
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Modeling Probability Distributions with Predictive State Representations

A dissertation submitted in partial satisfaction of the requirements for the degree
Doctor of Philosophy

in

Computer Science

by

Eric Walter Wiewiora

Committee in charge:

Professor Garrison Cottrell, Chair
Professor Charles Elkan, Co-Chair
Professor Sanjoy Dasgupta
Professor Bhaskar Rao
Professor Emanuel Todorov

2008

Copyright

Eric Walter Wiewiora, 2008

All rights reserved.

The dissertation of Eric Walter Wiewiora is ap-

proved, and is acceptable in quality and form for pub-

lication on microfilm:

Co-Chair

Chair

University of California, San Diego

2008

iii

DEDICATION

To my family and friends.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . ix

Acknowledgements . x

Vita . xi

Abstract of the Dissertation . xii

Chapter 1. Introduction . 1
1.1. My Contribution . 3

Chapter 2. Conventional Models for Sequence Prediction 6
2.1. Stochastic Processes . 6
2.2. Sequence Prediction . 7
2.3. Variable-ordered Markov Models . 9

2.3.1. Context Trees . 9
2.3.2. Context-Tree Weighting . 10
2.3.3. Applications and Limitations . 12

2.4. Hidden Markov Models . 13
2.4.1. HMM Parameters . 14
2.4.2. VMMs and HMMs . 15
2.4.3. Applications . 16
2.4.4. Learning . 18

Chapter 3. Predictive State Representations . 20
3.1. Events in Uncontrolled Systems . 21
3.2. Linear PSRs . 22
3.3. PSRs and OOMs . 24
3.4. Properties and Invariants of the PSR . 25

3.4.1. Multiplicity Automata . 30
3.4.2. Regular Form PSRs . 30

3.5. The Negative Prediction Problem . 34
3.5.1. Practical Solutions . 37

v

Chapter 4. Controlled Processes . 39
4.1. Previous Models . 40

4.1.1. Markov Decision Processes . 40
4.1.2. Partially-observable Markov Decision Processes 41

4.2. Policies . 42
4.3. PSRs for Controlled Processes . 42

4.3.1. Tests . 43
4.3.2. PSRs with tests . 45

4.4. Linear Policies . 46
4.5. Modeling Controlled Processes as Uncontrolled 49
4.6. The System Identification Problem . 50

Chapter 5. The System Matrix . 52
5.1. System Matrix Definition . 52

5.1.1. System Matrix Rank . 54
5.2. Hankel Matrix Representation . 55
5.3. The Steady-State Hankel Matrix . 56

5.3.1. A Limit Property of PSRs . 58
5.4. Subsampling the Hankel Matrix . 59
5.5. Summary . 63

Chapter 6. Learning Predictive State Representations 64
6.1. The General Framework . 65
6.2. Approximating Steady-State Probabilities 65
6.3. The Suffix History Algorithm . 67

6.3.1. Discovery of Core Tests . 68
6.3.2. Robust Estimation . 68

6.4. Extending the Definition of Core Tests . 72
6.5. The T-PSR Algorithm . 73
6.6. Efficiency Sharpening Procedure . 75
6.7. Shortcomings of System Matrix Learning Procedures 76
6.8. Experiments . 77

6.8.1. Methods and Algorithms . 78
6.8.2. Learning POMDPs . 78
6.8.3. Calgary Corpus . 80

6.9. Conclusion and Open Problems . 82

Chapter 7. Multivariate Prediction . 84
7.1. Previous Methods . 85
7.2. Generalized Stochastic Processes . 87
7.3. Naı̈ve Bayes for Probability Estimation . 89

7.3.1. Learning NBE Model . 91
7.4. Linearly Dependent Distributions . 92

vi

7.4.1. Multivariate Hankel Matrix . 93
7.4.2. LiDD Parameters . 93
7.4.3. From NBE to LiDD . 94
7.4.4. Modeling Power . 96
7.4.5. Enforcing Commutativity . 97

7.5. Learning LiDDs . 99
7.5.1. Approximate Hankel Matrix . 99
7.5.2. Basic LiDD Learning Framework . 102

7.6. Experiments . 102
7.6.1. MNIST Handwritten Digit Corpus 103

7.7. Discussion and Future Work . 106

Chapter 8. Conclusion . 109
8.1. Future Directions . 110

Appendix A. List of Notation . 112

References . 113

vii

LIST OF FIGURES

Figure 2.1. An example context tree with O = {a, b}. Each node in the tree
represents the predictions made, given a certain context. The context is determined
by appending the observations on the labeled edges from the node to the root. The
probability of observations a and b, given a context, are found inside the contexts’
node. 10
Figure 2.2. An example hidden Markov model (HMM) that cannot be modeled by
a finite context variable-order Markov model (VMM). 16
Figure 2.3. Two examples of HMMs with task-dependent structure and semantics. 17

Figure 3.1. A tree of PSR core events that are in regular form. The event sequence
is produced by following a node to the root of the tree. 31

Figure 4.1. An example Partially-observable Markov decision process that is dif-
ficult to learn. The observation is always “0” unless the action sequence “unlock”
is input. 51

Figure 5.1. An example stochastic process and its system matrix. 53

Figure 7.1. A simple graphical model of a burglar alarm and possible causes (Pearl,
1988). This model assumes that whether or not there is a burglary is independent
of whether there is an earthquake. The burglar alarm state depends on both of these
variables. 85
Figure 7.2. A graphical model of the Naı̈ve Bayes Estimator. The random vari-
able Y is latent, and is never observed. The distribution of each X1 . . . Xn are
independent, given the value of Y . 86
Figure 7.3. The conditional probability that the next query of x will be a, given
sequences of a of varying length. Note that the point values oscillate, but are not
periodic. 98
Figure 7.4. The conditional probabilities of each pixel, given one of 150 core
queries. Red represents a high probability, and blue represents a low probability.
Note this diversity of representation of the different types of twos. 104
Figure 7.5. Handwritten twos reconstructed from a small amount of data 106
Figure 7.6. Handwritten threes and eights reconstructed from a small amount of
data . 107

viii

LIST OF TABLES

Table 6.1. Example POMDPs used in experiments . 79
Table 6.2. POMDP results with training size =5,000. We test Context Tree Weight-
ing (CTW), Efficiency Sharpening (ES), Suffix History, and Transformed PSR
(TPSR). The parentheses contain: (square loss, log loss). The best score for any
domain is underlined. 80
Table 6.3. POMDP results for training size: 10,000 (square loss, log loss) 81
Table 6.4. Calgary Corpus results. Total log loss of predicting last half of the file.
The best cost for each file is in bold . 81

ix

ACKNOWLEDGEMENTS

I would like to thank Professors Rich Sutton and Satinder Singh for many valu-

able comments and suggestions. I have received much help with formatting this docu-

ment from Dana Dahlstrom, Kristin Branson and Sameer Agarwal.

Portions of this research has been published at the International Conference on

Machine Learning, though most is unpublished. The experiments and initial formulation

of the Linearly Dependent Distribution were done in collaboration with Anjum Gupta.

During this research, I was funded under a grant from the NSF IGERT program (NSF

grant DGE-0333451).

x

VITA

1979 Born, Pittsburgh, Pennsylvania.

2001 B. S., University of Pittsburgh.

2004 M. S. University of California, San Diego.

2008 Ph. D., University of California, San Diego.

PUBLICATIONS

A. Rabinovich, A. Vedaldi, C. Galleguillos , E. Wiewiora and S. Belongie, “Objects in
Context”, Proceedings of the International Conference on Computer Vision, 2007.

A. Strehl, L. Li, E. Wiewiora, J. Langford, and M. Littman, “Efficient Model-free Rein-
forcement Learning”, Proceedings of the International Conference on Machine Learn-
ing, 2006.

E. Wiewiora, “Learning Predictive Representations from a History”, Proceedings of the
International Conference on Machine Learning, 2005.

E. Wiewiora, “Potential-based Shaping and Q Value Initialization are Equivalent”, Jour-
nal of Artificial Intelligence Research, 2003.

E. Wiewiora, G. Cottrell and C. Elkan, “Principled Methods for Advising Reinforcement
Learning Agents”, Proceedings of the International Conference on Machine Learning,
2003.

FIELDS OF STUDY

Major Field: Computer Science and Engineering
Artificial Intelligence.

xi

ABSTRACT OF THE DISSERTATION

Modeling Probability Distributions with Predictive State Representations

by

Eric Walter Wiewiora

Doctor of Philosophy in Computer Science

University of California, San Diego, 2008

Professor Garrison Cottrell, Chair

Professor Charles Elkan, Co-Chair

This dissertation presents an in-depth analysis of the Predictive State Represen-

tation (PSR), a new model for sequence prediction. The key insight behind PSRs is

that predictions of some possible future realizations of the sequence can be used to pre-

dict the probability of other possible futures. Previous work has shown PSRs are very

flexible, and can be trained from data without many of the drawbacks of similar models.

I present a rigorous theoretical foundation for understanding these models, and

resolve several open problems in PSR theory. I also study multivariate prediction, where

the model predicts the values of many random variables. The work presented in this

dissertation is the first application of PSRs to modeling multivariate probability distri-

butions.

I also perform extensive comparisons of PSR learning algorithms against algo-

rithms for learning other popular prediction models. Surprisingly, the comparisons are

not always favorable to PSRs. My empirical results provide an important benchmark

xii

for future research on learning PSRs, and my theoretical results may aid development

of better learning algorithms.

xiii

Chapter 1

Introduction

My thesis addresses the problem of prediction. We desire a model of data that is

able to extract patterns that the data follows, and use these patterns to anticipate future

data that the system has not yet been exposed to. Such a model is often called a gener-

ative model, as it can be used to generate data similar to the data it was trained on, as

well as estimate the probability of data.

The standard approach to generative modeling consists of three steps:

1. Choose a model class that will be powerful enough to find the relevant patterns

in the data.

2. Train the parameters of this model class in order to make the observed data likely

to be generated by the model.

3. Develop inference techniques that produce predictions based on the learned model.

These three goals are often in conflict. Models that are powerful are often hard to train

and use for predictions. Likewise, simpler models may not be able to model the com-

plexity that is present in the data.

Many popular classes of generative model incorporate latent variables. These are

supposed hidden causes that are responsible for the values in the observable data. These

models are often quite intuitive, and may offer good explanations of the patterns found in

1

2

the data. For instance, the hidden Markov model(HMM), uses a latent variable to model

a sequence of observations. This hidden variable usually has a readily interpretable

meaning. For instance, in speech recognition, the hidden variable capture the word the

speaker is trying to express. This hidden variable causes the actual speech (Rabiner,

1989).

Unfortunately, latent variable models are often quite difficult to train from data.

By definition, the latent variable is not present in the data, so its properties and influ-

ences on the observable data must be observed indirectly. Algorithms that infer these

relationships, such as expectation maximization (EM), tend to be slow and imprecise,

and susceptible to poor initializations.

This thesis explores Predictive State Representations, a compelling new method

for generative modeling. The key insight behind predictive state representations is that

predictions of certain aspects of observable data can be used to make other predictions

of the data. All parameters in these models refer to the actual data, not supposed latent

causes that must be inferred indirectly. A second insight is to use simple operations to

predict. All of the predictive models I investigate use simple linear operations to perform

inference.

Surprisingly, the predictive representations studied in this work are more pow-

erful than their most closely associated latent state model. That is, they can represent

any probability distribution the latent state model can, plus many others that cannot be

represented by the latent state models. Another surprising property is that predictive

representations are often convergent: given sufficient data generated from a model in

the same class, these algorithms will recover the generating model exactly. This is in

stark contrast to EM, which may settle for a locally optimal model, regardless of the

amount of training data.

My thesis contributes much to our knowledge of the properties of predictive

state representations. I have answered several open problems in PSR theory, and have

presented a rigorous theoretical foundation for understanding these models and their

capabilities. I have also performed the most extensive comparisons of PSR learning

3

performance against other popular generative models. Surprisingly, the comparisons are

not always favorable to PSRs. My empirical results provide an important benchmark for

future research on learning PSRs, and my theoretical results may aid progress toward

developing better learning algorithms.

We explore two types of prediction problem. Sequence prediction involves pre-

dicting a series of observations generated from an unknown source. It is often the case

that the only information that is available for predicting the future of the sequence is

what has been observed before. We also study multivariate prediction, where we predict

the values of many random variables. PSRs were developed for the sequence predic-

tion problem. The work presented in this dissertation is the first exploration of the

applicability of predictive representations in modeling multivariate data. We find that

the modeling framework can easily accommodate this new type of prediction problem,

though there are some caveats in applying previous learning techniques.

1.1 My Contribution

This thesis provides the most thorough theoretical analysis of predictive state

representations to date. Much of the groundwork of this model class has been devel-

oped by Herbert Jaeger (Jaeger, 1998). He was the first to study this model class as a

generative model, and developed the theoretical foundations and learning algorithms.

Nearly all of the subsequent work on these representations has been heavily influenced

by his early and ongoing work. This dissertation is no exception. The work presented

here fills in many gaps in the theory of PSRs, and extends the applicability of PSRs

to new prediction problems such as multivariate prediction. Note that throughout this

document, all stated theorems are original work. Wherever there is a similar theorem

presented in a different source, this is explicitly noted.

In chapter 2, I review previous models of sequence prediction, and common

metrics for evaluating their performance. In particular, I review previously developed

powerful algorithms for learning variable-ordered Markov models. I also explain why

4

these models are the natural competitors to PSRs.

In chapter 3, I present the theory of Predictive State Representations. Much of

this theory has already been developed, though my presentation is the most complete

to date. I present several new properties that any valid PSR must possess. These in-

clude theorem 3, which provides the first set of necessary and sufficient conditions for

a PSR to be valid, theorem 4, which shows that an important matrix of parameters has

bounded eigenvalues, and theorem 5, which shows that the core predictions used by a

PSR to make other predictions do not have to be very complicated. The most important

contribution in this chapter is on the negative probability problem. Any given PSR may

”predict” a negative probability for some event. I show in theorem 8 that it is undecid-

able whether a given PSR will predict a negative probability for some event.

In chapter 4, I relate the prediction problem for uncontrolled processes to the

controlled process case. Here, the observations in the sequence may depend on a se-

quence of actions. I show the close relationship between these two problems. I intro-

duce a general definition of test that extends beyond any found in the literature. This

definition of test allows for the characterization of the sequence to be predicted, as well

as the policy: the source of actions. Characterizing policies based on tests has implica-

tions for reinforcement learning that I have not yet explored. Finally, theorem 10 shows

that a controlled process and the process that generates actions can be jointly modeled

as a single process. The theorem also addresses the additional complexity of modeling

this coupled processes, relative to the complexity of the two individual processes. This

allows model classes that do not handle actions to be used to model controlled processes.

An earlier version of these results were presented in Wiewiora (2005).

In chapter 5, I examine the system matrix, a data structure that is important for

learning PSRs. I relate this data structure to a Hankel matrix, which forms the basis of

many learning algorithms for similar problems. I also address the steady-state system

matrix. This structure models the long-term average probabilities of subsequences in a

training sequence. I show in theorem 11 that any sequence data generated by a PSR will

have well defined average subsequence probabilities. In previous work, this property

5

has only been assumed.

In chapter 6, I review several PSR learning algorithms. Many of these algorithms

were only defined for specific data sources or with particular modeling assumptions. My

presentation generalizes these algorithms, and presents them in a common framework

which aids understanding. I also present several experiments comparing learned PSRs

to learned VMMs. This is the first extensive study of these models. Surprisingly, VMMs

tend to outperform PSR algorithms, even when the data was produced by a model too

complex to represent as a VMM. These results provide a sobering reminder of the im-

maturity of current PSR learning algorithms.

Finally, in chapter 7, I explore multivariate prediction. I introduce a predictive

representation for multivariate prediction, which I call the linearly dependent distribu-

tion (LiDD). I show that predicting multiple variables is essentially the same problem as

predicting a sequence of observations conditioned on actions. I also show that the LiDD

is closely related to naı̈ve Bayes for Probability estimation (NBE), a latent variable

model that has been shown to be a simple and powerful predictor (Lowd and Domingos,

2005).

Chapter 2

Conventional Models for Sequence

Prediction

In this chapter, we formalize the sequence prediction problem as well as intro-

duce several models for this task.

2.1 Stochastic Processes

A stochastic process (also referred to as a dynamical system) is a source of se-

quential observations that occur in fixed time steps. We will assume that observations

are drawn from a finite set O. Some processes require an action to be provided by a

separate agent. This action is from a finite set A. When a stochastic process requires

an action, we call it a controlled process; otherwise it is an uncontrolled process. In this

chapter we focus on uncontrolled processes. We analyze the incorporation of actions in

chapter 4.

Before we formally define a stochastic process, we need to introduce some no-

tation. We define On as the set of all sequences of length n. The special sequence ε

is the only sequence of length 0. The set of all sequences is called O∗. We define the

concatenation operator on sequences b and c as b ◦ c ≡ bc.

6

7

We formally define a stochastic process as a distribution on sequences1:

Definition 1 A stochastic process is a function P : O∗ → R satisfying

• Boundedness: ∀o ∈ O∗ : 1 ≥ P (o) ≥ 0

• Consistency: ∀n ∈ {0, 1, 2, . . .},∀o ∈ On : P (o) =
∑

b∈O P (o ◦ b)

• Normalization: P (ε) = 1

The boundedness property ensures that the stochastic process produces numbers

that will always be valid probabilities. The consistency property ensures that the sum

probabilities of all continuations of a sequence equals the probability of the original

sequence. The fixed measure property, combined with the consistency property, ensures

that the sum probabilities of any complete set of sequences of length n always equal 1.

All of the models we use for sequence prediction operate by predicting the next

observation, given the previous observations in a sequence. From the predictions of each

observation, we predict entire sequences using the chain rule

P (o1:t) =
t∏

i=1

P (oi|o1:i−1).

The string of previous observations up to time t, o1:t, is known as the history at time t:

ht. Usually, the prediction of future observations, given the history, is not a function of

the entire history. The aspects of the history that are used for predicting future observa-

tions are called the Markov state of the process. In other words, given the Markov state,

the probabilities of a process’ future observations are independent of the history.

