compression has been concerned exclusively with compress-
ing graphs for input to algorithms, where the (smaller) com-
pressed representation preserves some property used by the
algorithm.

Feder and Motwani [5] consider transforming a graph into
a smaller one (in terms of the number of vertices and edges)
that preserves certain properties of the original graph, such
as connectivity. A graph compressed in this manner is suit-
able for (more efficiently) computing certain graph func-
tions, such all-pairs shortest paths. Although our shared
medium compression scheme has similarities with this work,
our goal is to preserve the semantics of the original graph,
rather than its algorithmic properties.

Adler and Mitzenmacher [1] and Suel and Yuan [12] con-
sider losslessly compressing the Web Graph for efficient search
engine storage and retrieval. Although it differs from our
work in that only the representation, and not the actual
graph, is compressed, their compression process itself may
reveal semantically-relevant information.

The Web Graph. The link structure of the World
Wide Web has seen considerable study in the context of
web search, an important step of which is ranking the results
in order of relevance. The most widely studied algorithms
for this—PageRank [10], HITS [7], and SALSA [9]—use a
Markov model, motivated by the image of a web surfer vis-
iting web pages by following links or jumping to a random
page. Because our graph is undirected, such a process does
not reveal additional information; however other spectral
techniques, which we did not investigate, may have applica-

tions to our problem.
Recently, White and Smyth [14] introduced a number of

new notions of vertex importance using both paths and ran-
dom walks. Our paths scheme is a specialization of their
weighted paths algorithms.

In [8], Kumar et al. infer certain relationships between
nodes in the Web Graph based on the link structure. (The
same idea is also found in Kleinberg’s HITS [7], which in-
fers hub-authority relationships between websites.) Our re-
dundant vertex elimination scheme is based on this idea of
recognizing local structures.

IP Network Measurement. Faloutsos et al. in [4]
reported on the statistical properties of the autonomous sys-
tem network graph as well as Internet router graphs. While
their goal is to characterize the statistical properties of the
network graph, we are interested in understanding a par-
ticular instance of a network. Nonetheless, their work has
led to the emergence of Internet topology generators, one
of which, inet-3.0 [15], was used to generate one of our
synthetic datasets.

Spring, Mahajan, and Wetherall in [11] used novel tech-
niques to derive approximate real-world IP topologies. We
use several of their publicly available datasets in experi-
ments.1

Graph Visualization. Our work uses neato, a part
of GraphViz [2], which is a publicly available graph visual-
ization tool developed at AT&T Labs–Research. GraphViz
also includes gvpr, a graph processing tool that has some of
functionality of Arc [6], our graph compression tool.

3. COMPRESSION SCHEMES
With the application of communication network visual-

ization in mind, let us define a compression scheme to be
a transformation of a network graph into a much smaller,
possibly annotated, graph that preserves the salient char-
acteristics of the original network. What these might be
is, necessarily, an elusive concept; nevertheless we will take
these to be characteristics that have a straightforward, real-

world interpretation in the domain of communication net-

works. One obvious such characteristic is connectivity: if an
underlying network is connected, the compressed network
should be connected also. Therefore, we shall attempt to
justify our compression schemes based on their real-world
interpretation.

One way to classify compression schemes is into those that
are purely topological, that is, those that rely only on the
underlying network graph, and into those that rely on ad-
ditional vertex or edge attributes. In an IP network, for
example, vertices (hosts) may be labeled as routers or work-
stations: for such a network a reasonable compressed rep-
resentation may be the network graph induced by the set
of router vertices. While such a compression scheme is in-
herently more powerful than a purely topological one, its
requisite information may not always be available.

Orthogonal to the classification above, we have identified
two basic types of compression schemes: those that com-
press the network based on a notion of node importance,
and those based on a notion of similarity. An importance
compression scheme ranks vertices in order of importance
(or based on an importance predicate), producing the in-

1Our affiliation should not be seen as an endorsement of the
accuracy of Rocketfuel data.

duced graph as the compressed network. Such compression
schemes are presented in section 3.1. A similarity compres-
sion scheme, on the other hand, combines similar vertices
into a single vertex in some manner; these schemes are cov-
ered in section 3.2. We let G = (V, E) denote the network
graph G with vertex set V and edge set E in what follows.

3.1 Importance Compression Schemes
The notion of a node’s importance in a graph has received

considerable attention in the domain of Web graphs (in the
context of ranking Web search results), as well as in the do-
main of social networks. We consider importance to be a
weight function on vertices, and describe three such func-
tions: two based on degree and one based on shortest paths
in the graph. We then consider how an importance notion
can be used to compress a graph in Section 3.1.3.

3.1.1 Degree-based Importance
The degree of a node is arguably one of the simplest and

most intuitive measures of importance in a communication
network. One may reasonably posit that the greater the
degree, the more important the network node, especially
in view of the preferential attachment interpretation of the
power law phenomenon. There are a number of essentially
equivalent ways to define such a weight function; let us
choose

wdeg(v) ≡ |{u ∈ V : deg(u) ≤ deg(v)}|/|V |,

which gives a weight in the range (0, 1].
Unfortunately, wdeg tends to favor dense components of

a graph because the weight of a vertex is its relative rank
compared to all the vertices in the graph. For this reason,
we developed a localized variant:

wbeta(v) ≡ |{u ∈ N(v) : deg(u) ≤ β · deg(v)}|/|N(v)|,

where β is a parameter and N(v) is the set of vertices ad-
jacent to v. The Beta weight function assigns weight rela-
tive to the neighborhood of a vertex, rather than the whole
graph.

3.1.2 Shortest Path-based Importance
Distance is another fundamental graph property that has

a natural interpretation in the domain of IP networks, and
that is as the number of hops between two routers. It seems
reasonable, then, to consider weight functions based on this
quantity. Recall that the eccentricity of a vertex is defined
to be the maximum distance between itself and another ver-
tex. It can be thought of as a measure of how far the vertex
is from the “center” of the graph. However because a com-
munication network may not have a meaningful “center,”
we did not further pursue such a weight function.

Instead, we considered the following weight function. De-
fine the Path weight wpath of a vertex (sometimes also called
its betweenness in social networks) to be the number of
shortest paths between any two (not necessarily distinct)
vertices in the graph through the vertex, divided by the
square of the total number of vertices in the graph; when
there are multiple shortest paths between a pair of vertices,
each is weighted equally so that the sum of the weights of all
shortest paths between the two vertices is 1. More formally,
define

wpath(v) ≡
X

x,y∈V

|{π ∈ Π(x, y) : v ∈ π}|

|V |2|Π(x, y)|
,

a b

Figure 1: Running KeepOne on the graph above,
with the set of important vertices K1, shown shaded
results in the removal of the dotted vertex, increas-
ing the minimum distance between a and b by 1.

where Π(x, y) is the set of all shortest paths between x and
y. Thus the Path weight function, also called betweenness in
social networks, favors vertices that lie on a shortest path a
packet would take traveling between hosts in the network.2

3.1.3 Using Importance to Compress
Important vertices alone may not capture the topological

features of the network graph. For example, the graph in-
duced by the important vertices may be disconnected, even
if the original graph is not. If this is the case, at the very
least, we must reconnect the important vertices. We con-
sidered two ways of doing this. The first approach is to add
the minimal number of vertices. That is, if K1 is the set
of important vertices, our goal is to find the minimal set
K2 such that the graph induced by K1 ∪ K2 is connected.
Unfortunately, this problem is NP-Complete. Our approxi-
mation algorithm, KeepOne, works by building a minimum
spanning tree on the complete graph on K1 where an edge
(u, v) has weight equal to the length of a shortest path from
u to v. The set K2 then consists of any additional vertices
along any “path” edge in the minimum spanning tree. The
result is the graph induced by the vertices K1 ∪K2.

Unfortunately, while KeepOne preserves the connectivity
of the original graph, it does not preserve distances between
“important” vertices. Consider, for example, the graph in
Figure 1. The important vertices (K1) are shown shaded.
Because the graph induced by K1 is already connected,
KeepOne will exclude the vertex shown with dotted lines,
increasing the minimum distance between a and b by 1.