2.2 Sequence Prediction

Given a sequence o1:t, we desire an accurate prediction of the next observation

in the sequence ot+1. This prediction is given as a conditional distribution on the next
1This definition is streamlined to apply only to discrete time, discrete valued random variables. Also,

I define a stochastic process as a function that gives the probability of an assignment of a set of these
random variables, rather than the random variables themselves. See Grimmett and Stirzaker (1982) for a
more conventional definition.

8

observation P (Ot+1|ht). We assume that we use a stochastic process P to predict the

next observation. After the prediction is made, the true observation ot+1 is revealed, and

a loss is incurred.

In this dissertation, we will use two methods for measuring the quality of pre-

dictions.

The log loss llog() of a prediction P is defined as

llog(ot+1, P (·|ht)) = − log(P (ot+1|ht)).

The average log loss, L(), for an entire sequence is

Llog(o1:t, P) =
1

t

t∑
i=1

l(oi, P (·|hi−1)).

Throughout this work, we assume the log function is the natural log. The log loss has

several advantages for a measure of prediction loss. First, the log loss is calibrated: if

there is a true distribution over the probability of the next observation, then choosing P

to equal that distribution will yield the lowest expected log loss. Optimizing the log loss

is an important objective in parameter estimation, as minimizing the average log loss of

a sequence is equivalent to maximizing the sequence’s liklihood.

Finally, it can be shown that optimizing the log loss of a model is equivalent to

finding a compressed encoding of the sequence (Rissanen and Langdon, 1981). In this

context, the average base 2 log loss of a sequence is called its ideal code length. Pro-

cedures such as arithmetic coding are able to encode each observation with an average

number of bits no greater than 2 plus close to this ideal code length (Willems et al.,

1995).

The second loss function we examine is the squared loss l2

l2(ot+1, P) = (1− P (ot+1))
2.

The l2 loss (also called the Brier loss) is often used in sequence prediction tasks where

the end goal is not a probabilistic model or an efficient encoding of the sequence (Vovk,

9

2001). For instance, it is the loss function of choice for the evaluation of weather fore-

casts. Like llog, if the observations come from a distribution, setting P to that distribution

will minimize the expected loss. Unlike llog, this loss function is bounded when P is

bounded; if P is always between 0 and 1, the loss will also be between 0 and 1.

2.3 Variable-ordered Markov Models

The first class of models we consider are variable-ordered Markov models (VMMs).

The primary modeling assumption behind these models is that the next observation in a

sequence is a function of the recent history (a suffix of the entire history). We call the

suffix of the history that is used to make predictions the context. Note that the context

of a VMM is the model’s Markov state. Usually the length of the suffix is bounded by

some constant d. When d = 1, a VMM is also called a Markov chain.

There is a long history of learning algorithms for VMMs. Begleiter et al. (2004)

provide a recent review of some of the more popular methods used for compression.

Algorithms for learning VMMs differ in how they choose which contexts to base pre-

dictions on, and how they convert the raw counts found in training data into smoothed

probability estimates. Specifically, learning algorithms produce probability estimates

based on counts of the number of times different observations occur after different con-

texts.

2.3.1 Context Trees

Most VMMs organize their contexts into a data structure called a context tree.

We label the contexts that a VMM keeps as c1, . . . , ck. The root of the tree corresponds

to no context. Branching from each node are one labeled edge for each observation.

The nodes branching from the root of the tree correspond to looking at the most recent

past observation (the length one suffix of the history). Nodes deeper in the tree keep

predictions for the context produced by following the labeled edges from node to root.

10

Time

a

b

a b

(0.4, 0.6)

(0.8, 0.2)

(0.6, 0.4)

(0.5, 0.5)

(0.1, 0.9)

Figure 2.1: An example context tree with O = {a, b}. Each node in the tree represents

the predictions made, given a certain context. The context is determined by appending

the observations on the labeled edges from the node to the root. The probability of

observations a and b, given a context, are found inside the contexts’ node.

We define a function c() that takes a history of observations and returns the deepest

context in a context tree that matches this history.

See figure 2.1 for an example of a context tree. In this example, we find P (a|h =

. . . ab) by traversing the context tree from root to leaf. We follow the edge from the root

labeled b because b is the most recent observation in the history. We then follow the

edge labeled a, which is the second most recent observation. We have now hit a leaf of

the tree, and will use the predictions contained within this leaf node (P (a|h) = 0.8).

2.3.2 Context-Tree Weighting

The context-tree weighting (CTW) algorithm is a popular algorithm for learning

a VMM (Willems et al., 1995). Recent experiments have shown it to be quite robust on

several different sequence prediction tasks (Begleiter et al., 2004) . The CTW algorithm

constructs a complete2 context tree of some height d, which is provided as a parameter

to the algorithm.

We now address how the context tree is used to make predictions in the CTW

2A complete tree has the maximum number of children for each non-leaf node.

11

algorithm. To ease exposition, we begin with the case of binary observations O =

{0, 1}, before the more general case of an arbitrary number of observations. Assume

that the CTW is trained on some sequence o1:T .

First, we consider predictions made at leaf nodes in the tree. For each node i,

corresponding to context ci, We count the number of times each observation appears

after the context in o. Call these counts #0i and #1i. These counts are turned into pre-

dictions using the using the Krichevsky-Trofimov (KT) estimator (Willems et al., 1995).

This estimator, which is a modification to Laplace’s law of succession, is calculated as

P leaf
i (0) =

#0i + 1
2

#0i + #1i + 1
.

This estimator is also the Bayesian posterior estimate of the probability of 0, given the

prior for the probability is distributed as a Beta distribution with parameters (1
2
, 1

2
). The

prediction for 1 is calculated by replacing #0i in the numerator with #1i.

When making predictions given some context cc(ht), the CTW algorithm consid-

ers all prunings of its context tree. For one specific context, we only have to consider

pruning along the path induced by this context. The predictions at each pruning are

weighted using a Bayesian posterior that this node is the one used to make the predic-

tion. The prior probability that any node of the context tree is pruned to be a leaf, given

that is hasn’t been pruned already, is 1
2

.

We calculate the final prediction from leaf to root.

First, we introduce the context likelihood Lj . This measures the probability of

all predictions made by context cj = c(ht−j:t) on the training sequence. For leaf nodes,

this is calculated as

Lleaf
j =

∏#0j

x=1(x− 1
2
)
∏#1j

y=1(y − 1
2
)

(#0j + #1j)!
.

It is easy to show that this is the product of all predictions made for the training sequence

observations that appear after this context. The context likelihood of an internal node is

calculated recursively. For some context ok . . . od, the context likelihood is

Lj =
1

2
Lleaf

j +
1

2

(∏
o∈O

Lc(o◦cj)

)
.

12

We can now calculate the final prediction made by the CTW with context ci. The

prediction made at the leaf of the full context tree is simply P i
i = P leaf

i , as calculated

above. We index intermediate predictions with a superscript referencing the full context

and a subscript to reference the intermediate context. The prediction at an intermediate

context is found recursively:

P i
j (0) ∝ 1

2
Lleaf

j P leaf
j (0) +

1

2

(∏
o∈O

Lc(o◦cj)

)
P i

c(ht−j−1:t)
(0)

This calculation can be thought of as taking weighted predictions given the posterior

probabilities that the context tree is pruned at this node, or if the node is internal. The

final prediction is the one made at the root:

P (o|ht) = P
c(ht)
c(ε) (o);

The CTW algorithm can be extended to handle more than two observations in

many possible ways. Instead of using the KT estimator as the leaf predictor, we must

use a predictor that can handle multiple observations. The choice of predictor will alter

the leaf predictions as well as the leaf likelihoods, but will not alter the recursion. In

practice, the best method for predicting multiple observations has been to break the

prediction into several binary prediction tasks. See Begleiter et al. (2004) for details on

methods for doing this.

For the experiments later in the thesis, we use an implementation of the CTW

algorithm provided by Begleiter et al. (2004), available for download at

http://www.cs.technion.ac.il/~ronbeg/vmm/ .

2.3.3 Applications and Limitations

Two prominent and successful applications of VMMs have been compression

and language modeling (Brown et al., 1992; Bell et al., 1990). For natural language

processing, VMMs are often referred to as n-gram models. In this situation, n refers to

the subsequence length required to learn the model, where the first n − 1 observations

define the context, and the nth observation is the one to be predicted.

h

13

Despite the success of VMMs, they have been criticized as insufficient for rep-

resenting stochastic processes of interest to some communities (Littman et al., 2001).

The principle limitation is that any information contained in a history before the longest

context is lost to the VMM. More elaborate models, which we consider next, are able to

keep information arbitrarily long.

2.4 Hidden Markov Models

Hidden Markov Models (HMMs), are a popular method for modeling processes

that contain some amount of memory. HMMs can be considered a subset of stochas-

tic, nondeterministic finite-state automata (S-NFA), which are studied in the automata

literature (Vidal et al., 2005). The main difference between these two approaches is

that automata assign probabilities to finite strings, while HMMs find the probability of

a prefix to an arbitrarily long sequence 3.

The key modeling assumption in a HMM is that the probability of future ob-

servations in the sequence are completely determined by the latent state of the process.

The (Markov) state at time t, Xt, can be one of a finite number (k) of possible values.

Knowledge of the current state of the process is also sufficient to determine the proba-

bility distribution on the next state Xt+1. The state of the HMM is an unknown random

variable whose distribution is determined by the history of the system. We call this dis-

tribution the belief state bt. It is a 1 × k vector, where index bt[i] gives the probability

that the process is in state i at time t. We will also discuss the belief state resulting after

observing some history h. We call this belief state b(h).

A HMM generates observations each time step when the latent state transitions.

In state-emission HMMs, the probability of the current observation only depends on the

current state. We focus on the more expressive transition HMM. In this type of HMM,

the probability of an observation at time t may depend on both the current state Xt as

3Some researchers define HMMs as generating finite strings (Gavalda et al., 2006). In this case they
are equivalent to S-NFAs

14

well as the next state Xt+1. Note that the Markov property still holds, and thus the joint

probability of the current observation and next state only depends on the current state.

2.4.1 HMM Parameters

The parameters of a HMM are the initial distribution over states and the transi-

tion function that determines the distribution over next state and observation, given the

current state. Given these parameters, we can calculate the joint probability of a state

sequence and an observation sequence. However, except for special case models, we can

never be certain of the latent state of the process by examining only the observations.

All of the observation probabilities must be integrated over our uncertainty of the latent

state. This can be done using linear algebra. We introduce the k× k matrices To, where

o is an observation in our finite set O. The [i, j]th entry in To gives the probability that

the next state is j, and the current observation is o, given that the current state is i. We

calculate the probability of the observation, given the current belief state bt as follows:

Pr(Ot = o|bt) =
k∑

i=1

Pr(Xt = i)
k∑

j=1

Pr(Xt+1 = j, Ot = o|Xt = i)

= btTo1,

Where 1 is the k × 1 column vector of all 1’s.

In order to use an HMM for sequence prediction, it is also important to be able

to find the belief distribution of the next state, bt+1. We use the same matrices to do

this:

Pr(Xt+1 = j|Ot = o,bt) =
Pr(Xt+1 = j, Ot = o|bt)

Pr(Ot = o|bt)

=
btTo(:, j)

btTo1
;

bt+1|Ot = o,bt =
btTo

btTo1
.

Note that this guarantees that at all times t, the sum of the entries in bt is 1.

Finally, we can also use this model to calculate the probabilities of longer se-

quences. The probability of sequence o1, o2, . . . , on, given an initial belief b0, is given

15

by a series of matrix multiplications:

Pr(o1:n|b0) = b0To1 · · ·Ton1 (2.1)

For convenience, we condense the series of T multiplications into a single k× k matrix

To1:n .

We define the matrix T∗ =
∑

o∈O To. This matrix calculates the transition

probabilities of the states without the observations. It is a stochastic matrix, meaning

that it is nonnegative, its maximum singular value is 1, and

T∗1 = 1.

It is insightful to compare these invariants to those we discuss in chapter 3 for predictive

state representations.

2.4.2 VMMs and HMMs

HMMs are a proper superset of VMMs. In other words, every process that can

be modeled as a VMM can also be modeled as a HMM, but there are some processes

that HMMs that can model that cannot be modeled by any VMM. We demonstrate this

constructively.

First, we show how to produce a HMM that models the same process as a VMM.

Given a VMM with contexts c1, . . . ck, we produce an HMM with k states: one state for

every context. It is clear that the future predictions made by the VMM depend only

on the current context. This is precisely the criteria that the HMM state satisfies. The

HMM transition matrices To are sparse:

To[i, j] =

 P (o|ci), if j = c(ci ◦ o)

0, otherwise.

This sparse transition behavior means that given the previous state and the current ob-

servation, the current state is completely determined. Such a model is also called a

16

Pr(a,X|X) = 0.5

Pr(b,Y|X) = 0.5

Pr(a,Y|Y) = 0.5

Pr(c,X|Y) = 0.5

X Y

b
a

c

a

Figure 2.2: An example hidden Markov model (HMM) that cannot be modeled by a

finite context variable-order Markov model (VMM).

deterministic probabilistic finite automata (Vidal et al., 2005). These models only have

O(k|O|) parameters, instead of O(k|O|2) for the general case HMM.

In figure 2.2, we show a simple example of an HMM that cannot be repre-

sented by any finite-context VMM. There are two states, {X, Y }, and three observa-

tions {a, b, c}. On each step, with equal probability, either the state changes or the state

remains the same. When the state is unchanged, an “a” is emitted, when there is a tran-

sition from X to Y , a “b” is emitted, and when there is a transition from Y to X , a “c”

is emitted. Note that for all m = 0, 1, 2, . . ., the following probabilities hold:

Pr(b|h = cam) =
1

2
,

Pr(b|h = bam) = 0.

When m is larger than the longest context in a VMM, the VMM will not be able to

distinguish these two histories.

2.4.3 Applications

HMMs are primarily used in situations where the latent states have some mean-

ing, and a good deal of knowledge of the transition structure is known. Two such appli-

cations are speech recognition (Rabiner, 1989) and biological sequence analysis (Durbin

et al., 1999).

For speech recognition, HMMs are used to assess the probability that a speaker

17

Phoneme 1

Word 1 Word 1 Word 1

Phoneme 2 Phoneme 3

Phoneme 3Phoneme 2Phoneme 1

Word 2 Word 2Word 2

(a) Speech Recognition HMM. Each square

represents an HMM subsystem for recog-

nizing a particular phoneme.

t−1

InsertInsertInsert

t+1t

t−1

Profile Profile

t

Profile

t+1

(b) Profile HMM. The circle states represent an el-

ement of the profile. The hexagonal states represent

possible insertions into the profile that result from mu-

tation. The dashed lines represent skips in the profile,

also due to mutation.

Figure 2.3: Two examples of HMMs with task-dependent structure and semantics.

intended to say a particular word. The latent state of the HMM contains information on

both the current word and the current phoneme within the word. The observations are

the (processed) sounds that are vocalized. It is usually the case that phonemes shared

across different words will also share the same HMM parameters (Rabiner, 1989).

Biological sequence analysis is a broad discipline with many particular prob-

lems. One problem is to determine if a collection of sequences (DNA or amino acid

chains) are related through a common ancestor. This has been tackled by modeling the

sequences as “noisy” versions of a latent sequence (the profile) that all of them have mu-

tated from. The structure of the profile is usually estimated using some other technique,

and refined later using the learning techniques mentioned below.

See figure 2.3 for diagrams of these HMMs. Note that both examples have a

highly constrained state transition structure, and that the latent states have specific se-

mantics. The state semantics are vital to how these systems are used in practice.

Another application of HMMs is to track a mobile system and map its position

(Shatkay and Kaelbling, 1997). In this application, the latent state is the robot’s location,

and the observations are “noisy” sensor readings. In this domain, there is a good deal

18

of knowledge about how latent states (map locations) relate to each other. In fact, most

systems model state transitions by hand, and only learn the relation between states and

observations.

2.4.4 Learning

Most HMMs are initially designed by hand, though there are algorithms that can

learn a HMM without prior knowledge, using only observation sequences.

The standard objective for HMM learning and model refining is to maximize the

likelihood of the training sequence. This is identical to minimizing the log loss of the

training string. Unfortunately, finding the k state HMM that generates the string with

highest probability is a difficult problem, which is conjectured to be NP-hard (Vidal

et al., 2005). As a result, learning algorithms are only likely to find a locally optimal

HMM. See Vidal et al. (2005) for a review of techniques for learning Hidden Markov

Models and related automata.

The most popular procedure for optimizing the parameters of an initial HMM

is the Expectation-Maximization (EM) algorithm. For HMM learning, EM is identi-

cal to the independently developed Baum-Welch algorithm. We present this algorithm

based on the presentations by Bilmes (1997), and Xue and Govindaraju (2002). This

algorithm takes an initial HMM, and refines it through a series of local improvements.

Each iteration of EM is guaranteed to improve the model’s training likelihood, or leave

it unchanged. EM alternates between two steps:

1. For each time step t in the training string o1:n, and state i, estimate qt[i], the

conditional probability of being in state i at time t, given the entire string and

the current HMM parameters.

2. Fix the state visit probabilities qt. Modify the HMM parameters (b0,To) to

maximize the expected joint likelihood of the training sequence and the HMM

state sequence.

19

We now go through the details of this algorithm.

In order to find the state visit probabilities, we calculate two helper vectors:

αt = b>0 To1:t−1 ,

βt = Tot:n1.

The 1×k vector αt contains the probabilities of arriving in each state at time t, given the

training sequence up to observation t− 1. The k× 1 vector βt contains the probabilities

of generating the observation sequence ot:n from each of the k states. We calculate the

probability of visiting each state at time t by multiplying these vector entries:

qt[i] =
αt[i]βt[i]

αtβt

.

In order to update the transition probabilities, we will make use of another set of

helper variables ξt. This k × k matrix calculates the conditional probability that state i

transitions to state j on time step t. It is calculated as

ξt[i, j] =
αt[i]Tot [i, j]βt+1[j]

αtβt

.

New HMM parameters are produced using these helper variables:

b0 ← q0

To ←
∑

t:ot=o ξt∑n
t=1 ξt

.

These new parameters maximize the likelihood of the expected state sequence and the

observation sequence.

After each iteration, the process is repeated. The stopping condition for EM is

either when the parameters converge, or when the new HMM parameters begin to lose

prediction accuracy on some validation sequence.