Our second algorithm, KeepAll, shown in Figure 2 rec-
tifies this by keeping vertices that lie along a shortest path
between any two vertices in K1, preserving all minimum
distances between important vertices.

3.2 Similarity Compression Schemes
In this section, we consider the second class of compres-

sion schemes which use a similarity measure or relation to
combine similar vertices into one. A well-chosen similarity
measure may lead to substantially less cluttered graphs at a
minimal loss of information. We may derive this similarity
measure from purely topological information or from vertex
or edge attributes that are included in the dataset. A typical
vertex attribute in network graphs is the geographic location
of the router. Sometimes, we also have edge attributes such
as link type and address which determine if it is a shared
medium link (e.g., Ethernet).

2However it is worth noting that in real IP networks a packet
often does not take a shortest path through the network; see,
e.g., [13].

KeepAll(G, K1):
K2 ← ∅
For u, v ∈ K1:

K2 ← K2 ∪ ShortestPathG(u, v)
V ′ ← K1 ∪K2

E′ ← EG ∩ (V ′ × V ′)
Return (V ′, E′)

Figure 2: The KeepAll algorithm takes a graph G
and a set K1 of important vertices. It return the
subgraph induced by the vertices K1, combined with
the vertices connecting them along a shortest path.

Figure 3: Hosts on a shared medium link appear as
vertices in a clique in the network graph.

3.2.1 Redundant Vertex Elimination
A natural similarity measure on a pair of vertices is the

number of neighbors they have in common. In fact, this
has a natural interpretation in the domain of communi-
cation networks: important routers are sometimes dupli-
cated for redundancy, and appear as a pair of vertices with
nearly identical neighbors. Our redundant vertex elimina-
tion scheme merges two vertices having some minimum num-
ber of common neighbors into a single vertex which inherits
their edges. When a vertex v shares many common neigh-
bors with two distinct vertices u and w, the pair (u and v
or v and w) with the greater number of common neighbors
is chosen.

3.2.2 Geographic Clustering
In some cases, the network nodes may be labeled with

geographic information. In this case, the similarity relation
simply encodes the equivalence class of being in the same ge-
ographic region. This can be a highly effective compression
scheme for understanding the global topology of a network.

3.2.3 Shared Medium Clustering
Local-area networks such as Ethernet connect communi-

cating hosts on a shared medium, such that all hosts on
the link can talk to each other. In the network graph, this
appears as a clique (see Fig. 3), and introduces unneces-
sary edges into the graph. These cliques also run counter
to network engineers’ intuition of what the network looks
like. When the link type and address is known, the Shared
Medium Clustering scheme identifies such cliques and merges
each into a single vertex. If a vertex is on two distinct shared
medium links, we connect the resulting shared medium ver-
tices with an edge (see Fig. 4).

Figure 4: We eliminate unsightly cliques resulting
from shared medium links by merging the vertices
into a single vertex. The shaded vertex, which is
connected to two shared medium networks, is rep-
resented by the edge in the resulting graph.

4. EXPERIMENTAL RESULTS
Because these algorithms are in part exploratory data

analysis tools, it is not clear how to compare one compres-
sion scheme to another. With our definition of compression,
there is no metric of bits per vertex or edge, nor is there a
natural distortion metric with which to measure the prox-
imity of the compressed graph to the original. It is also not
clear what effect the different tunable parameters in each
compression algorithm will have on a particular graph. To
obtain a better understanding of the behavior of our com-
pression schemes on large network graphs and to evaluate
their performance, we apply them to both real and synthetic
datasets.

4.1 Experimental Setup
To implement the compression schemes presented in Sec-

tion 3, we developed Arc [6], a tool designed expressly for
this purpose. Here, we describe the settings used in the
experiments, as well as any implementation details. In all
cases, the graphs are undirected and connected. For some
datasets, this required adding directed edges to balance one-
way links, and removing all but the largest connected com-
ponent.

Degree and Beta Weight. For wbeta, we set β = 1.0,
and then took the 20 heaviest vertices (based on the weight
function) as the set K1 of important vertices.