Chapter 3

Predictive State Representations

We have seen two different approaches to modeling a process that generates a

sequence. The variable-order Markov model (VMM) uses a suffix of the history in order

to predict the next observation. This suffix is directly observable from the sequence his-

tory. Unfortunately, the VMM suffers from limited memory. Any observations that have

occurred earlier than the previous context are not used to make future predictions. The

hidden Markov model (HMM) uses a distribution on latent states to make predictions.

This state distribution is not directly computed from the history. Instead, it is updated

recursively based on the most recent observation. Because the latent state is only indi-

rectly related to the observations in the sequence, learning a good state space is difficult

without a good deal of prior knowledge.

The predictive state representation (PSR) is a new model that attempts to address

the shortcomings of both previous models (Littman et al., 2001; Singh et al., 2004).

Like the HMM, a PSR updates its state recursively rather than deriving the state directly

from the history. We show that this allows it to keep informations from the history in

the state for arbitrarily long. A PSR differs from a HMM in that it does not rely on a

latent state representation. Instead, the state is based on beliefs about the probabilities

of future observations in the sequence. Specifically, the state of a PSR is a vector of

predictions for a selected set of observation sequences, called tests (after Rivest and

20

21

Schapire (1994)). As more of the sequence is revealed, the accuracy of test probabilities

can be evaluated directly.

Predictive state representations are usually presented as a model for controlled

stochastic processes, which will be covered in chapter 4. I take an unorthodox approach

of first introducing the PSR as a model of a standard stochastic process before discussing

the more complex controlled case. Almost all of the mathematical specifics of the PSR

were first developed by Herbert Jaeger (2000) under the name Observable Operator

Model (OOM). In fact, for uncontrolled stochastic processes, there is a straightforward

translation of one model into the other. I present this model under the PSR framework

because it is a bit more intuitive than the OOM, and the PSR provides some additional

flexibility in the parameterization of the model.

The PSR is closely related to stochastic multiplicity automata (S-MA) (Beimel

et al., 2000; Even-Dar et al., 2005; Denis et al., 2006). Many of the concepts behind

PSRs and OOMs were first addressed in this context. As is the case for S-NFA, stochas-

tic multiplicity automata are usually defined as assigning probabilities to finite strings,

rather than the prefix of an arbitrarily long sequence.

3.1 Events in Uncontrolled Systems

Predictive state representations use explicit predictions about future observations

to model the state of the system. We specify the target of these predictions using tests.

Tests measure the possible outputs of the system state that span beyond one time step.

This added scope of prediction is able to characterize more of the state of a process,

which may not be apparent looking only one step ahead.

For an uncontrolled stochastic process, a test g is a set of observation sequences,

where each sequence contains lg observations. We call the test for uncontrolled systems

events 1. An event is said to have occurred when the next l observations match one of the
1The “event” name comes from the OOM literature, which has focused on uncontrolled processes. We

make the distinction between tests and events to avoid confusion when we discuss controlled processes.

22

sequences in the test. The probability that a length l event g succeeds, given a history of

observations h is given by:

Pr(g|h) =
∑
o∈g

Pr(o|h) =
∑
o∈g

lg∏
i=1

Pr(oi|h ◦ o1:i−1).

We give special attention to a class of events called s-events. 2 These events

consist of a single sequence of observations. Another kind of event we will see are

called e-events.3 One of these events includes all sequences of some length l which

end in some observation o. We include one special case in our definition of events.

The null event is the event consisting of an event of length zero (called ε). This event

succeeds with probability 1. The null event can be thought of as representing the event

that anything happens in the future.

3.2 Linear PSRs

A PSR models a stochastic process using a set of events called the core events.

We say that a set of k events q1, . . . ,qk are core events of a PSR if given any history h,

the success probability of any future s-event g is a function of the probability that each

of the core events will succeed:

Pr(g|h) = fg

(
Pr(q1|h), Pr(q2|h), . . . , Pr(qk|h)

)
.

In this sense, the core events form a basis for predicting every other event. We call the

vector of probabilities that the core events succeed, given the history, q(h). This vector

is used much like the belief state vector of a hidden Markov model. The initial event

probabilities, q(ε), are provided as parameters of the PSR.

Linear PSRs assume that all core events are s-events and fg is a linear function

of q(h):

Pr(g|h) = q(h)>mg.

2The “s” here stands for sequence.
3The “e” stands for end.

23

Call the vector mg the predictor vector for g. We say a stochastic process has rank of k

if we can predict all s-event probabilities using a PSR with k core events, but no fewer.

Such a PSR is said to be a minimal event PSR. For the remainder of this work, we only

consider linear PSRs, and simply call them PSRs.

In order to use a PSR, we need a method for calculating the prediction vectors

mo for an arbitrary sequence o, and we need to know the success probabilities of the

core events q(h) for different histories h. It is convenient to calculate these probabilities

recursively.

First, we need the vector mo such that

Pr(o|h) = q(h)>mo,

for each possible observation o. These are called the one step predictors.

Also, for each core event qi we find the vector moi such that

Pr(o ◦ qi|h) = q(h)>moi.

We call these events the core event extensions, and the vectors moi the extension pre-

dictors.

The future core event probabilities are recursively updated using mo and moi.

When a new observation o received, the new success probability of core event qi is

given by:

Pr(qi|ho) =
q(h)>moi

q(h)>mo

.

The initial vector of core event probabilities, q(ε), is a parameter of the PSR.

For convenience, we arrange the core extension predictors for observation o into

a matrix Mo, where the ith column in this matrix corresponds to the extension event for

core event qi:

Mo =

| | |

mo1 mo2 . . . mok

| | |

 .

We call these matrices the core update operators.

24

Any sequence’s probability can be calculated using Mo and mo. For sequence

g = o1o2 . . . ol, and a core event probability vector q(h), we calculate the success prob-

ability of g as

Pr(g|h) = q(h)>Mo1Mo2 · · ·Mon−1mon (3.1)

(Littman et al., 2001).

Note that this calculation quite similar to the operations used in equation 2.1 to

calculate the probability of a sequence using a HMM. We adopt the same shorthand of

calling the result of a series of core update multiplications, Mo1 · · ·Mon , by the name

of the respective sequence Mo1:n . We define the core update operator for the length zero

sequence Mε as the identity matrix.

The major difference between PSR parameters and HMM parameters is that the

PSR parameters have fewer restrictions on their values. Unlike the HMM belief state

b(h), the PSR core event probabilities q(h) do not have to sum to 1. Unlike the HMM

parameters To, the PSR parameters Mo do not need to be probabilities (i.e. the parame-

ters can be greater than one or less than zero). This extra flexibility results in additional

modeling power. It was shown by Jaeger (1998) that PSRs can model a strict superset

of the stochastic processes that HMMs can model. In other words, every stochastic pro-

cess that can be modeled by a HMM can also be modeled by a PSR, but there are some

processes that can be modeled by a PSR but not by any finite state HMM.

3.3 PSRs and OOMs

The Observable Operator Model (Jaeger, 2000; Jaeger et al., 2006b) was de-

veloped before the PSR, and uses nearly identical concepts and operations to produce

predictions. The main contributions of PSRs over OOMs are a more approachable no-

tation, a more flexible definition of event, and fewer restrictions on the choice of core

events. Also, PSRs were initially introduced for modeling controlled processes, while

OOMs are used to model processes without actions.

25

The core events of an OOM are called its characteristic events, and their success

probabilities after history h are called w(h). While the core events of a PSR can be

any set of events that can be used to predict all other events, an OOM’s characteristic

events are constrained to partition the sequences inOl for some sufficiently large l. This

constraint allows the following invariant for all histories h :

1>w(h) =
k∑

i=1

Pr(qi|h)

=
∑
o∈Ol

Pr(o|h)

= 1.

The core update operators, called τo, behave the same as for the PSR, except that

they are transposed. This means that when we wish to update the characteristic events

after seeing o1o2 . . . on, we apply the update operators in reverse order (right to left):

Pr(o1o2 . . . on|h) = 1>τon · · · τo2τo1w(h).

Singh et al. (2004) proved that OOMs and PSRs model the same class of stochas-

tic processes. James (2005) provides algorithms for converting one representation into

the other.

3.4 Properties and Invariants of the PSR

PSRs can model a very large class of functions onO∗ → R. This set is known as

the rational languages (Denis et al., 2006) . Unfortunately, this set contains many more

functions than those that obey the properties of a stochastic process. In this section, we

explore some constraints on the PSR parameters when a PSR is modeling a stochastic

process, and the question of given a PSR, how can we tell if it is modeling a stochastic

process.

At first glance, a rank k PSR appears to have |O|k2 parameters in the Mo matri-

ces, |O|k parameters in the mo vectors, and k parameters in q(ε). However, there exist

26

a series of invariant properties of a PSR that restrict the range of valid parameters for the

model. Some of these invariants are easy to check, while checking for some are quite

difficult. The main unresolved issue is that unlike earlier models, it is not obvious when

a PSR produces outputs that obey the properties of a stochastic process.

We first show a result that will be useful for future proofs:

Lemma 1 A PSR with k events is minimal only if for every sequence o, there is a unique

predictor vector mo such that for all h, Pr(o|h) = q(h)>mo.

PROOF: Assume that there are two different predictor vectors that calculate the prob-

ability of sequence g. Call these vectors mg and mg
′. Now find some entry i, corre-

sponding to event qi, where the two vectors mg[i], mg
′[i] are different. We can calculate

Pr(qi|h) = q(h)[i] using the other core events:

q(h)>mg = q(h)>mg
′

q(h)[i](mg[i]−mg
′[i]) = q(h)[{j 6= i}]>(mg

′[{j 6= i}]−mg[{j 6= i}])

q(h)[i] =
q(h)[{j 6= i}]>(mg

′[{j 6= i}]−mg[{j 6= i}])
(mg[i]−mg

′[i])

= q(h)[{j 6= i}]>mqi

Given this solution for q(h)[i], we can construct a new prediction vector m∗
o for any

sequence o that does not use the probability of qi.

q(h)>mo =
k∑

j=1

q(h)[j]mo[j]

= q(h)[i]mo[i] +
∑
j 6=i

q(h)[j]mo[j]

= (q(h)[{j 6= i}]>mqi
)mo[i] +

∑
j 6=i

q(h)[j]mo[j]

= q(h)[{j 6= i}]>m∗
o

This contradicts our definition of a minimum event PSR.

�

27

Corollary 2 In a minimum event PSR, the prediction vector mqi
for the ith core event

is all zeros, except for a one in the ith entry.

PROOF: By construction, this vector calculates Pr(qi|h). The previous lemma guaran-

tees that it is unique. �

Here is a list of properties that a PSR must satisfy that are adapted from the

OOM literature (Jaeger, 2000). These properties parallel those for a stochastic process

presented in definition 1. We make use of two special derived parameters. The vector

mε is the predictor for the null event. Given the PSR parameters, we can calculate mε

as
∑

o∈O mo. We will see that this vector functions like the 1 vector for both the HMM

and OOM. The matrix M∗ =
∑

o∈O Mo calculates the expected value of the core events

on the next time step. By lemma 1, we know that both of these parameters are unique

for a given PSR.

Theorem 3 [adapted from Jaeger (2000)] A minimum event PSR {q(ε),Mo,mo}, where

P (o ∈ O∗) is calculated using equation 3.1, and given mε,M∗ as calculated above,

models a stochastic process if and only if it has the following properties:

1. q(ε)>mε = 1 ,

2. ∀o ∈ O,mo = Momε ,

3. M∗mε = mε ,

4. ∀o ∈ O∗, 1 ≥ q(ε)>Momε ≥ 0 .

PROOF:

We prove this by showing that a PSR satisfying these properties satisfies the

properties of a stochastic process given in definition 1. Also, if the PSR does not satisfy

these properties, then it cannot be a model of a stochastic process.

The normalization property of a stochastic process (P (ε) = 1) is satisfied by

property 1. Likewise, if property 1 is violated, then so is the normalization property.

28

The consistency property is satisfied by properties 2 and 3:

P (o) = q(ε)>mo

= q(ε)>Momε

= q(ε)>MoM∗mε

= q(ε)>Mo

∑
b∈O

(
Mb

)
mε

=
∑
b∈O

(
q(ε)>MoMbmε

)
=

∑
b∈O

P (o ◦ b).

We now show that if properties 2 or 3 are violated, then so is the consistency

property. First, we address property 2. Assume that for some o ∈ O∗,mo 6= Momε :∑
b∈O

P (ob) =
∑
b∈O

q(ε)>Momb

= q(ε)>Mo

(∑
b∈O

mb

)
= q(ε)>Momε

6= q(ε)>mo = P (o).

A violation of property 3 also results in the consistency property being violated.

The proof is nearly identical to that above.∑
b∈O

P (ob) =
∑
b∈O

q(ε)>MoMbmε

= q(ε)>MoM∗mε

6= q(ε)>Momε = P (o).

Finally, we address property 4. Here we take equation 3.1, but substitute the

final one-step predictor with the corresponding core extension matrix and the null event

predictor. This new equation must compute the same quantity given property 2 proved

above. The boundedness property of a stochastic process is satisfied by property 4, and

boundedness is violated if property 4 is violated. �

29

An immediate consequence of this theorem is that the one-step predictors mo

are not free parameters if we are given the core extension matrices Mo and mε. Thus,

we can use this theorem to reduce the parameters in a rank k PSR by (|O| − 1)k by

replacing the mo vectors with mε.

Note that the first three properties of theorem 3 are simple to check given a

specified model. The last property states that predictions on all sequences are bounded

in the range of probabilities. It is not obvious how to check this property. We will

address this issue in section 3.5.

We finish this section with one additional restriction on M∗:

Theorem 4 For a minimum event PSR, the matrix M∗ has at least one eigenvalue equal

to 1. Also, M∗ does not have any eigenvalues with absolute value greater than 1.

PROOF: Property 2 of theorem 3 shows that mε is a right eigenvector of M∗ with eigen-

value 1. This proves the first part of this theorem.

Assume that there is some eigenvalue of M∗ greater than 1. In this case, there

is a nonzero vector q′ such that q′>M∗ = αq′>, with α > 1. Examine the largest such

α where this is the case. Assume that some q(h) can be decomposed into βq′ + γq′′,

where β > 0 and q′>q′′ = 0. For some sufficiently large x, q(hOx)> = q(h)>M∗
x will

have some entries outside the range [0 1]. This is because this vector will be dominated

by the term = αxβq′, which is unbounded as x increases. This vector, which represents

the expected probabilities of the core events x steps in the future, cannot have values

outside of [0, 1].

Assume however, that we cannot find a q(h) that can be broken into components

βq′ + γq′′. In this case, we have added the linear constraint to the core events that

∀h,q(h)>q′ = 0. This constraint reduces the degrees of freedom of our core event

probabilities. One of the core events must be redundant. In either case, we have a

contradiction.

Finally, consider the case where there is some eigenvalue less than −1. The

argument for this case is similar: either we can find a history where some expected

30

future core event probability is less than 0, or there is an additional linear constraint to

the core event probabilities, meaning they were not minimal. �

A similar theorem appeared in the work of Jaeger (2000). His theorem relies

heavily on the OOM representation, however, and is not directly applicable to PSRs.

3.4.1 Multiplicity Automata

In their most general form, multiplicity automata are a collection of parameters

〈O, r, ι, µo∈O, γ〉, where O is a finite set, r is a real number, ι is a 1× r vector, µo∈O is

a r × r matrix, and γ is a r × 1 vector (Beimel et al., 2000; Denis and Esposito, 2004).

A multiplicity automaton A defines a function fA : O∗ → < such that for sequence

o1 . . . on:

fA(o1 . . . on) = ι
(n∏

1=1

µoi

)
γ.

Clearly, any PSR is a multiplicity automaton, where q(ε)> = ι,Mo = µo, and mε = γ.

It has been shown that for any fA, we can define a multiplicity automata A′,

where each entry ι′[i] equals fA’s value on some sequence oi, and each µa is defined

such that:

ιµa[:, i] = fA(a ◦ oi)

(see Beimel et al. (2000) for a presentation of this well-known result). If fA defines a

stochastic process, then A′ matches our definition of a PSR.

Proposition 1 (see Beimel et al. (2000)) Any stochastic process that can be defined by

a multiplicity automaton can also be defined by a PSR.

3.4.2 Regular Form PSRs

Any rank k stochastic process can be modeled by many k event PSRs. Any

set of k s-events where each event cannot be predicted by the others will constitute a

core event set (Singh et al., 2004). We would like a guideline for choosing core events

31

Future

b

b

a

a
Pr(a|h)

Pr(|h)εPr(ab|h)

Pr(b|h)

Pr(bb|h)

Figure 3.1: A tree of PSR core events that are in regular form. The event sequence is

produced by following a node to the root of the tree.

that lead to as simple a representation as possible. Below we present a framework for

choosing a particularly advantageous set of core events:

Definition 2 A PSR is in regular form if the set of core events is minimal and each core

event is either the null event, or an extension of a core event.

A regular form PSR has core events that can be arranged in a tree structure

reminiscent of context tree. The null event makes the root of the tree. All other core

events are appended to the tree by adding an edge to the core event that this event

extends. See figure 3.1 for a diagram of an event tree.

An algorithm for producing a (nearly) regular form PSR from a HMM has been

provided by Littman et al. (2001), and later by Even-Dar et al. (2005). A similar form

for OOMs has been proposed by Jaeger (1998). Jaeger conjectured that all OOMs have

such a form, but didn’t prove it. I have extended these results to show that all PSRs have

an equivalent regular form (Wiewiora, 2005).

Theorem 5 Any k event PSR can be converted to a regular form PSR with no more than

k events.

32

PROOF: Assume PSR P = (q1 . . .qk, {mo}, {Mo}) is not in regular form. We show

how to incrementally convert it to a regular form PSR by replacing core events that do

not meet the regular form definition.

Consider when the null event is not a core event in P. By our definition of a

PSR, there is some mε such that q(h)>mε = 1 for all histories h. We find some event

qi where the ith entry in mε is nonzero. Such an event must exist since the probability

of the null event is nonzero. We can calculate the probability of qi using the other core

events and the null event:

1 =
∑

j

Pr(qj|h)mε[j]

Pr(qi|h)mε[i] = 1−
∑
j 6=i

Pr(qj|h)mε[j]

Pr(qi|h) =
1

mε[i]
Pr(ε|h) +

∑
j 6=i

Pr(qj|h)
−mε[j]

mε[i]
.

Because we can calculate Pr(qi|h) for any h, this core event can be replaced with the

null event.

Now consider the case where there is some core event qi which is not an exten-

sion of any other core event. Also, assume there is some extension of a regular form

core event qx, which we call qox, that is not a core event, and qi has a nonzero entry in

mox. We use the same argument made for the null event to show that we can replace qi

with qox:

Pr(qox|h) =
∑

j

Pr(qj|h)mox[j]

Pr(qi|h)mox[i] = Pr(qox|h)−
∑
j 6=i

Pr(qj|h)mox[j]

Pr(qi|h) =
Pr(qox|h)

mox[i]
+

∑
j 6=i

Pr(qj|h)
−mox[j]

mox[i]
.

Suppose, however, that we have included the null event but cannot find any ex-

tensions of the regular form core events that are influenced by the offending core events.

33

In this case, we show that these offending core events are redundant. By our assumption,

we can rearrange the events such that all Mo have the form: Mrr
o Mrx

o

0 Mxx
o

 .

Here, the matrix Mrr
o defines how the regular form events influence the extensions of

other regular form events. Likewise, Mxx
o defines how the offending events interact, and

Mrx
o define how the regular form events influence the offenders. Note that by our as-

sumption, the offending events cannot influence the regular form event extensions. Also,

the offending events cannot influence the one step predictions, as these are extensions

of the null event:

mo =
[
mrr

o 0
]>

.

Using equation 3.1 above, we can use these PSR parameters to calculate any event prob-

ability, including the offending core events. By using simple linear algebra, we also see

that the offending core events do not influence these predictions (i.e. , the entries in

the Mxx
o matrices have no influence on the final probability). Thus, these events are

redundant. �

In fact, all multiplicity automata can be converted into a regular form. The proof

used above can be lightly modified to prove proposition 1.

A regular form PSR has fewer free parameters than a general PSR. Because we

have included the null event as a core event, the vector mε is no longer a free parameter.

By corollary 2, we know that mε must be a vector of all zeros, except for a 1 in the

index for the null event. Also, many core extension events found in the Mo matrices

are also core events. If some event qi equals o ◦ qj , then the jth column of Mo is all

zeros, except for a 1 in the ith row. Given the event tree, a regular form PSR has only

|O| ∗ (k2)− k(k − 1) free entries in the core extension matrices and k entries in q(ε).

The regular form PSR proof also guarantees that when a set of core events for a

process is unknown, we will only have to search “short” events before finding a set of

core events.

34

Corollary 6 Every rank k stochastic process has a predictive state representation where

each core event has length less than k.

PROOF: Because every core event is an extension of some other core event, the maximal

length of any event is the maximum number of times a event can be extended. This is

(k − 1) times. �

3.5 The Negative Prediction Problem

It has been noted that the largest difficulty of using PSRs to model stochastic

processes is that they may generate “predictions” that are less than zero. This has been

called the negative probability problem by Jaeger (2000). We desire a test for whether a

proposed PSR could produce a negative probability for some sequence (i.e. the bound-

edness property of a stochastic process is enforced).

We now present a new result that states that checking the boundedness property

is undecidable. Before the main result, we must relate PSRs to the stochastic multiplicity

automata (S-MA). As mentioned before, a stochastic multiplicity automaton is similar

to a PSR, except that it assigns probabilities to complete strings rather than prefixes of

arbitrarily long sequences. For a stochastic multiplicity automaton A , we have:∑
o∈O∗

PA(o) = 1,

while for a PSR S, we have for every l = 0, 1, 2, . . . :∑
o∈Ol

PS(o) = 1.

Given a minimal k state S-MA A on alphabet O, we can construct a k + 1 state

MA S on alphabet O ∪ φ such that for o,b ∈ O∗, l = 1, 2, . . .

PS(o ◦ φl) = PA(o),

PS(o ◦ φl ◦ b) = 0.

35

We can think of φ as the emission of a “trap” state in an automaton. Note that once a φ

has been emmitted, the only futue observation with nonzero probability is φ.

Assume that A is defined by the parameters 〈ι, µo, γ〉. We construct the matrix

µ∗ = I +
∑∞

i=1

(∑
o∈O µo

)i

, where I is the identity matrix. This matrix can be used to

calculate the sum of fA on all sequences that begin with a common prefix:∑
b∈O∗

fA(o ◦ b) =
∑
b∈O∗

ιµo · µbγ

= ιµo

(∑
b∈O∗

µb

)
γ

= ιµo

(
I +

∑
b∈O

µb +
∑
b∈O2

µb . . .
)
γ

= ιµo

(
I +

∑
b∈O

µb + (
∑
b∈O

µb)2 . . .
)
γ

= ιµoµ
∗γ.

If A is a stochastic multiplicity automaton where fA sums to a finite value, then µ∗

must exist, and will have finite values (Denis and Esposito, 2006). Furthermore, if A is

minimal rank, then it is calculated as (I−
∑

b∈O µb)
−1. Both of these conditions can be

checked efficiently (Denis and Esposito, 2006).

We now define our new MA S = 〈ι′, µ′
o∪µ′

φ, γ
′〉 which computes a stochastic

process if A is an S-MA. The first k columns of vector ι′ equal ι, but has one extra

column equal to 0:

ι′ =
[

ι 0
]
.

For each (k + 1× k + 1) matrix µ′
o∈O, we set the upper left k × k block equal

to µo The entries in the last row and column all equal zero.

µ′
o =

 µo 0

0 0

 .

The matrix µ′
φ is mostly zero, except for the last column. Here, the first k rows are

equal to γ, and the last row equals 1.

µ′
φ =

 0 γ

0 1

 .

36

Finally, the vector γ ′ equals µ∗γ in the first k columns, and the last column

equals 1.

γ ′ =

 µ∗γ

1

 .

By construction of S, we can calculate the following for o ∈ O∗ : the total value

of fA for all strings with prefix o

fS(o) = ιµoµ
∗γ =

∑
b∈O∗

fA(o ◦ b)

the value of fA(O)

fS(o ◦ φ) = ιµoγ = fA(o).

We also have the following properties: the symbol φ will repeat indefinitely after being

observed once

fS(o ◦ φn) = ιµoγ ∗ 1(n−1) = fA(o),

and no other symbol but a φ can follow a φ

fS(o ◦ φ ◦ b ∈ O) = ιµoOµbγ = 0.

Lemma 7 Given a multiplicity automaton A, and S as constructed above, we have the

following:

• If A is a S-MA, then S is a stochastic process,

• S will produce a negative output if and only if A produces a negative output.

PROOF: It is immediate from the construction that S will have the boundedness and

normalization properties of a stochastic process if A is a S-MA. Consistency can be

seen by breaking all sequences into cases. First consider sequences that contain noting

but observations from O:

fS(o) =
∑
b∈O∗

fA(o ◦ b)

= fA(o) +
∑
c∈O

fS(o ◦ c)

= fS(o ◦ φ) +
∑
b∈O

fS(o ◦ b).

37

Next, consider sequences that end in φ. By construction, the only symbol that can

follow a φ is another φ. The probability that this will happen is 1. Thus consistency is

preserved. Finally, consisder a sequence that ends with some o ∈ O, but contained a φ

ealier. In this case, the probability fS assigns to this sequence is 0, as well as any longer

sequences that have this as a prefix.

Now, consider the values that fS can have. These values are either 0, in the case

of an observation following a φ, or a sum of values from fA. A sum can only be negative

if one of the elements being added is negative. Also, if there is any o where fA(o) < 0,

then fS(o ◦ φ) < 0. �

Theorem 8 The problem of whether a PSR outputs a negative value for some sequence

o ∈ O∗ is undecidable.

PROOF: We use the (rather surprising) result that it is undecidable if some multiplicity

automaton is a S-MA (Denis and Esposito, 2004). The proof shows that a solution to

the S-MA problem yeilds a solution to the post correspondence problem, a well known

undecidable problem. Like the case for the PSR, it is easy to check for every condition

of a valid S-MA except that the output is always nonnegative.

If we could decide if a PSR outputs negative probabilities, then we could also

decide if an S-MA outputs negative probabilities. Simply convert the MA into PSR form

using lemma 7 and proposition 1, and decide if the PSR produces negative probabilities.

This contradicts this previously published result. �

3.5.1 Practical Solutions

In order to use PSRs that were learned on data, we need some way to work

around the contingency that they produce a negative probability. In the experiments we

present later, we employ a simple technique:

1. If there is some prediction less than ι = 1e− 8, set this prediction to ι.

2. Renormalize such that
∑

o∈O P (o) = 1.

38

3. If an observation that was originaly predicted to occur with probability zero or

less is observed, then set the core test vector on the next time step to q(ε).

A more complex procedure for dealing with this problem was developed by

Jaeger et al. (2006b). In practice, this occurance is fairly rare, and any reasonable

method for handling this yeild comparable results.

Chapter 4

Controlled Processes

In this chapter, we study controlled stochastic processes (or controlled process).

Like a a stochastic process, a controlled stochastic process generates an observation ot

from some finite set O, on every time step t. The difference is that a controlled process

also requires an input on every time step. This input at comes from a finite set A. We

interleave the action and observation sequences, so a joint sequence will have the form

u1:t = a1o1a2o2 . . . atot. We call the joint set of actions and observations (A × O) the

set of symbols.

A controlled process gives the probability of an observation sequence, given that

a particular action sequence is input. The formal definition of a controlled process is

similar to that of a stochastic process (Definition 1):

Definition 3 A controlled stochastic process is a function Y : (A×O)∗ → R satisfying

• Boundedness: ∀u ∈ (A×O)∗ : 1 ≥ Y (u) ≥ 0

• Consistency: ∀n ∈ 0, 1, . . .∀u ∈ (A×O)n,∀a ∈ A : Y (u) =
∑

o∈O Y (u ◦ao)

• Normalization: P (ε) = 1.

Note that the controlled process does not give a distribution on the actions. It

is assumed that actions are generated by a source distinct from the controlled process.

Also, if there is only one action, a controlled process is identical to a stochastic process.

39

40

Similar to stochastic processes, we accumulate previous actions and observa-

tions into a history, called ht. In general, the probability of the next observation will

depend on the entire history, and the next action. We define the function that gives the

conditional probability as we did for stochastic processes

Y (ao1:t) =
t∏

i=1

Y (aioi|hi−1).

We will sometimes write this in a more conventional notation:

Y (aioi|h) ≡ Pr(oi|h, ai).

Cost functions for measuring prediction accuracy are similar. Given a history

and an action, we predict the next observation using a model. We then see the next

observation, and incur a cost using one of the loss functions mentioned before.

Controlled processes are vital for the theory of reinforcement learning (Sutton

and Barto, 1998) and planning under uncertainty (Cassandra et al., 1994). Given an

accurate model of a controlled process, an agent can sample several possible futures, and

determine the action which is most likely to yield an advantageous series of observations

(Kearns et al., 1999). Sometimes it is only necessary to assume that such a model

exists, and that the learner has access to the model’s state. This is known as model-free

reinforcement learning (Sutton and Barto, 1998).

4.1 Previous Models

There are two main models of controlled processes: the Markov Decision Pro-

cess (MDP) and the Partially-observable Markov Decision Process (POMDP). The MDP

is related to the VMM, while the POMDP is related to the HMM.

4.1.1 Markov Decision Processes

An MDP is the most common controlled process model used in reinforcement

learning (Puterman, 1994). The model assumes that the probability of the next observa-

41

tion only depends on the current observation and the next action:

Pr(ot+1|ht, at+1) = Pr(ot+1|ot, at+1).

The process begins in a unique start state o0. For every action a, we define a

matrix Pa, where Pa[i, j] = Pr(Ot = j|Ot−1 = i, At = a). The observations are

said to have the Markov property: given the observation, the history and the future are

independent.

The MDP can be extended such that the state of the system is composed of the

recent history, not just the most recent observation. As for the VMM, we define the

recent history as the context. Such models are relatively unstudied, though McCallum

(1995) has used such models successfully in several reinforcement learning tasks. The

model, called U-tree, keeps a context tree as discussed for VMMs.

Learning MDPs from data is usually a secondary goal to the problem of using

the model for planning. As such, the algorithms used for learning these systems do

not necessarily aim to minimize prediction loss. Given sufficient data, most learning

algorithms minimize model error, but when data is sparse, it is often the case that the

models are biased towards “optimistic” predictions (Brafman and Tennenholtz, 2002).

When uncertain transitions are thought to be rewarding, a planning system will be biased

to collect more data, thus improving long-term model accuracy.

When the MDP framework is extended to include contexts, learning is also

aimed at improving the performance of planning and reinforcement learning. The cri-

terion used to learn a U-tree is to add more context when there is evidence that longer

contexts require different optimal actions.

4.1.2 Partially-observable Markov Decision Processes

POMDPs are a straightforward extension of hidden Markov models to controlled

systems. Like the HMM, a POMDP has a latent state xt for every time step t. Given

knowledge of this state, the history and the future of the process are independent. In

42

general, the state of the system cannot be inferred with complete certainty given only

past actions and observations. We use b(h) to represent the belief state: the distribution

over the latent state after observing history h. The initial belief state, b(ε), is a parameter

of the model. Like the HMM, we define transition matrices Tao, where a ∈ A and

o ∈ O. The entry Tao[i, j] equals Pr(Xt+1 = j, Ot+1 = o|Xt = i, At+1 = a). We

calculate the probability of a sequence, conditioned on the actions, similar to the HMM:

Pr(ao1:n) = b(ε)>
(n∏

i=1

Taioi

)
1.

All learning algorithms for the HMM can be adapted to work with POMDPs.

The most popular algorithm for learning a POMDP is EM, though in most cases, it is

assumed that a fairly accurate model is known a priori.

4.2 Policies

In order to use a controlled process to generate a sequence, we need a method

for providing actions. We model a source of actions as a policy. A policy maps a history

to a distribution over the next action that will be supplied to the system. It is identical to

a stochastic process, with the roles of actions and observations reversed.

Definition 4 A Policy is a function R : A, (A×O)∗ → [0, 1] such that:

∀h ∈ (A×O)∗,
∑
a∈A

R(a|h) = 1.

When a policy is specified along with a controlled process, the entire system can be

modeled as a stochastic process. This coupled system generates symbols from a finite

set U = {A ×O}.

4.3 PSRs for Controlled Processes

We now present predictive state representations (PSRs) as a method for modeling

a controlled process. The PSR was originally presented as such a model, though the

43

framework is trivially extendable to stochastic processes (Littman et al., 2001).

4.3.1 Tests

We must extend our definition of event to include the influence of actions on

future observations. Specifically, we would like to know the probability of future obser-

vations, given that a specific sequence of actions are taken. In the PSR literature, a test is

defined by an action sequence and an observation sequence (Littman et al., 2001). The

success probability of a test is the probability that the observation sequence will be ob-

served, given that the action sequence will be followed (with probability 1). These tests

become the basic unit of prediction for PSRs modelling controlled processes. In most

cases, we deal with the situation where there is a policy interacting with the controlled

process. Here, this classical definition of test is not immediately applicable because

most, if not all, action sequences occur with probabilities less than 1. We expand the

classic definition of tests to handle non-deterministic action selection.

A generalized test consists of two events on the joint action-observation space

U . The conditioning event for test g, called gc, is assumed to occur over the next l time

steps. The conditioned event gu may or may not occur. The conditioned event must

a subset of the conditioning event. At any point in the history of a controlled process,

we define the probability of a test g succeeding as the probability that the conditioned

event occurs in the next l observations, given that the conditioning event occurs. In

general, we must calculate this conditional probability sequentially, as the probability

of actions and observations later in an event may depend on the outcomes earlier in an

event (Bowling et al., 2006).

If gu is a single sequence, we can write its success probability as

Y (g|h) ≡
l∏

i=1

Pr(gu
i |h ◦ gu

1:i−1)∑
e: gu

1:i−1◦e∈gc
1:i

Pr(e|h ◦ gu
1:i−1)

. (4.1)

For each future time step, we calculate the probability of the current symbol in the

conditioned event, given the history and the earlier symbols in the conditioned event.

44

This is the numerator of the above equation. We also calculate the probability that the

conditioning event will continue to this point of the conditioned event. We divide by

this probability.

The most common generalized test is the s-test. Like the s-event, an s-test con-

tains a single sequence of actions and observations as the conditioned event:

su = a1o1a2o2 . . . alol.

The conditioning event is all sequences that contain the same actions as the conditioned

event:

sc = {a1Oa2O . . . alO}.

We rewrite equation 4.1 specifically for s-tests:

Y (s|h) =
l∏

i=1

Pr(aioi|h ◦ ao1:i−1)∑
b∈O Pr(aib|h ◦ ao1:i−1)

=
l∏

i=1

Y (oi|h ◦ ao1:i−1, ai).

The last equality holds whenever the probability of the actions are always nonzero, and

only depends on the history and earlier symbols in the test. Note that this is exactly

the same as how a controlled process iteratively calculates Y (s) using conditional prob-

abilities. We will sometimes refer to an s-test using only the test’s conditioned event

u = a1o1 . . . akok. The null test is also an s-test, where the length of the test is zero.

We now define the e-test, which is the equivalent of an e-event for a controlled

processes. E-tests are the “original” test, appearing in the early works on determinis-

tic environments(Rivest and Schapire, 1994). The conditioned event is the set of all

sequences where a particular course of action is followed, and the final observation is

some ol:

eu = {a1Oa2O . . . alol}.

The conditioning event is all sequences that contain the same actions as the conditioned

event:

ec = {a1Oa2O . . . alO}.

45

Unfortunately, there is no simple method for calculating the probability of an

e-test other than aggregating the probabilities of all the s-tests that is is composed of:

Y (e|h) =
∑

ao∈eu

Y (ao|h)

=
∑

ao∈eu

l∏
i=1

Pr(oi|h ◦ ao1:i−1, ai).

The reason for the difficulty is that while only the final observation matters for the e-

test probability, this observation’s probability will depend on the intermediate actions

observations.

4.3.2 PSRs with tests

In order to model controlled processes, we substitute the s-test for the s-event

in our definition of a Predictive State Representation. All of the results presented in

chapter 3 carry over quite smoothly to the controlled case.