Path Weight. Rather than computing the set Π(x, y)
of all shortest paths from x to y exactly, we used just one
shortest between x and y path, chosen arbitrarily, in order
to simplify implementation. Because of this, vertex weights
may change between different executions of the algorithm.
The set K1 consisted of the 20 largest-weight vertices.

The KeepOne Algorithm. We implemented the Keep-

One algorithm as described in Section 3.1.3. We broke ties
for the shortest path arbitrarily, which in some cases may
produce arbitrarily bad approximation factors.

The KeepAll Algorithm. We implemented the KeepAll

algorithm as described in Section 3.1.3. Again, ties for the
shortest paths were broken arbitrarily.

Redundant Vertex Elimination. We implemented
Redundant Vertex Elimination (RVE) as described in Sec-
tion 3.2, breaking ties arbitrarily. We set the parameter k
(the minimum number of common neighbors) to 10.

Lacking certain information on the link types or the geo-
graphic location of the routers in our public datasets, we did
not perform any experiments involving the Shared Medium
Compression or Geographic Clustering schemes. This data

may, however, be available in proprietary information.
We used six datasets: two synthetic graphs, INET and

ERDOS, and four real networks, AS7018, AS1294, AS2913
and AS3356. INET is a power law graph as generated by
inet-3.0 [15]. It consists of 3076 vertices and approximately
30% of those vertices have degree one. The degrees of the
other vertices follow a power law as the entire graph is de-
signed the capture the salient features of the AS graph in
the Internet. The average degree in INET is 3.16. The sec-
ond graph, ERDOS, is an Erdős-Renyi random graph [3].
In an Erdős-Renyi random graph, each pair of vertices is
joined with an edge with probability p. As in INET, ER-
DOS has 3076 vertices and we set p so that the expected
degree is 3.16 as in INET. The four real networks are pub-
licly available from [11]. These datasets include a number of
networking details. We chose to use the authors’ classifica-
tion of backbone routers so that we could judge the efficacy
of our schemes in finding important vertices (assuming that
backbone routers are important ones). We also chose to use
the datasets for which the Rocketfuel authors are sure these
routers belong to the autonomous system. These datasets
are smaller and are more likely to have been designed with a
special purpose in mind. All the data networks have several
hundred vertices (ranging from 600 to 900) and they each
have several thousand edges (from 4000 to 10000). They
each have about 400 backbone routers.

4.2 Before and After
Figures 5–9 show each network before and after compres-

sion. We chose the after pictures on a purely visual basis–
what figure seemed to capture the salient features of the
original graph without also including spurious vertices and
edges. No one compression scheme consistently yielded the
best visual compression. In addition, the best visual com-
pression scheme was not the scheme that pruned the largest
fraction of edges and vertices although it did remove a signif-
icant fraction. We do not show the before and after figures
for ERDOS as the compression schemes either removed few
edges and vertices or they removed far too many. We are,
in fact, heartened by this result as we do not expect to find
significant structures in a random graph. We do, however,
see that Beta weight with the KeepAll algorithm seems to
bring out the highly variable degree structure of INET, a
power law graph. This compression scheme highlights the
highest degree vertex at the center and removes or decreases
the proportion of degree one vertices.

Table 1 summarizes the compression factors for each graph
and each compression scheme. It displays the original num-
ber of vertices, backbone vertices (where appropriate), and
edges. It also shows how many vertices, backbone vertices,
and edges (and their percentage of the original values) are
retained under the different compression schemes. Over all
networks RVE compresses the least. In fact, on the two
random graphs, it performs no compression. Not surpris-
ingly, the KeepAll algorithm retains more vertices and
edges than the KeepOne algorithm as KeepAll includes
all the vertices along a shortest path that connect important
vertices. We also observe that a degree-based importance
measure tends to compress the graph less than a path-based
measure.

4.3 Finding Important Features
To evaluate our compression schemes, we relied on the

Figure 5: The INET graph before compression (left) and after compression using the Beta weight function
with the KeepAll algorithm (right). In the compressed graph, important vertices are shown shaded.

Figure 6: The AS1239 graph before compression (left) and after compression using Redundant Vertex Elim-
ination followed by the Degree weight function with the KeepOne algorithm. In the compressed graph,
merged vertices are shown as diamonds and important vertices are shown shaded.