All one step predictors mao and core extension matrices Mao are indexed by

both an action and an observation. To calculate the success probability of s-test g,

where gu = a1o1 . . . anon we perform the following operation:

Y (g|h) = q(h)>
(n∏

i=1

Maioi

)
mε. (4.2)

All of the theorems proven for PSRs in the uncontrolled case transfer to the

controlled case without much alteration.

We include one modified theorem. For each action a, we define Ma∗ =
∑

o∈O Mao.

This calculates the expected probabilities of the core tests on the next time step, given

that action a is taken.

Theorem 9 A minimum event PSR {q(ε),Mao,mε}, where for ao ∈ (A×O)∗, Pr(ao)

is calculated using equation 4.2, and given Ma∗ defined above, models a controlled pro-

cess if and only if it has the following properties:

46

1. q(ε)>mε = 1 ,

2. ∀a ∈ A, Ma∗mε = mε ,

3. ∀ao ∈ (A×O)∗, 1 ≥ q(ε)>Maomε ≥ 0 .

PROOF: The proof follows the argument of theorem 3. �

It is important to note that although it may be hard to calculate the success prob-

ability of an e-test directly from a joint process on both actions and observations, it

can be a simple calculation for a PSR. As we saw, the e-test is a sum of many s-tests.

Since each s-test g can be predicted using the dot product q>mg, the sum of many s-test

success probabilities can also be predicted using a single dot product:

Y (e|h) =
∑

ao∈eu

q>mao,

= q>
(∑

ao∈eu

mao

)
,

= q>me.

After a one-time cost of computing me, finding the probability of the e-test is as efficient

as an s-test.

4.4 Linear Policies

We treat policies much like we have treated the processes that policies control.

Like a controlled process, the next action a policy outputs can be an arbitrary function of

the entire history of previous observations and actions. This is an infinite set of possible

policies. In order to analyze the long-term behavior of a policy, we need a measure of

its complexity similar to the number of tests in a PSR.

We do this by introducing the a-test. An a-test is equivalent to an s-test, but

with the role of actions and observations reversed. A length n a-test f composed of

47

conditioned event fu and conditioning event f c will have the following form:

fu = o1a1o2a2 . . . onan;

f c = {o1Ao2A . . . onA}.

The null test is also included in the set of a-tests. Note that these tests begin with an

observation instead of an action.

For a given policy R, the probability of an a-test f succeeding is:

Y (f |h ◦ a0) =
n∏

i=1

R(ai|h ◦ a0 ◦ oa1:i−1 ◦ oi).

Note that we need histories to end with an action for our a-tests to be defined. It is

usually possible to consider a-test probabilities from the last action, except for the first

time step. Here, the history is empty. For this special case, the probability of an a-test is

undefined.

A policy has rank k if the probability of any a-test is a linear combination of the

probability of a set of k a-tests. After any history h, we call the probability vector of the

a-tests r(h).

Like a PSR, we will need to define functions to maintain the probabilities of the

success of the a-tests. The one-step tests calculate the probability of the test Pr(a|h, o)

for all a and o. This is a linear function parameterized with a weight vector voa. Also,

we need to calculate the vectors for the a-test extensions. We arrange the weight vectors

for the core test extensions of oa into matrix Voa. Because we cannot use a-tests to

predict the first action, we must deal with the choice of this first action as a special case:

Pr(a|ε) = R(a|ε). We construct the initialization matrix Va and the initialization vector

r(ε), and impose the following relationship:

R(a|ε) ∗ r(a)> = r(ε)>Va.

Like PSRs, a linear policy can be expressed in a regular form where all a-tests

are shorter than the policy’s rank.

48

In order to gain intuition on linear policies, consider the class of reactive policies.

A reactive policy selects the next action based on only the previous observation:

R(a|ht) = Pr(a|ot).

Because all the one step a-tests have constant success probabilities, such a policy has

rank 1. Consider the a-test for action a after observation o, given the null test as the only

core test of the policy:

Pr(foa|h ◦ a′) = r(h ◦ a′)>Vaovε,

= Pr(ε|h ◦ a′)
(

Pr(a|o)
)
1,

= Pr(a|o).

In general, a kth-order reactive policy (one that selects the next action according

to the previous k action-observation pairs) will have rank |A × O|k. Linear policies are

also capable of representing policies encoded as options (Sutton et al., 1999), finite state

automata (Hansen, 1997), and many other forms.

Now we examine the behavior of a linear PSR coupled with a linear policy. It

is easy to show that an n state Markov decision process that is controlled by a m state

controller will become a m ∗ n state Markov chain. We show a similar result for PSRs.

Theorem 10 A rank k controlled process coupled with a rank f linear policy can be

modeled as a stochastic process P : (A×O)∗ → [0, 1] with rank no greater than k ∗ f .

PROOF: We show this result by constructing the parameters of the coupled process from

a parameterization of the controlled process and policy.

The probability that some ao occurs immediately is

P (ao) = Pr(a) Pr(o|a)

= r>ε Vavε ∗ q(ε)>Maomε

= r>ε va ∗ q(ε)>mao.

We calculate the probability of longer sequences inductively. Assume that any

sequence ao1:k of length k can be written as a product of q(ε)>mao1:k
and r(ε)>vao1:k−1ak

.

49

We now show how to calculate probability of a length k + 1 sequence sk+1:

P (ao1:k ◦ ak+1ok+1) = P (a1o1 . . . akok)

∗Pr(ak+1|a1o1 . . . akok)

∗Pr(ok+1|a1o1 . . . akokak+1)

= r(ε)>vao1:k−1ak
∗ q(ε)>mao1:k

∗
r(ε)>Vao1:kak+1

vε

r(ε)>vao1:k−1ak

∗
q(ε)>Mao1:k+1

mε

q(ε)>mao1:k

= r(ε)>vao1:kak+1
∗ q(ε)>mao1:k+1

.

Thus, the probability any sequence of action-observation pairs occurs can be described

as the product of two dot products. We rewrite this as the single dot product:

q(ε)>ms · r(ε)>vs = m>
s

(
q(ε) · r(ε)>

)
vs

= m>
s C(ε)vs

=
∑
i,j

C(ε)[i, j]ms[i]vs[j]

= c(ε)>ωs,

where c(ε) is the vectorized outer product of q(ε) and v(ε), and ωs is the vectorized

outer product of ms and vs. Because any sequence probability is a dot product of a

(k ∗ f)-dimensional vector, this system cannot have a rank more than (k ∗ f). �

4.5 Modeling Controlled Processes as Uncontrolled

Theorem 10 provides a justification for modeling a controlled process using an

uncontrolled stochastic process. If we knew that actions were being sampled from some

fixed, finite dimension policy, then we could model the joint probabilities of the actions

and observations, rather than the conditional probabilities of the observations, given the

50

actions. This can be advantageous, as there is a much larger body of work on models

for sequence prediction in the uncontrolled case.

For every history h, our process predicts Pr(ao|h). This process is trivially

capable of making conditioned predictions:

Pr(o|h, a) =
Pr(ao|h)∑

b∈O Pr(ab|h)
.

However, this procedure violates a common rule of thumb for machine learning: never

model more than the problem requires. Basically, our model may waste modeling power

on predicting the actions, when the modeling power should be focused on predicting the

conditional probabilities of the observations. Theorem 10 suggests that this problem

should be worse as the complexity of the policy grows. “Fortunately,” it is common in

the PSR literature to use a policy that selects actions uniformly at random (Singh et al.,

2003; James, 2005; McCracken and Bowling, 2006), though see the work of Bowling

et al. (2006) for an exception. For such a policy, the rank of the controlled system and

the uncontrolled system is identical. We will discuss the merits of these two learning

styles in chapter 6.

4.6 The System Identification Problem

Given an unknown or partially modeled controlled process, it would be useful

to have a policy that will take actions which are useful for learning the structure of the

process. We would like this policy gather this information using as few samples as pos-

sible. This is known as the system identification problem. For MDPs, the problem has

been fairly well studied (Duff, 2003; Kearns and Singh, 1998; Brafman and Tennen-

holtz, 2002). In particular, Kearns and Singh (1998) show that one can design a policy

that can efficiently learn any portion of an MDP that it has a non-negligible chance of

visiting in the future.

The case for POMDPs and PSRs is a bit more grim. Even in the case of POMDPs

with deterministic observation and state transition functions, building a policy that effi-

51

a=’u’,o=0 a=’n’,o=0 a=’l’,o=0 a=’o’,o=0 a=’c’,o=0

a=’k’,o=1

a=’a−j,l−z’,o=0

Figure 4.1: An example Partially-observable Markov decision process that is difficult to

learn. The observation is always “0” unless the action sequence “unlock” is input.

ciently learns the system is impossible (see Freund et al. (1993) for a brief review). The

problem can be seen in the POMDP in figure 4.1. This deterministic POMDP has six

states, but may require on the order of 266 actions to identify the structure. Here the ob-

servations are {0, 1}, and the actions are lower case letters of the alphabet. The system

always produces a 0 as the observation unless the action sequence u, n, l, o, c, k is input.

If any other input is given, the system resets back to an original state without providing

any feedback. This model can be thought of as a password protection system. Given

such a model, but with an unknown “password” sequence, we will be unable to predict

which sequence of observations will yield the “1” observation unless we have stumbled

upon it at random. Because this problem is hard for POMDPs, it must also be hard for

PSRs. This follows because PSRs can model any system descibed by a POMDP.

Chapter 5

The System Matrix

In the previous chapters, we presented the PSR as a representation for stochastic

processes, and described their properties and relations to other models of stochastic

processes. In this chapter, we present the System Matrix, a data structure that most PSR

learning algorithms are built around.

5.1 System Matrix Definition

We present another representation of a stochastic process called the system ma-

trix D. The rows of D index the infinite possible histories of a process, and the columns

index the s-tests (or s-events for an uncontrolled system). We order the histories and

tests from short to long, and alphabetically for sequences of the same length. We abuse

notation by indexing the system matrix using both sequence indices and the sequences

themselves:

D(i, j) = D(hi,qj) = Pr(qj|hi).

Note that there are a countably infinite number of rows and columns in D. Some his-

tories may be possible to generate using the stochastic process. When some history

occurs with probability 0, then that entire row of D will be zeros. We call such rows

unreachable. An example of a System matrix can be seen in figure 5.1.

52

53

Pr(a,X|X) = 0.5

Pr(b,Y|X) = 0.5

Pr(a,Y|Y) = 0.5

Pr(c,X|Y) = 0.5

X Y

b
a

c

a

(a) The stochastic process from 2.2.

ε a b c aa ab ac ba bb bc . . .

ε 1 1
2

1
2

0 1
4

1
4

0 1
4

0 1
4

. . .
a 1 1

2
1
2

0 1
4

1
4

0 1
4

0 1
4

. . .
b 1 1

2
0 1

2
1
4

0 1
4

0 0 0 . . .
c 0 0 0 0 0 0 0 0 0 0 . . .
aa 1 1

2
1
2

0 1
4

1
4

0 1
4

0 1
4

. . .
...

...
...

...
...

...
...

...
...

...
... . . .

(b) The System matrix for this process. We assume the process

starts in state X.

Figure 5.1: An example stochastic process and its system matrix.

First we examine some of the basic properties of a valid System Matrix as out-

lined by McCracken and Bowling (2006). These properties are all the result of the

system matrix containing probabilities generated by a stochastic process. These must

hold for any history hi ∈ (A×O)∗, and s-test with conditioned event uj:

• Bounded Range: 0 ≤ D(hi,uj) ≤ 1,

• Internal Consistency: ∀a ∈ A, : D(hi,uj) =
∑

b∈OD(hi,uj ◦ a ◦ b),

• Unreachable Rows: If D(ε,uj) = 0, then D(uj, ·) = 0.

If hi is reachable, then two additional properties hold:

• Null Test Identity: D(hi, ε) = 1 ,

• Conditional Probability: ∀oj ∈ O∗, b ∈ O : D(hi ◦ b,oj) =
D(hi,b◦oj)

D(hi,b)
.

The range constraint restricts the entries inD to be probabilities. The null test constraint

enforces the normalization constraint of a stochastic process. The internal consistency

54

constraint ensures that the probabilities within a single row meet the requirements of a

stochastic process. The conditional probability constraint is required to maintain con-

sistency between different rows of the matrix.

Note that the system matrix is an alternate definition of a stochastic process, not

a model of one. Also, this representation is over-complete: every entry in D can be

inferred from the first row:

D(i, j) =
D(ε,hi ◦ qj)

D(ε,hi)
.

The system matrix for PSRs was first mentioned by Singh et al. (2004), though

there is a long history of similar structures. Jaeger (1998) described a similar structure

called the conditional continuation probabilities of a process. He defines a collection of

infinite-dimensional vectors of the probabilities of future events, given differing initial

histories. These vectors are precisely the rows of the system dynamics matrix. Jaeger

was inspired by earlier work by Ito et al. (1992). They used a similar collection of

vectors to study the minimal number of states that a HMM requires to model a particular

process, and to decide if two HMMs generate the same process.

5.1.1 System Matrix Rank

Although a system matrix is infinite, it may still have finite rank. We define the

rank of D as the minimum dimension r such that for every row i and column j in D, we

can define two r-dimensional vectors vi,wj such that

D(i, j) = v>i wj.

The system matrix provides a particularly appealing interpretation of PSRs (Singh

et al., 2004). A PSR with r tests will produce a system matrix with rank no greater than

r, where vi = q(hi) and wj = mj . For the example in figure 5.1, the rank of the system

equals 2. This can be seen by using the core events {ε, b}. Note that every row in the

system matrix can be reconstructed as a linear combination of the two rows for core

55

tests ε and b. The converse of this statement is also true: every stochastic process whose

System matrix has rank r can be modeled by a PSR with r core tests (Singh et al., 2004).

Low rank decompositions have long been used as a regularization and modeling

technique for high-dimensional data (Hastie et al., 2001; Landauer et al., 1998; Dailey

et al., 2002). In particular, there is a long history of using low rank approximations

in order to model systems in the control theory community (Fazel et al., 2004). In

the control theory, a popular type of system assumes that there is an underlying linear

process which generates real-valued observations with Gaussian noise. These systems

can be modeled using a low rank structure similar to the system matrix. A predictive

representation of such systems has been studied by Rudary and Singh (2006).

5.2 Hankel Matrix Representation

Multiplicity Automata (of which PSRs are a subset) have long been associated

with a Hankel matrix1 (see Beimel et al. (2000) for an overview). Given a PSR P , and

its function fP : (A×O)∗ → [0, 1], we define the Hankel matrix of P as

F(ui,uj) = fP (ui ◦ uj) = q(ε)>Mui
Muj

mε.

The Hankel matrix has rows indexed as the prefix of a sequence, and the columns index

possible suffixes.

The rank of a stochastic process’ Hankel matrix is equal to the dimension of the

smallest multiplicity automaton that can model it (Denis and Esposito, 2004). Obvi-

ously, the system matrix and the Hankel matrix representations of a process are quite

similar. Given a system matrix D and Hankel matrix F constructed from the same pro-

cess, we can easily see their relation. For unreachable rows, both D and F are 0. For

1In linear algebra, a Hankel matrix is a symmetric matrix where skew-diagonal entries are identical.
In our context, this property does not hold, although these matrices have similar properties.

56

reachable rows of the system matrix, we have:

D(ui,uj) = q(ui)
>Muj

mε

=
(q(ε)>Mui

q(ε)>Mui
mε

)
Muj

mε

=
(1

q(ε)>Mui
mε

)
F(ui,uj)

Basically, the system matrix weighs rows of the Hankel matrix inversely propor-

tional to the probability of the row’s history occurring. From a learning perspective, this

is somewhat counter-intuitive. The more a particular history is seen, the more accurately

test probabilities can be estimated. If a history is very uncommon, the entries of F in

this row will be close to zero, while the row of D will have the same range as higher

probability rows. Thus, the entries in F will be more similar to the frequency of the

samples required to learn them. We will address this issue in more depth in chapter 6.

For the rest of the chapter, we focus on the Hankel matrix representation, though the

results are easily translated to the system matrix.

5.3 The Steady-State Hankel Matrix

While the system matrix and the Hankel matrix are a useful conceptual tool for

understanding PSRs, this representation is not particularly useful in many learning ap-

plications. It is common to receive one contiguous sequence generated by a stochastic

process, or a sequence generated by coupling a controlled process and some policy.

In this situation, every history is only experienced once. This is clearly not enough

information to estimate most entries in D or F . In order to learn from this type of infor-

mation, Jaeger (2000) proposed constructing an alternate Hankel matrix where instead

indexing rows by a complete history, we index them with a context. We call this new

matrix the steady-state Hankel matrix F̄ . Such a change in representation requires a

rigorous justification, which we now focus on.

We model single sequence learning as observing an increasingly long history

hi, i = 1, 2, . . .∞. For an uncontrolled stochastic process, we define the steady-state

57

probability of a length l event u as

P̄ (u) = lim
t→∞

1

t

t∑
i=1

P (u|hi).

The steady-state success probability of some test g, called Ȳ (g) is defined as in chapter

4, where we use P̄ to define a stochastic process on actions and observations. This

definition of P̄ (u) immediately raises questions:

• When will P̄ (u) be defined? In other words, does this limit as t goes to infinity

converge to a single number for any history generated by the process?

• For a given process, will P̄ (u) always be the same value, or does it depend on

the history being generated?

These questions have been addressed when the history is generated by either a

VMM or HMM (see Grimmett and Stirzaker (1982); Puterman (1994)). In both of

these model classes, the probabilities of future sequences only depend on the current

state. Thus, if the frequencies of particular state sequences converge, then so do the

probabilities of observation sequences. It is well known that finite state Markov pro-

cesses (VMMs and HMMs) will settle on some steady-state distribution on the Markov

states (Grimmett and Stirzaker, 1982). The distribution that the process settles into may

differ, depending on the specific history that has been generated by the process. This

behavior is caused by the possibility that the process makes a “one-way” transition to a

state where other states cannot be reached. The steady-state distribution will be deter-

mined only by the states that are reachable as time goes on.

There are processes where P̄ () will not converge, however. For instance, con-

sider the process where O = {x, y} and

Pr(Ot = x) =

 1 if blog3(t)c is even,

0 otherwise.

This process produces a sequence that begins as x2y6x18y54 . . ., with the length of the

strings of repeating observations growing geometrically over time. For large values of t,

58

the value of P̄ (x) ranges between 1
3

and 2
3
. This range does not diminish as t approaches

infinity.