Figure 7: The AS2914 graph before compression (left) and after compression using the Path weight function
with the KeepOne algorithm. In the compressed graph, important vertices are shown shaded.

Figure 8: The AS3356 graph before compression (left) and after compression using Redundant Vertex Elimi-
nation followed by the Beta weight function with the KeepAll algorithm. In the compressed graph, important
vertices are shown shaded.

Figure 9: The AS7018 graph before compression (left) and after compression using the Path weight function
with the KeepAll algorithm. In the compressed graph, important vertices are shown shaded.

ERDOS INET AS1239 AS2914 AS3356 AS7018

V % E % V % E % V % BB % E % V % BB % E % V % BB % E % V % BB % E %

Original 2937 100 4989 100 3076 100 4859 100 604 100 362 100 2268 100 960 100 453 100 2821 100 624 100 431 100 5298 100 631 100 385 100 2078 100

RVE 2937 100 4989 100 3074 100 4836 100 553 92 311 86 1605 71 909 95 406 90 2212 78 491 79 303 70 3831 72 576 91 332 86 1337 64

Deg/One 56 2 55 1 20 1 34 1 25 4 24 7 35 2 23 2 22 5 30 1 20 3 20 5 55 1 38 6 34 9 56 3

Beta/One 76 3 75 2 32 1 35 1 36 6 35 10 44 2 53 6 41 9 69 2 26 4 26 6 49 1 44 7 40 10 61 3

Path/One 35 1 34 1 20 1 37 1 20 3 20 6 31 1 20 2 20 4 46 2 20 3 20 5 56 1 20 3 20 5 34 2

Deg/All 409 14 574 12 107 3 238 5 107 18 98 27 390 17 88 9 85 19 362 13 82 13 79 18 716 14 90 14 82 21 261 13

Beta/All 522 18 731 15 84 3 151 3 134 22 126 35 444 20 136 14 121 27 427 15 96 15 93 22 733 14 102 16 93 24 306 15

Path/All 280 10 384 8 100 3 225 5 64 11 61 17 182 8 65 7 65 14 241 9 70 11 68 16 449 8 45 7 43 11 108 5

RVE+Deg/One 55 2 54 1 20 1 35 1 21 3 21 6 51 2 22 2 20 4 36 1 20 3 20 5 135 3 34 5 32 8 53 3

RVE+Beta/All 505 17 709 14 89 3 162 3 104 17 95 26 315 14 118 12 100 22 329 12 77 12 72 17 643 12 100 16 89 23 259 12

RVE+Path/One 33 1 32 1 20 1 35 1 20 3 20 6 46 2 21 2 21 5 50 2 20 3 17 4 87 2 21 3 21 5 35 2

Table 1: A summary of the performance of our compression schemes, showing the number of vertices,
backbone vertices, and edges retained by each.

Figure 10: The fraction of backbone vertices in the
AS1239 graph under different compression schemes.

Figure 11: The fraction of backbone vertices in the
AS2914 graph under different compression schemes.

“backbone” label in Rocketfuel dataset, from which the AS1239,
AS2914, AS3358, and AS7018 graphs are derived, with
the assumption that backbone routers are intrinsically more
important than other types. Figures 10–13 show the fraction
of backbone vertices in the original graph and the graph af-
ter applying our compression schemes. In all cases, the com-
pression schemes were able to identify the backbone routers,
in some cases producing a graph composed exclusively of
backbone routers. (Note that a decrease in the backbone
router ratio after applying Redundant Vertex Elimination
indicates that disproportionately more backbone vertices were
merged than ordinary vertices.) In most cases, the Path
weight algorithm (either alone or in conjunction with RVE)
produced a graph which consists exclusively of backbone
routers. This suggests that backbone routers are on many
shortest paths between routers, as to be expected! It is in-
teresting to note that the Path weight algorithm employs
a measure which tends to compress the graph more than a
degree-based measure. Not only does this measure remove
more extraneous information in the graph but it also retains
more important information.