In OOM theory, it is generally assumed that the process generating the history

is a stationary and ergodic OOM (Jaeger et al., 2006b). Being stationary means that the

initial core test probabilities are also the expected core test probabilities in the future.

Recall that we define the matrix M∗ as
∑

o∈O Mo. This matrix computes the expected

probabilities of the core events on the next time step. For a stationary system, we have:

q(ε)>M∗ = q(ε)>Mn
∗ = q(ε)>.

The ergodic assumption is that P̄ () exists, and is unique for the process.

5.3.1 A Limit Property of PSRs

We take a more careful look at what conditions are sufficient to guarantee that

F̄ will converge. This analysis was first done in the work of Wiewiora (2005).

Theorem 11 If h has been generated by a valid PSR, for any qi that constitute a mini-

mal set of core tests for the PSR, P̄ (qi) converges almost surely.

PROOF: At any point in the evolution of the stochastic process, the system’s future is

characterized by the (unknown) vector q(ht).

We track the expectation of q(ht+1) using the matrix M∗ as defined in chapter

3. Recall from theorem 4 that M∗ has spectral value one, with at least one eigenvector

for eigenvalue one.

Define M∗ as limN→∞
∑N

i=1
1
N
Mi

∗. This matrix determines the expected value

of P̄ (q), given the current value of q(h). Because of the spectral properties of M∗ we

have outlined before, we know that this limiting matrix exists (Horn and Johnson, 1986).

Since M∗ converges, it must satisfy M∗ = M∗M
∗.

Note that for any possible q(hi),

q(hi)
>M∗ = q(hi)

>M∗M
∗ = E[q(hi+1)

>M∗].

59

This property is sufficient for q(·)>M∗ to be a martingale (Grimmett and Stirzaker,

1982). Also, note that q(·)>M∗ has bounded variance, due to the fact that the entries

in q() always range between 0 an 1. Using these two results and standard martingale

theory, we can show that the random variable q(·)>M∗ = E[P̄ (q)] converges to a fixed

point almost surely (Grimmett and Stirzaker, 1982). �

We have proven that any PSR will eventually have an average core test probabil-

ity vector. Call this vector q̄.

Corollary 12 If the average success probabilities of all core tests converge to q̄, then

the average success probabilities of all events converge almost surely.

PROOF: At each time step, the probability that an event g will occur over the next

observations is determined by the probabilities of the core tests at that time:

P (g|h) = q(h)>mg.

The long-term average success probability can likewise be written as a linear function

of the average success probabilities of the core events:

P̄ (g) = lim
T→∞

1

T

T∑
i=1

P (g|hi)

= lim
T→∞

1

T

T∑
i=1

q(hi)
>mg

=
(

lim
T→∞

1

T

T∑
i=1

q(hi)
>
)
mg

= q̄>mg.

Thus, if the vector q̄ converges to some fixed values, so does P̄ (g). �

5.4 Subsampling the Hankel Matrix

For practical applications, it is not possible to deal with the entire Hankel matrix.

Instead, we subsample the rows and columns of F . In order to make sure that we have

60

captured the complete behavior of the stochastic process we would like our submatrix

F of the Hankel matrix to have the same rank as the entire matrix.

Fortunately, we can construct some F with the same rank as the entire Hankel

matrix F , using only “short” tests for the rows and columns. First, recall that a set of

core tests will have linearly independent columns in F . By corollary 6, we know that if

a PSR has rank r, then there is a set of core tests where each test has length less than r.

We choose the columns of F as those that are indexed by these short core tests.

The rows of F correspond to possible histories in D. As we can select linearly

independent columns of F as core tests, we can select r linearly independent rows of F

to form a basis for predicting all of F . We call a set of linearly independent rows of F

a set of core histories. Likewise, independent rows of F̄ are called core contexts.

We define a regular form for core contexts similar to that of the core tests:

Definition 5 A set of core histories {c1 . . . cr} is in regular form if for every ci, either

ci = ε, or there is some cj and u ∈ U such that ci = cj ◦ u.

Like regular form core tests, these core histories can be organized into a tree

with labeled edges, where each node represents a core history. The s-test for this history

is determined by reading the labels from the root to the node. This tree is not a context

tree as described for VMMs; whereas nodes in the same branch of a VMM context tree

share a common suffix, nodes in the core history tree share a common prefix.

Lemma 13 For any minimal set of core tests {q1 . . .qr}, we can find a set of regular

form histories {c1 . . . cr} such that the rank of F formed with these contexts as rows and

these core tests as columns equals r.

PROOF: Proof by construction. First, we choose the row of F as the row indexed by

the null test ε. On every step j = 2 . . . r, we add a context cj = ci ◦ u ∈ U where

ci is already in our set of core histories. We assume that there is some ci and u such

that the vector F(ci ◦ u,q1 . . .qr) is linearly independent from the earlier rows of F.

This process will terminate after r iterations, as we cannot find more than r linearly

independent r-dimensional vectors.

61

Assume that for some iteration j < r, we cannot find such a ci and u such that

F(ci ◦ u,q1 . . .qr) is linearly independent. We argue that this contradicts our premise

that this set of core tests is minimal. Call the partial matrix of j − 1 core histories and r

core tests F. Because we did not find a linearly independent row to add to F, for each

ci, and u there is some (j − 1× 1) vector wiu such that:

F(ci ◦ u, {qr1 . . .qr}) = w>
iuF

For each u, gather the j − 1 vectors w>
iu into a (j − 1× j − 1) matrix Wu With this we

can calculate :

Fu = F({c1 . . . cj−1} ◦ u, {q1 . . .qr}) = WuF.

Note that by the definition of a PSR, Fu also equals FMu. We define the row vector wε

as a vector of all zeros, except for a 1 in the the row index where the null test is used as

a context in F. We have that for any test g, F(g, {q1 . . .qr}) = wεFg.

Now, assume that the test x = u1 . . . un is one where the vectorF(x, {q1 . . .qr})

is linearly independent of the rows of F. This yields:

F(x, {q1 . . .qr}) = F(ε, :)Mx

= F(u1, :)Mx2:n

= wεWu1FMx2:n

= wεWu1Wu2FMx3:n

...

= wεWxF

= wxF.

This is a contradiction, as this row can be defined as a linear combination of the rows in

F. �

An interesting consequence of this proof is that we can make the same predic-

tions as a PSR using linear combinations of context “probabilities”, instead of future

62

test probabilities. In other words, the parameters (wε, {Wu}) are just as valid a repre-

sentation as the standard PSR parameters (qε, {Mu}). This avenue of investigation has

not been explored, although James (2005) has derived an alternate method for using the

context as well as the tests to make PSR predictions.

Although we have shown that all core tests and histories in a full rank submatrix

F̂ are short, there are still as many as U r−1 tests that can be rows or columns. It would

be desirable to have a method that can automatically search for rows or columns that

will be linearly independent. Some research has examined the case where we construct

F̂ by requesting particular values of test probabilities fp(u ∈ U∗) (Beimel et al., 2000;

James and Singh, 2004). The value fp(u) can be used to fill in all entries F(ui,uj) such

that ui ◦uj = u. Unfortunately, we cannot use these queries to efficiently recover a full

rank set of core tests and histories. Recall the “unlock” POMDP in figure 4.1. Unless

the test for u0n0l0o0c0k1 or u0n0l0o0c0k0 is queried, all observed values of F will be

zero. Finding one of the unlocking tests could take on the order of Ar−1 queries. This

is a worst-case bound; it is very likely that far fewer queries will be required to find r

good core tests and histories.

A heuristic for finding core tests and histories is proposed in the work of James

and Singh (2004). They propose an incremental scheme, where core tests and histories

are added by examining all extensions of the current core histories and core tests. If

no extensions can be found that are linearly independent, then the search terminates.

Though this heuristic is not guaranteed to find all core tests, it has worked well in several

small experiments (James and Singh, 2004).

Another approach to finding a submatrix of F is more data driven. Given a

training sequence of length T , there will only be a finite number of tests that succeed

more than some threshold t number of times 2. All of these above-threshold tests can be

identified using the suffix tree data structure in O(T) time. A submatrix F̂ constructed

from these tests will have size polynomial in T . This approach has been used to identify

2The exact number of test successes are T 2

2

63

useful core events in the OOM literature (Kretzschmar, 2003; Jaeger et al., 2006b).

5.5 Summary

In this chapter we have presented the system matrix, and the highly related Han-

kel matrix. These data structures model the probabilities of various tests occuring in a

given process. The structure of these matrices allows one to infer quite a bit about a PSR

that will be capable of representing it. Most importantly, the rank of this matrix equals

the number of core tests required to model the underlying process. Also, we show that

although the system matrix is infinite, we can determine if it has low rank by checking

only the early rows and columns of the matrix.

We have also examined issues related to estimating the system matrix from train-

ing data. We introduce the steady-state Hankel matrix, which captures the average prob-

abilities that tests succeed. If the system generating the sequence we are modeling is a

PSR, then this steady-state Hankel matrix will converge to some fixed point.

These results provide a theoretical foundation for the PSR learning algorithms

presented in the next chapter.

Chapter 6

Learning Predictive State

Representations

In this chapter, we present some learning algorithms that have appeared in the

PSR and OOM literature, along with an in-depth analysis of their behavior and the

choices made in different components of the algorithms.

As opposed to learning an HMM with the EM algorithm, most algorithms for

learning PSR with an approximated system matrix are convergent: if a PSR is used to

generate an infinitely long training sequence, the learned PSR will converge to the same

stochastic process (Jaeger, 2000). This is surprising, given that PSRs can model more

processes than HMMs.

Also, we perform a series of experiments testing PSRs against more traditional

models of stochastic processes. In previous work, PSRs have been compared to HMMs

and POMDPs, but there has been little effort at comparing their performance to variable-

ordered Markov models. This thesis provides the first in-depth comparison between

these two approaches. As we will see, the VMM is surprisingly competitive with the

PSR in small training sizes. This is true even when the VMM is not capable of exactly

modelling the stochastic process generating the data.

64

65

6.1 The General Framework

Learning a PSR can be be broken down into two steps, called Discovery and

Learning (Singh et al., 2003). Discovery is the process of choosing the core tests, whose

success probabilities will become the state of the learned model. The learning problem

is choosing the parameters of the PSR (q(ε),Mu,mε), in order to best model the training

data.

The algorithms we analyze are offline, system matrix based methods. These

algorithms all share the property that they take a training sequence, and approximate

some submatrix D̄ of the steady state system matrix or F̄ of the steady state Hankel

matrix. The PSR parameters are derived from this matrix using the constraint that these

matrices should have rank r to produce an r-test PSR.

There has been some research on online learning methods for PSRs (Singh et al.,

2003; Tanner and Sutton, 2005; McCracken and Bowling, 2006). These algorithms in-

crementally update the model parameters based on immediate feedback from the pro-

cess generating the data. With the exception of the method proposed by McCracken and

Bowling (2006), these algorithms must be given a set of core tests a priori. A system-

atic investigation of these methods as an alternative to offline approaches is a worthy

endeavour, but will not be done in this work.

6.2 Approximating Steady-State Probabilities

In order to build an approximate System or Hankel matrix, we need a method

for using the data in a training sequence to approximate probabilities that some event or

test will succeed. Assume that we are given a training sequence ht = a1o1 . . . atot of

alternating actions and observations.

In order to estimate the probability of a length k s-event g = a′1o
′
1 . . . a′ko

′
k, we

can simply count the number of times this sequence appears, and divide by the number

66

of opportunities the sequence had to appear:

P̂t(g) =
1

t− k

t−k∑
i=1

I(hi+k = hi ◦ g),

where I() is the indicator function, which is 1 when the argument is true and 0 otherwise.

We call this estimate the empirical frequency of an event. We index P̂ by the history

length, though when we use the entire history, the subscript is dropped. We extend the

estimator to conditional probabilities in the straightforward fashion:

P̂ (g|f) =
P̂ (f ◦ g)

P̂ (f)

This estimator was first used to approximate system matrix entries by Jaeger (1998).

Approximating test success probabilities is a bit more involved. In general, the

only method for approximating the success probability of an s-test is to use several

estimated sequence probabilities. For an s-test s consisting of k actions and observations

a′1o
′
1 . . . a′ko

′
k, we estimate the success probability as:

Ŷ (s) =
k∏

i=1

P̂ (o′i|a′1o′1 . . . a′i) =
k∏

i=1

P̂ (a′1o
′
1 . . . a′io

′
i)

P̂ (a′1o
′
1 . . . a′i)

.

It may be possible to simplify this estimation procedure if we have knowledge of

the policy. An especially simple case is that of blind policies: those that do not depend

on the observation histories (Bowling et al., 2006). Given the blind policy R, we can

estimate the success probability of an s-test as:

Ŷ (s) ≈
k∏

i=1

P̂ (a′io
′
i|a′1o′1 . . . a′i)

R(a′i)
=

P̂ (s)∏k
i=1 R(a′i)

≈ P̂ (s)

P̂ (a1O . . . akO)
.

This estimation procedure is similar to the one used in James and Singh (2004) and

Wolfe et al. (2005). Note that in order to use this estimate, the policy must choose each

action with probability at least ε > 0.

Note that when a particular sequence of actions has not been frequently observed

in the training sequence, the Ŷ () estimates of tests that condition on these actions may

be very unstable. This problem could be mitigated with smoothing techniques, such as

67

the KT estimator discussed in chapter 2. Another alternative, which we explore in this

chapter, is to model the joint action and observation probabilities P̂ (), instead of test

success probabilities Ŷ ().

6.3 The Suffix History Algorithm

The Suffix History Algorithm is the first offline algorithm for learning PSRs

from a single sequence of data (Wolfe et al., 2005). It is an adaptation of an earlier

algorithm that learned a PSR from many separate sequences generated from the same

controlled process (James and Singh, 2004). Both algorithms were heavily influenced

by early work on learning OOMs (Jaeger, 2000). The description of the algorithm given

here is based on the presentation by James (2005).

The algorithm proceeds in two steps. First, an approximate submatrix of the

system matrix D̂ is built from data. This matrix is square, with every column being

a core test and every row a core context. The core histories are used to make core

extension submatrices D̂ao, where

D̂ao(ci,qj) = Ŷ (ao ◦ qj|ci),

for each core context ci, and core test qj

The model parameters Mao are approximated using matrix inversion:

D̂Mao = D̂ao,

Mao = D̂−1D̂ao.

The first equation is given by our derivation of the PSR, and the second equation is pos-

sible because by construction, D̂ is a square, full-rank matrix. The remaining parameters

are estimated from the data and the one-step prediction vectors mao:

q(ε) = Ŷ (q),

m(ε) =
1

|A|
∑
ao∈U

mao.

68

Note that if the null test is one of the core tests, the mao vectors are already components

in Mao.

6.3.1 Discovery of Core Tests

At the first iteration the algorithm approximates a submatrix of D, denoted D̂1,

containing all contexts of length one and all tests of length one. Then it approximates

the rank of this submatrix, r1. The first set of core tests, Q1, are chosen as any r1

linearly independent columns in D1. The set of core contexts, C1, are any r1 linearly

independent rows in D1.

For the next iteration, we compute the submatrix ofD with columns correspond-

ing to the union of the tests in Q1 and all one-step extensions of these test. The rows

correspond to the union of the core contexts in C1 and all one-step extensions of them.

The rank r2, core-tests Q2 , and core-histories C2 are then found. This process is re-

peated until the rank remains the same for two consecutive iterations (this is The Suffix

History Algorithm’s stopping condition). If the algorithm stops after iteration i, then it

returns Qi and Ci as the discovered core-tests and core-histories respectively.

6.3.2 Robust Estimation

We have glossed over the issue of estimating the rank of an approximate system

matrix D̂. If all the entries were perfect, we could use standard linear algebra tech-

niques such a Gaussian elimination to find the rank of D̂. However, since the entries

are “noisy” due to estimation error, we will not be able to do this. Instead, the Suffix

History algorithm uses a technique proposed by Jaeger (1998) to estimate the rank of

the matrix. The rank approximation algorithm relies on the number of samples that have

gone in to the estimates of entries in D̂; if the entries are estimated from a lot of data, it

is more likely that the rank of the matrix is due to actual structure rather than estimation

errors. We keep track of the attempt probabilities of various entries in D̂ in the matrix

N. When D̂ is composed of event probabilities, the entries in N are simply the number

69

of times that the event could have been observed in the indexed row of D. For context

ci of size x and s-event qj of size y, we have N(ci,qj) = (t− x− y)P̂t−y(ci).

As usual, finding the values of N for learning a controlled process is a bit more

involved. For a blind policy, we measure N(ci,qj) as the number of times the context

ci is observed in the history, followed by the action sequence given in the s-test qj =

a1o1 . . . ayoy :

N(ci,qj) = (t− x− y)P̂t−y(ci ◦ a1O . . . ayO)

This rank approximation scheme has not been extended to non-blind policies. Under

more general policies, the simple estimator given above will not give a correct count of

the number of times qj in context ci could have succeeded.

The pseudo-code for estimating the rank of some D̂ is given as algorithm 1.

The algorithm is based on a rough approximation given by Jaeger (1998), for finding

the smallest singular value not caused by sampling noise. The suffix history algorithm

uses the estimated rank in two ways. First, the rank is used to decide how many core

tests and histories to keep. Second, the rank provides a heuristic criterion for removing

redundant tests and histories. Tests and histories are iteratively removed by choosing the

test that minimizes the ratio of the largest singular value and the r-th singular value. The

intuition is that the inverse of a matrix can have highly skewed values if there is a large

discrepancy in their singular values. For a full rank, square matrix D, we can calculate

its inverse via the SVD:

D =(SV D) UΣV ,

D−1 = V >Σ−1U>,

where Σ is a diagonal matrix of the singular values of D. If some singular values are

small, their inverse may be arbitrarily large. The pseudocode for robust suffix history

discovery is given in algorithm 2.

Below we discuss some details and implications of the suffix-history algorithm.

• The algorithm requires the specification of a parameter κ, which effectively con-

trols the number of core tests the algorithm will discover. Experiments have

70

shown that for very large training sequences, a value of κ = 0.1 will usually

result in the correct number of core tests (Wolfe et al., 2005). If we knew how

many core tests to expect, we can modify the algorithm to control for the number

of core tests explicitly.

• The algorithm does not use much of the system matrix to estimate PSR parame-

ters. For an r-test PSR, at most (1 + |A| |O|)r2 entries are used: r2 in the matrix

D̂, plus an additional r2 for each D̂ao.

• As discussed before, using the system matrix may aggravate estimation error.

No matter how many times a context is observed, each row of D will still range

between 0 and 1. It may be more reasonable to “weight” the rows by how often

the contexts are observed, and thus, how reliable the row’s estimates are. This is

done implicitly in the Hankel matrix representation.

input : A system submatrix D of size n×m,

test attempt counts N,

confidence parameter κ

output: Estimated rank r

if n > m then1

Set D← D>2

end3

Calculate ε = 1
m∗n

∑
i

∑
j

√
D(i,j)(1−D(i,j))

N(i,j)(1−κ)
;4

Calculate σcutoff = ε||D||∞ ;5

Calculate the singular values of D: σ1 . . . σm ;6

return r = |{σi > σcutoff}|7

Algorithm 1: Suffix History Algorithm: EstimateRank()

71

input : Training sequence ht,

confidence parameter κ

output: Estimated system matrix D̂,

Core extension system matrices {D̂ao∈U}

r1 = 0; C1 = {ε} ; Q1 = {ε} ;1

for i = 1 to∞ do2

C ′ = {Ci ∪ Ci ◦ ao ∈ U};3

Q′ = {Qi ∪ ao ◦Qi};4

ri+1 = EstimateRank(D̂(C ′, Q′));5

Remove redundant contexts;6

while |C ′| > r do7

C ′ ← C ′/ argminc∈C′
σ1(D̂(C′/c,Q′))

σr(D̂(C′/c,Q′))
8

end9

Remove redundant tests;10

while |Q′| > r do11

Q′ ← Q′/ argminq∈Q′
σ1(D̂(C′,Q′/q))

σr(D̂(C′,Q′/q))
12

end13

Ci+1 = C ′ ; Qi+1 = Q′ ;14

if ri+1 ≤ ri then15

return16

D̂(Ci+1, Qi+1); {D̂ao(Ci+1, Qi+1) = D̂(Ci+1, ao ◦Qi+1)}
end17

end18

Algorithm 2: Suffix History Algorithm: Discovery()

72

6.4 Extending the Definition of Core Tests

The suffix history algorithm keeps a system matrix of size r× r to learn an r test

PSR. In the process of doing this, many potentially useful rows and columns of D are

thrown away. It would be quite useful to find a use for this extra information.

We do this by extending our definition of the core tests that compose the process

state. Instead of them being the success probabilities of a single s-test, we will allow

the core tests to be a linear combination of a collection of s-test success probabilities.

We define generalized core tests by a test characterizer matrix R (Rosencrantz et al.,

2003; Jaeger et al., 2006b). R is an m× r matrix where the rows index s-tests in some

submatrix D or F, and the columns index the generalized core tests. We can write the

value of the generalized core tests for different contexts in a matrix:

Q = FR.

We can also address the issue of estimating PSR parameters using additional

contexts. If the approximated Hankel matrix F̂ has additional rows, we can find Mao

that approximately solve the following equation:

F̂RMao ≈ F̂aoR. (6.1)

There is no obvious best method for approximating equation 6.1. It is common to ap-

proximate Mao using the least squares error criterion:

Mao = argminM||QM−Qao||2F

= (Q>Q)−1Q>Qao.

This generalized notion of test has the downside that the values in q(h) are no

longer interpretable as individual test success probabilities. This disconnection between

the state of the process and the observed future may make it harder to verify the correct-

ness of the state. This problem is often mentioned as a criticism of latent state models

(HMMs and POMDPs), and addressing it is one of the primary motivations behind PSRs

73

(Littman et al., 2001). If this is a concern, it is possible to project a learned generalized-

test PSR back into a standard PSR by constructing the learned PSR’s system matrix and

then search for core tests using standard techniques (Jaeger et al., 2006b).

6.5 The T-PSR Algorithm

The first algorithm to use generalized tests was developed by Rosencrantz et al.

(2003). It is called the transformed PSR algorithm, or TPSR. The algorithm was origi-

nally designed to work with a large, sparse system matrix, where each row is a unique

history hi, and each column is an e-event. Because each history is observed only once

in our learning setting, the entries in this system matrix are either 0 or 1. It was initially

designed for modelling an uncontrolled stochastic process, and it is difficult to extend

this algorithm to the controlled case. Although this type of matrix performed well on

the authors’ experiments (Rosencrantz et al., 2003), these matrices perform poorly on

the experiments I have conducted.

Here, we present a modified version of the TPSR algorithm that can work with

any system matrix. The key insight into the TPSR algorithm is that the SVD basis for D

yields a good state space for predicting the tests in D. Also, there is a straightforward

progression from simpler to more complex models by keeping additional SVD bases as

generalized core tests.

The algorithm takes as input a sufficiently large subsample of the system ma-

trix D, the extensions of this system matrix Dao, and the desired rank of the learned

PSR. The authors suggest that the rank be chosen using some form of validation on test

data. The size of D should be as large as computational resources and training sample

size permit. One technique is to use as rows and columns every event or test that has

succeeded some threshold number of times (Jaeger et al., 2006b).

74

input : System Matrix D, {Dao} ,

Steady-state test probabilities d,

PSR Rank r

output: PSR parameters q(ε), {Mao},mε

Make X =

D

Da1o1

...

;

1

Use SVD to get X =(SV D) UΣV ;2

Set test characterizer R = V [1 : r, :]>;3

Set Q = DR;4

Set Q† = (Q>Q)−1Q> ;5

for a ∈ A o ∈ O do6

Set Mao = Q†DaoR7

end8

Set q(ε) = dR;9

Set mε = Q†1;10

Algorithm 3: Transformed-PSR Learning Algorithm

75

6.6 Efficiency Sharpening Procedure

The last learning we discuss is the efficiency sharpening procedure of Jaeger

et al. (2006b). This method produces a series of learned PSRs that are intended to

have improved accuracy and robustness. It was originally presented as a method for

learning OOMs, but we present it here in the PSR learning framework. The presentation

is somewhat terse, and the reader is referred to the original work for a more thorough

treatment and theoretical justification.

Previous approaches to learning OOMs and PSRs, including the two mentioned

above, only make use of short-term statistics of the training sequence. No information

is kept that is longer than the longest test and context in D. This is in contrast to the

E-M procedure for learning HMMs. In the EM algorithm, we explicitly calculate the

expected state distribution for every time step, given the entire sequence. The efficiency

sharpening procedure keeps some information from the entire training sequence in order

to build an improved model.

The ES algorithm takes as input a PSR learned using some other method, and

a training sequence ht. First, the algorithm directly estimates a new core test basis Q

using statistics from the entire sequence. For every position i in the training sequence

ht we calculate the vector

mr
i =

1

q(ε)>Mhi:t
mε

(
Mhi:t

mε

)>
.

These vectors can be thought of as the state of a reversed process (Jaeger et al., 2006b),

where the roles of the q and m vectors are exchanged. This reversed process calculates

the probability of a sequence from the last element to the first. The mr vectors are used

to build the core test basis for the next estimated PSR. For every context cj of length l,

we calculate

qj =
t∑

i=l

I(hi−l ◦ cj = hi)m
r
i

qaoj =
t∑

i=l+1

I(hi−l−1 ◦ ao ◦ cj = hi)m
r
i

76

We gather these M contexts into a new basis:

Q =

q1

...

qM

 ; Qao =

qao1

...

qaoM

 .

Jaeger et al. (2006b) proved that if the original PSR was the process generating the data,

then then there is some R such that Q = DR, and that of all Q of this form, this one

will have lowest variance over samples of ht.

Although this procedure tends to produce more accurate models after every iter-

ation, the new models do not necessarily improve any measure of performance, such as

log likelihood of the training sequence. In practice, it is suggested that the ES procedure

be stopped when some form of validation error begins to increase, or when it appears

that the ES procedure is no longer improving the training sequence likelihood (Jaeger

et al., 2006b).

Code for the Efficiency-sharpening procedure is available for download at:

http://www.faculty.iu-bremen.de/hjaeger/OOM/OOMTool.zip

All experiments were performed using this code.

6.7 Shortcomings of System Matrix Learning Proce-

dures

All system matrix learning algorithms for PSRs suffer from some setbacks. The

algorithms we discussed are convergent in the sense that if there is a true model, with

an infinitely long training sequence, they will find it (Jaeger, 2000). However, none of

the algorithms are particularly efficient. This may be due to a number of factors. One

important factor is how the system matrix D relates to the training sequence h.

The suffix history and TPSR algorithms are concerned with deriving a basis that

will approximate D well. This may be in conflict with predicting sequences. The major

77

cause is that the learned basisQ may not represent the probabilities of the core tests in

an actual sequence. They are, in essence, overfitting the matrix representation of the

stochastic process.

6.8 Experiments

We now present some experiments testing the modeling capabilities of both

PSRs and more traditional models. We choose two domains, reflecting the range of

sequence prediction problems. The first task is predicting the future output of several

simple POMDPs that have appeared in the literature. These tasks have been the primary

benchmark for evaluating the performance of POMDP and PSR algorithms. The second

task is a file prediction task. VMMs have long been used for modeling file content for

the purpose of compression. This task has recently been studied as a prediction task

(Begleiter et al., 2004).

We choose to evaluate the performance of VMMs and PSRs on these tasks. No-

tably, we do not analyze the performance of HMM learning algorithms such as E-M.

There are several reasons for this. The most important is that most applications that in-

volve HMMs do not explicitly address the sequence prediction problem. Most often, the

task HMMs are used for is labeling a sequence with the most likely latent HMM state.

VMMs and PSRs cannot be used for this task: their states are either trivially derived

from the sequence, or not interpretable as a single random variable. Also, there has

been extensive study of PSRs and OOMs as compared to HMMs and POMDPs learned

via E-M (Jaeger, 1998; Singh et al., 2003; Kretzschmar, 2003; Rosencrantz et al., 2003;

James and Singh, 2004; Wolfe et al., 2005; McCracken and Bowling, 2006; Jaeger et al.,

2006b). In general, the results show that PSRs tend to learn better models, especially

with a large amount of training data. Finally, the EM algorithm commonly used to train

HMMs requires a random initialization. This is in contrast to all the PSR and VMM

learning algorithms, which are deterministic.

VMMs have been extensively used for sequence prediction. Despite their popu-

78

larity, little work has been done comparing their performance to PSRs (see Singh et al.

(2003) for the one exception). The experiments presented here are the first comprehen-

sive attempt at comparing these two algorithms.

6.8.1 Methods and Algorithms

For both experiments, we present the learning algorithms with training sequences

taken from the first part of a longer sequence. After building their models, they are eval-

uated on the remaining portion of the sequence. Performance is evaluated using both

the log loss and squared loss.

Many models we consider do not explicitly predict observations, given actions.

These include the CTW algorithm for training a VMM, and the efficiency sharpening

procedure. When training these models on controlled processes, we use the following

procedure:

• Create new alphabet U = A×O

• Build model that predicts ui = ai ◦ oi

• Factor out the probability of the action:

P̂ (o|a) =
P̂ (a · o)∑

o′∈O P̂ (a ◦ o′)

6.8.2 Learning POMDPs

We take several example domains used in previous PSR and POMDP learning

papers. Most of these are available for download from a web page maintained by An-

thony Cassandra:

http://www.cs.brown.edu/research/ai/pomdp/examples/index.html .

The specific POMDPs and some details are given in table 6.1. For the experi-

ments, we sampled 10, 000 or 15, 000 actions and observations from each POMDP. Of

these samples, all but the last 5, 000 were used for training, with the last samples used

h

79

Table 6.1: Example POMDPs used in experiments

NAME POMDP STATES SYSTEM RANK ACTIONS OBSERVATIONS

1D MAZE 4 4 2 2
4X3 MAZE 11 10 4 6
4X4 MAZE 16 16 4 2
CHEESE MAZE 11 11 4 7
FLOAT-RESET 5 5 2 2
PAINT 4 2 3 2
SHUTTLE 8 7 3 5
TIGER 2 2 3 2

for testing. Throughout the sampling, we select actions uniformly at random. For ev-

ery point in the test sequence, we have the learned models predict the next observation,

given the next action. This is then compared against the actual observation, and either

log loss or squared loss is assigned to the prediction. All results are averaged over 20

trials.

We try four algorithms for learning stochastic processes. The context tree weight-

ing algorithm learns a variable-order Markov model (VMM). The algorithm only has

one parameter: the maximum length of the context. We set this value to 6, though the

algorithm performs nearly identically for the depth set higher than 4. We also try three

PSR learning algorithms: Efficiency sharpening, transformed PSR and suffix-history.

We modified the code of suffix history to accept the model dimension as an input. All

of these algorithms were told the correct number of core tests for the domain, but not an

exact set of core tests.

The results in tables 6.2 and 6.3 clearly show the CTW algorithm and the effi-

ciency sharpening procedure to be the best performers. It is surprising to note that the

VMM learned by the CTW algorithm is not powerful enough to precisely model many

of these POMDPs. Thus these models must incur some error over the Bayes optimal er-

ror. Both the suffix history algorithm and the TPSR algorithm perform poorly on many

80

Table 6.2: POMDP results with training size =5,000. We test Context Tree Weighting

(CTW), Efficiency Sharpening (ES), Suffix History, and Transformed PSR (TPSR). The

parentheses contain: (square loss, log loss). The best score for any domain is underlined.

DOMAIN CTW ES SUFFIX-HIST TPSR
1D MAZE (0.0655, 0.1825) (0.0619, 0.1786) (0.2228, 1.5748) (0.3302, 2.6104)
4X3 MAZE (0.2389, 0.7432) (0.2299, 0.9067) (0.6942, 1.7937) (0.4898, 3.5040)
4X4 MAZE (0.0177, 0.0644) (0.0362, 0.2376) (0.0268, 0.2091) (0.1864, 1.2719)
CHEESE (0.0343, 0.1060) (0.4858, 1.3084) (0.7345, 1.9482) (0.6456, 2.4951)
FLOATRESET (0.0529, 0.1530) (0.0528, 0.1527) (0.0552, 0.1698) (0.1812, 0.7202)
PAINT (0.0592, 0.1669) (0.0607, 0.1699) (0.0622, 0.1731) (0.0962, 0.2980)
SHUTTLE (0.1519, 0.4415) (0.1268, 0.4033) (0.6398, 1.6098) (0.5010, 3.7746)
TIGER (0.2519, 0.6978) (0.2434, 0.6792) (0.3567, 2.2829) (0.3213, 2.1523)

domains. It is worth noting that both algorithms tend to be tested after learning on much

larger training sequences.

6.8.3 Calgary Corpus

In the second experiment, we learn models of a collection of files. This collec-

tion, called the Calgary Corpus, is a dataset of representative academic text files, used

to measure compression performance. It is available for download at

ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus/ .

We treat each file as an uncontrolled stochastic process, where each byte of the

file is an observation. Our task is to predict the last half of each file, given the first half

as training. We evaluate model performance using the summed log loss of predicting the

remainder of the file. Recall that the log loss is proportional to the number of bits it takes

to represent the sequence, given the model. Thus, it is the natural error measurement for

this task. This prediction task was investigated by Begleiter et al. (2004), where various

VMM algorithms were evaluated. In these experiments, the CTW algorithm reliably

performed among the best predictors.

Note that files do not behave as a stationary process. Many have headers and tails

f

81

Table 6.3: POMDP results for training size: 10,000 (square loss, log loss)

DOMAIN CTW ES SUFFIX-HIST TPSR
1D MAZE (0.0623, 0.1764) (0.0616, 0.1769) (0.1980, 0.5957) (0.2422, 1.5714)
4X3 MAZE (0.2336, 0.7152) (0.2128, 0.7651) (0.6940, 1.7924) (0.4432, 2.4819)
4X4 MAZE (0.0172, 0.0614) (0.0225, 0.1196) (0.0193, 0.0940) (0.1131, 0.7247)
CHEESE (0.0290, 0.0862) (0.1121, 0.3234) (0.7344, 1.9465) (0.4753, 1.9439)
FLOATRESET (0.0528, 0.1526) (0.0527, 0.1529) (0.0559, 0.1829) (0.1493, 0.6587)
PAINT (0.0602, 0.1689) (0.0606, 0.1697) (0.0605, 0.1745) (0.1114, 0.3932)
SHUTTLE (0.1438, 0.4193) (0.1232, 0.3716) (0.6399, 1.6099) (0.4686, 2.3325)
TIGER (0.2490, 0.6190) (0.2446, 0.6818) (0.2943, 1.5116) (0.3357, .1518)

Table 6.4: Calgary Corpus results. Total log loss of predicting last half of the file. The

best cost for each file is in bold

DATA SET CTW ES
BIB 86233.5 168979.6
BOOK1 673797.6 1069073.5
BOOK2 581571.8 955277.2
GEO 164959.4 158822.6
NEWS 418159.7 646138.6
OBJ1 54812.4 51124.2
OBJ2 328147.7 455035.3
PAPER1 61347.6 90597.9
PAPER2 77266.7 123020.9
PAPER3 47404.2 68235.3
PAPER4 16007.7 21175.9
PAPER5 17148.5 21207.1
PAPER6 47245.9 68352.3
PIC 130955.4 127174.9
PROGC 43596.5 68824.6
PROGL 77270.9 109812.9
PROGP 45235.5 76238.0
TRANS 84397.4 166206.0

82

that are formatted quite differently than the main body. We investigate how well a PSR

can perform on such a task, even though some of the modeling assumptions the learning

algorithms rely on may be violated. We choose to use the efficiency sharpening proce-

dure, given its good performance on the POMDP corpus. We fix the model dimension

to 20, which has been shown to be a good tradeoff between performance and computa-

tional resources on text data (Jaeger et al., 2006b). As in the POMDP experiments, we

keep the CTW depth fixed to 6.

The results of this experiment are shown in table 6.4. The CTW algorithm usu-

ally, but not always, outperforms the ES algorithm. More importantly, when the ES

algorithm is the winner, the margin of victory is small. However, it is often the case that

when CTW outperforms the ES algorithms, the margin is much larger. On some files,

such as BIB and TRANS, the CTW algorithm performs twice as well. These results

suggest that the ES algorithm is overly reliant on its modeling assumptions.