4.4 Vertex and Edge Compression
Because we fix the size of K1 at 20 throughout these ex-

periments, it is worthwhile investigating how many vertices
each compression scheme added back (in addition to the
important ones) to reconnect the graph. This number is
the size of K2 and reflects the connectivity of the impor-

Figure 12: The fraction of backbone vertices in the
AS3356 graph under different compression schemes.

Figure 13: The fraction of backbone vertices in the
AS7018 graph under different compression schemes.

tant vertices. Figure 14 shows for each network and for
each compression scheme the number of additional vertices,
expressed as a percentage of the total number of vertices.
Because RVE compressed each network poorly, we removed
it from the data. INET seems to have a different connectiv-
ity structure among its important vertices from the AS and
ERDOS graphs. Considerably fewer vertices were added
to INET in order to reconnect the important ones. For the
real world networks, the Path algorithm added the fewest
vertices which is not surprising as it tends to favor vertices
that lie on a shortest path and, as such, generates important
vertices that are already likely connected.

Although each compression scheme operates only on ver-
tices and not on edges, each algorithm does change the num-
ber of edges in the graph. Figure 15 shows, for each compres-
sion scheme and for each network, the percentage of total
edges retained. This percentage is a reflection of the degree
distribution of the vertices kept in the compressed graph
and it shows what percentage of the edges are incident to
important vertices. We observe that the overall structure of
this measure is quite similar to the percentage of additional
vertices each scheme requires to reconnect the graph. Not
surprisingly, the more vertices added, the more edges added.
What is more interesting is the small relative changes. For
example, for AS1239, the percentage of additional vertices
for the two schemes Deg (all) and RVE+Beta (all) are about
the same, 14%. The percentage of edges retained, however,
by the two schemes are different, 17% for Deg (all) and 14%
for RVE+Beta (all). Deg (all) classifies as important vertices
those with a higher degree than RVE+Beta (all)’s important
vertices.

4.5 KeepOne versus KeepAll

In Section 3.1.3 we motivated the KeepAll algorithm by
arguing that the KeepOne algorithm does not preserve the
distances between important vertices. Figure 16 shows the
most severe distance distortion, which occurred using Path
weight on the ERDOS graph. In practice, the KeepOne

did not differ significantly from the KeepAll algorithm:
both generally shifted the distribution but kept its overall
shape. As an example, figure 17 shows Path weight on the
AS1239 graph.

4.6 Choosing Parameters
Throughout the experiments, we fixed the size of K1 to

be 20. One may ask whether this is an optimal choice, or
whether the graph has a “natural” number of important
vertices. Figure 18 shows the fraction of vertices retained as
a function of the Beta weight threshold in the range [0.5, 1].
Response to the threshold is essentially smooth, with jumps
at small-integer fractions (e.g., 1/2, 2/3, etc.).

Figure 19 shows the complementary cumulative distribu-
tion of the number of common neighbors between pairs of
vertices. The tail suggests that there are vertices with very
large sets of common neighbors. Figure 20 shows the com-
plementary cumulative density of a slightly different simi-
larity measure, which is the ratio of the number of com-
mon neighbors to the total number of neighbors of a vertex.
While this measure is interesting, it does not seem as useful
for clustering redundant vertices.

5. CONCLUSION
The emergence of large network connectivity datasets has

10%

20%

30%

40%

0 5 10 15 20

Path (one)
Path (all)
Original

Figure 16: The distance distribution on all distinct
vertex pairs in the ERDOS graph using Path weight
with the KeepOne algorithm and with the KeepAll
algorithm shown for comparison.

10%

20%

30%

40%

0 5 10 15 20

Path (one)
Path (all)
Original

Figure 17: The distance distribution on all distinct
vertex pairs in the AS1239 graph using Path weight
with the KeepOne algorithm and with the KeepAll
algorithm shown for comparison.

0%

10%

20%

30%

40%

50%

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

INET
AS1239
AS2914
AS3356
AS7018

Figure 18: The fraction of vertices retained as a
function of the Beta weight threshold.

Figure 14: The percentage of total vertices that each compression scheme adds to the set of important vertices
in each network in order to reconnect the compressed graph.

Figure 15: The percent of total edges retained under each compression scheme for each network.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 10 100

INET
AS1239
AS2914
AS3356
AS7018

Figure 19: Complementary cumulative density func-
tion of the number of common neighbors between
pairs of vertices.

led us to consider the problem of condensing or summarizing
the information presented in a network graph. We proposed
three semantically-motivated importance measures on ver-
tices in a network graph: Degree, Beta, and Path. All three
were able to identify backbone vertices in our real-world net-
work graphs, although we found that Path weight favored
smaller vertex neighborhoods than Degree or Beta weight,
which included more peripheral nodes. In practice, it may
be necessary to try several schemes with varying parameters.

Having identified important vertices, we described two
ways of producing a compressed graph based on these. We
found that although our KeepOne algorithm produced cleaner,
more sparse graphs, it was too conservative compared with
KeepAll, which preserved more of the “context” of the im-
portant vertices.

We also described some similarity measures that can be
used to merge similar vertices into one. Of these, Redundant
Vertex Elimination did an excellent job of trimming down
the graph while retaining its structure.

We expect our techniques will find application in other do-
mains where the underlying graph has semantics similar to
communication networks. However even in the domain of IP
networks, as a first step in the direction of summarizing net-
work graphs, our work leaves a number of directions open for
exploration, most notably in finding new importance mea-
sures in such networks. Also, the KeepOne and KeepAll

algorithms suggest that there is a more judicious way to
connect important vertices without omitting or keeping too
many vertices. We also did not consider the efficiency of our
algorithms. Both the Path weight function and the Keep-

One and KeepAll algorithms required computing all-pairs
shortest paths, which may be too costly for large datasets.

6. REFERENCES
[1] M. Adler and M. Mitzenmacher. Towards compressing

web graphs. In Proceedings of the IEEE Data

Compression Conference, pages 203–212, 2001.

[2] AT&T Labs–Research. Graphviz.
http://www.research.att.com/sw/tools/

graphviz/.

[3] P. Erdös and A. Renyi. On the strength of
connectedness of random graphs. Acta

0.0001

0.001

0.01

0.1

1

0.01 0.1 1

INET
AS1239
AS2914
AS3356
AS7018

Figure 20: Complementary cumulative density func-
tion of the ratio of common neighbors to neighbors
between pairs of vertices.

Math. Acad. Sci. Hungar., 12:261–267, 1961.

[4] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the internet topology. In
Proc. of ACM SIGCOMM ‘99, pages 251–262, 1999.

[5] T. Feder and R. Motwani. Clique partitions, graph
compression and speeding-up algorithms. Journal of

Computer And System Sciences, 51:261–272, 1995.

[6] A. Gilbert and K. Levchenko. Arc.
http://www.cs.ucsd.edu/ klevchen/arc/.

[7] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. Journal of the ACM,
46:604–632, 1999.

[8] R. Kumar, P. Raghavan, S. Rajagopalan, and A. S.
Tomkins. Extracting large-scale knowledge bases from
the web. In Proceedings of the 25th VLDB Conference,
1999.

[9] R. Lempel and S. Moran. The stochastic approach for
link-structure analysis (salsa) and the tkc effect. In
Proceedings of the 9th International World Wide Web

Conference, 2000.

[10] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford Digital Library
Technologies Project, 1998.

[11] N. Spring, R. Mahajan, and D. Wetherall. Measuring
isp topologies with rocketfuel. In ACM SIGCOMM ’02

Proceedings, pages 133–145, August 2002.

[12] T. Suel and J. Yuan. Compressing the graph structure
of the web. In Proceedings of the IEEE Data

Compression Conference, pages 213–222, 2001.

[13] H. Tangmunarunkit, R. Govindan, S. Shenker, and
D. Estrin. The impact of routing policy on internet
paths. In Proc. of IEEE INFOCOM ‘01, volume 2,
pages 736–742, 2001.

[14] S. White and P. Smyth. Algorithms for estimating
relative importance in networks. In ACM SIGKDD

’02 Proceedings, pages 266–275, August 2003.

[15] J. Winick and S. Jamin. Inet-3.0: Internet topology
generator. Technical Report CSE-TR-456-02,
University of Michigan, 2002.