6.9 Conclusion and Open Problems

The results presented here are not particularly flattering for PSR learning algo-

rithms. In previous chapters, we have presented theory suggesting that PSRs naturally

lend themselves to machine learning:

• the statistics needed for learning the models are readily available in training data,

• data structures such as the system matrix have a low rank, a common modeling

assumption in machine learning,

• the linear nature of the model prediction and update functions lead to closed-

form linear algebra solutions.

In addition, PSRs are an extremely expressive class of model: any VMM or HMM can

be converted into a PSR, but not vice versa. Despite these advantages, the PSR learning

algorithms we have investigated do not produce particularly good models. This is the

83

case at least when training data is low, or when some of the modeling assumptions are

violated.

Variable-order Markov models have shown to be better predictors in these situa-

tions. This is the case even when VMMs cannot exactly model the stochastic process to

be learned. There are several reason why this may be the case:

• VMM algorithms are more mature. Most of the bad modeling frameworks have

been weeded out.

• The VMM directly maximizes the likelihood of the training data, while the PSR

indirectly models the training data via the system matrix D.

• The VMM algorithm is more stable and robust. Instead of making future pre-

dictions based on (likely faulty) past predictions, the VMM always grounds its

predictions in the immediate history of the process.

There is obviously much to be done in order to close this gap. Since PSRs

are at least as expressive as VMMs, PSR learning algorithms should be able to fall

back to a VMM-style model when it is likely that the PSR parameters may be poorly

estimated. This can be accomplished via some sort of regularization in the learning, or

by incorporating a Bayesian prior that favor models parameters that are “close to” the

model class of VMMs.

It is also necessary to explore the question of how we can train a PSR to max-

imize training likelihood. An E-M algorithm that guarantees each iteration improves

training likelihood would be a huge advancement over current methods.

Unfortunately, these issues must be addressed at a later time.

Chapter 7

Multivariate Prediction

So far, we have presented theory and algorithms for modeling stochastic pro-

cesses. These describe one random variable – the current observation – as it changes

over time. In this chapter, we present a framework for using PSRs to model other distri-

butions. In particular, we examine a predictive representation for modeling multivariate

random variables, but with no explicit consideration of time. We require that the distri-

bution be over a finite set of n random variables X = {X1, . . . Xn}, each of which take

on no more than m distinct values O = {o1, . . . om}.

We model these distributions as latent state processes. These processes take as

input a query, and output the probability of the query being true. The probability of any

query is conditionally independent, given information of the latent state. The latent state

cannot be directly observed, but only inferred through the results of queries. Latent state

processes are expressive enough to encompass many types of distribution, such as the

“bag of words” model of documents, and joint probability distributions on a collection

of discrete random variables.

We introduce the Linearly Dependent Distribution (LiDD), a new latent state

model of discrete multivariate data. LiDDs can be thought of as an extension of Pre-

dictive State Representations, which model stochastic processes (Singh et al., 2004).

The key modeling assumption for LiDDs is that regardless of prior evidence, the prob-

84

85

T h e f t
A l a r m

Q u a k e

Figure 7.1: A simple graphical model of a burglar alarm and possible causes (Pearl,

1988). This model assumes that whether or not there is a burglary is independent of

whether there is an earthquake. The burglar alarm state depends on both of these vari-

ables.

abilities of all possible inference queries lie in a low dimensional linear space. We

model this subspace directly. This approach obviates the need for indirectly modeling

the latent state as a random variable. Unlike previous approaches, a LiDD treats joint

unconditioned probabilities on sets of variables as the fundamental unit of the model.

This allows for efficient answers to any inference question.

7.1 Previous Methods

We briefly discuss graphical models, the most popular approach to modeling

joint distributions on discrete variables. Graphical models make conditional indepen-

dence assumptions between variables (see Murphy (2001) for an introduction). The

dependency relations can be arranged in an undirected or directed graph. In a directed

graph, the distribution on some random variable Xi is completely determined by the

random variables with edges directed at Xi. In undirected graphs, the relationship is

similar. An edge between two variables indicates that their joint distribution differs

from their marginal distributions. See figure 7.1 for an example of a small graphical

model.

Although graphical models are a good method for compactly defining joint dis-

tributions, using them to infer the marginal distributions over some of the random vari-

ables may take time exponential in the size of the model (see e.g., Murphy (2001) for

86

1 n. . .

Y

XX

Figure 7.2: A graphical model of the Naı̈ve Bayes Estimator. The random variable Y is

latent, and is never observed. The distribution of each X1 . . . Xn are independent, given

the value of Y .

a review of this well known result). Instead, approximate inference techniques, includ-

ing belief propagation, Monte-Carlo sampling, and variational methods are used to find

an approximation of the probability induced by the model. Interestingly, in directed

graphical models, it is always efficient to find the probability of a particular complete

assignment of values to all random variables. As the number of “free variables” (i.e.

those variables that can take on any value) increases, the harder the inference problem

becomes 1. This property of graphical models seems a bit perplexing, when we consider

graphical models that are learned from training data. Given raw data, the marginal dis-

tribution on a few random variables can be estimated by simply finding the frequency

of various outcomes in the data. Estimating the probability of a complete assignment

of random variables will be much more error prone: as most complete assignments will

never be seen at all in any reasonably sized training set.

It is possible to build graphical models designed to make inference efficient (see

Meila and Jordan (2000); Bach and Jordan (2001) for recently developed models with

this property). Recently, Lowd and Domingos (2005) have shown that a simple graph-

ical model based on the naı̈ve Bayes classifier can achieve results that are comparable

to graphical models with much more complex structures. These models, called naive

Bayes probability estimators (NBE), are closely related to some “bag of words” mod-
1The longer time is due to the fact that graphical models must take the expected value of the observed

variable, summed over all the possible configurations of the unobserved variables. The more variables
that are unobserved, the larger this sum will be.

87

els used for document analysis. They have one discrete latent variable Y , which takes

on values y1 . . . yr. The primary modeling assumption is that all variables Xi are con-

ditionally independent of each other, given the value of Y . A key advantage of NBE

is that marginal probability distributions can be calculated quickly without resorting to

approximate techniques. NBEs are also highly scalable, and can, in principle, represent

any joint distribution on X (Lowd and Domingos, 2005). See figure 7.2 for a repre-

sentation of NBE as a graphical model. We will discuss the NBE in detail in section

7.3.

7.2 Generalized Stochastic Processes

In order to model joint probabilities on multiple variables and other types of

probability distributions, we need to design a flexible protocol. We do this by adapting

the stochastic process framework to model other types of data. We call these models

generalized stochastic processes (GP). A GP takes as input a query, and outputs the

probability that this query is true. A query is a composition of elements from a set of

primitive queries u ∈ U .

The semantics of the query depend on the data that is being modeled. For in-

stance, in a controled process, the primitive queries mean “if action a is input, the next

observation is o”. Composing these primitive queries produces a query that refers to

several observations into the future.

The bag of words model for document analysis assumes that each document

consists of a distribution of words, where the distribution is given by a latent document

class (Blei et al., 2003). In this case, a primitive query is ”if a random word is drawn

from this document, it will be word o”. A longer query will represent the sampling of

words from a single document (from one of the document classes). When the GP is

given this query, it will provide the probability that some document will generate this

sample of words.

88

Multivariate Processes

We model multivariate prediction as a GP as well. Here the primitive query is

“if variable Xi is sampled, the result will be value oj”. We call this query xioj . Com-

posing multiple primitive queries asks the joint probability that a sequence of random

variables, when samples will take on a sequence of values. Our models differ from most

multivariate models in one important aspect: if the same random variable is sampled

multiple times, it need not have the same value. Instead, the distribution on the random

variable is determined by the latent state of the process.

We new formally define a multivariate process:

Definition 6 A function H : (XO)∗ → [0, 1] is a multivariate process if:

• H is a controlled stochastic process (see definition 3), where X is treated as the

action set, and O is the observation set,

• H satisfies commutativity: ∀a,b ∈ (XO)∗, H(a ◦ b) = H(b ◦ a).

Because a multivariate process has all the conditions of a controlled process, we

know the output of H can be treated as probabilities. Also, there is a null query, which

is always true with probability one. The only new property is commutativity. This

reasonable constraint states that the order that the random variables are sampled should

not change the resulting probability. As before, we usually use a multivariate process

to produce conditional probabilities. Given two queries a,b, we define the conditional

probability under H:

H(a|b) =
H(b ◦ a)

H(b)
.

We call the information that H() maintains about the query b in order to make condi-

tional predictions the latent state of the process.

As we see, there is a remarkable fit between the domain of the PSR (one ob-

servation, changing through time), and the domain of the multivariate process (many

observable variables without a concept of time). Later, we exploit this relationship to

transfer PSR learning algorithms to this domain.

89

7.3 Naı̈ve Bayes for Probability Estimation

First, we give an example model for multivariate processes. Naı̈ve Bayes is a

simple graphical model used for classification, where there is one causal variable Y ,

taking on r values, and several observation variables X1 . . . Xn. The primary modeling

assumption is that given the value of the causal variable, the probability distributions

on the observations are independent. An example is a sample of one or more of the

observation variables where Y is fixed to some unknown value. It is assumed that Y is

the class label, and the naı̈ve Bayes model is used to infer the most probable class label,

given the current example.

Naı̈ve Bayes can also model multivariate data without class labels. In this set-

ting, an example consists of a hidden sample of Y , followed by samples from some of

the Xi. Lowd and Domingos (2005) recently published on this use of the naı̈ve Bayes

model, calling it naı̈ve Bayes for probability estimation (NBE).

The NBE model allows us to calculate the probability of any query with a simple

equation. Assume we want to know the probability of some query where observable

variables X1 . . . Xm have values o1 . . . om. Due to the graphical model structure, we can

calculate the joint probability as the product of the probability of each primitive query,

given the possible latent state values:

H(x1o1 . . . xmom) =
r∑

i=1

Pr(yi)
m∏

j=1

Pr(Xj = oj|yi).

We simplify this equation using linear algebra:

H(x1o1 . . . xmom) = b>ε

(m∏
j=1

Dxjoj

)
1,

where bε is a vector containing our initial distribution on Y , Dxo are r by r diagonal

matrices where Dxo[i, i] = Pr(X = o|yi), and 1 is a vector of ones. There is an

obvious relationship between this equation and those of equation 2.1 for calculating the

probability of a sequence according to a HMM, or equation 3.1, for a PSR. In all cases,

the calculation is performed using a series of matrix multiplications, with an initial and

90

final vector multiplication. In fact, the NBE can be interpreted as a class of POMDPs,

the controlled version of the HMM.

We define a few other terms. For any query s composed of a set of Xi = oj

observations, we define a matrix Ds and vector ds, where

Ds =
∏

xioj∈s

Dxioj

ds = Ds1.

With these definitions, we can calculate other queries.

A conditional query asks for the probability of query a, possibly conditioned

on a query c having already been observed. To calculate this, we use the following

equation:

H(a|c) =
b>ε dca

b>ε dc

.

If dca and dc are already computed, this query takes time linear in r, the number of

values for the causal variable. Calculating da takes time r × l, where l is the number

of primitive queries in a. As long as r is small, this run time is extremely efficient

compared to standard techniques for performing inference on graphical models. Also,

using NBE, it is more efficient to answer shorter queries, while for general graphical

models, shorter queries may take more time than longer ones.

If we need the probability of several queries conditioned on the same s, we will

want to compute b(s):

b(s)> =
b>ε Ds

b>ε ds

.

This gives the probabilities of each possible value of X , given that query s has been

observed.

It is also easy to see that NBE is a multivariate process. Because the NBE can

be described as a POMDP, the NBE satisfies the first condition of being a controlled

91

process. The NBE is also commutative:

H(a ◦ c) = b>ε DaDc1

= b>ε DcDa1

= H(c ◦ a).

This is due to the fact that all the NBE matrices Ds are diagonal, and thus commute.

7.3.1 Learning NBE Model

The NBE model can be learned using the expectation maximization algorithm

(Lowd and Domingos, 2005). It is assumed we are given a training set, consisting

of examples e1 . . . et Learning begins with random parameters, and then goes through

alternating phases:

1. For each example ei, estimate the probability of the latent variables given the

example:

b(ei)
> = b(ε)>Dei

.

2. Re-estimate the parameters of the model, given the new beliefs:

b(ε)> =
1

t

t∑
i=1

b(ei)
>,

Dxo(j, j)
> =

∑t
i=1 b(ei)[j]I(xo ∈ ei)∑t

i=1 b(ei)[j]

Choosing the number of latent states (the dimension of the b vectors) is done

incrementally based on the performance of the learned NBE model on validation data

(see Lowd and Domingos (2005) for details). Code for E-M learning of NBE is available

for download at:

http://www.cs.washington.edu/ai/nbe/ .

h

92

7.4 Linearly Dependent Distributions

We now introduce the Linearly Dependent Distribution (LiDD). These models

generalize the Naive Bayes Probability Estimator (NBE), which has been shown to be

both efficient and competitive in modeling real-world data (Lowd and Domingos, 2005).

LiDDs keep many desirable properties of NBE, such as fast exact inference, but are

capable of representing a larger class of distributions. Just as PSRs are a generalization

of the HMM and POMDP, we will see that LiDDs are a generalization of the NBE.

According to the NBE model, every example comes from some fixed but un-

known value for Y . In practice, there will be residual uncertainty about the value for Y

after processing evidence in the form of the outcomes of queries. This uncertainty after

observing query s is captured in the vector b(s). Regardless of the evidence processed,

the probability of any query on new samples is completely specified by the current be-

lief vector on Y . In fact, the probability of the query a is a linear function of the belief

vector b(s) and the coefficients for the queries da.

This insight provides us with a new interpretation of NBE models. Consider the

infinite dimensional space where each dimension is associated with a query. Any multi-

nomial process defines a single point in this space, where the coordinate in dimension a

is the probability this distribution assigns to query a. Examine all processes induced by

a NBE model with different values for b(s). All these distributions lie on subspace of

dimension no more than r − 1, where r is the number of choices for Y .

A linearly dependent distribution (LiDD) is a process on queries that can be

modeled by such a linear subspace. The current coordinates on this subspace (a func-

tion of b(s)) are uniquely defined by the point’s value along r linearly independent

dimensions. The probability of any of the infinite possible queries is linearly dependent

on the probability of these r queries.

93

7.4.1 Multivariate Hankel Matrix

We have assumed there is a linear structure to the probabilities of queries. In

order to access this structure, we enumerate every possible query. Assume, w.l.o.g. that

in this enumeration, the null query is first, followed by queries on one variable, then two

variables, etc.

From this enumeration we construct the multivariate Hankel matrix S, where

for queries ai and aj , S(i, j) = H(ai ◦ aj). The multivariate Hankel matrix inherits

all the properties of a Hankel matrix for a controlled process, though there is additional

structure in the multivariate version. One immediately notices that due to commutativity,

S is symmetric. Commutativity also induces symmetry within a row or column of the

S. For any row i, and queries aj , ak, we have

S(i, j) = S(j, i),

S(i, aj ◦ ak) = S(i, ak ◦ aj).

The modeling assumption behind LiDDs is that although S is a countably infinite

matrix, it has a (small) rank of r. A LiDD is characterized by a choice of r linearly

independent columns in S. Because S has rank r, we know that the values in every

other column of S must be some linear combination of the values in these r columns.

The queries that correspond to these linearly independent columns are the core queries

of the distribution. Following the notation of the PSR, we vectorize these columns’

entries for row ai as q(ai).

7.4.2 LiDD Parameters

In addition to the choice of core queries, a LiDD also requires the specification

of some of the linear coefficients that produce other columns of S. Specifically, we

require the coefficients for the column corresponding to the null query, and columns of

queries where a core query is conjoined with a primitive query. We refer to the vector

of coefficients for the null query as mε. Given q(ai) and mε, we can calculate H(ai) as

94

a simple dot product:

H(ai) = q(ai)
>mε.

The vector for primitive query xo conjoined with core query j is defined as mxoj .

We call these the core extension queries. Using these vectors, and the core queries for

row s, we can calculate the probability of a core query on row s ◦ xo. For mathematical

convenience, we arrange the k core extension queries for primitive query xo into a square

matrix Mxo. With this, we have

q(ai ◦ xo)> = q(ai)
>Mxo.

By composing a sequence of these matrix operations, we can begin with q(ε),

and derive H(s) for arbitrary event s = x1o1 . . . xnon:

H(s) = q(ε)>Mx1o1 × . . .×Mxnonmε. (7.1)

As opposed to general graphical models, calculating the probability of a query

using a LiDD will always take time polynomial in the size of the model and the query.

Queries that involve only a few variables can be done very quickly. Larger queries can

be done through a series of matrix multiplies, or can be done immediately if we have

computed ms = Ms1Ms2 . . .mε beforehand.

Note that unlike NBE, we put no restrictions on the parameters q(ε), {Mxo},mε

other than they produce a valid multinomial process when equation 7.1 is used. We will

discuss checking the constraints for a multinomial process can be checked later.

7.4.3 From NBE to LiDD

By examining NBE as a family of distributions confined on a subspace, we are

lead to a reparameterization of the model as a LiDD. In order to gain some intuition, we

now work through the details of the transformation from a NBE to a LiDD. Choose r

queries q1 . . .qr such that the vectors dqi
= Dqi

1 are all linearly independent 2. These

2We assume that we can find r such queries. If we cannot, a similar, but more complex construction
is possible. See Littman et al. (2001) for the full construction from POMDP to PSR.

95

queries are a set of core queries for this LiDD. Because the NBE is also a stochastic

process, by theorem 3.1 we know that if the NBE produces a rank r Hankel matrix S,

then we will be able to find a set of q1 . . .qr where each query is composed of fewer

than r primitive queries.

Arrange these r column vectors into a square matrix D, such that

D =

[
dq1 . . .dqk

]
.

We use D to redefine the model. The vector q(s)> = b(s)>D are the probabilities of

the core queries, given query s has occurred. The matrices Mxo = D−1DxoD are used

for calculating the probabilities for each of the core queries, that this core query and

query xo both succeed. The vector mε = D−11 calculates the probability of the null

query in our new representation.

It is easy to see that these new parameters maintain all the functionality of the

original NBE model. The probability of event s = s1 . . . sl is calculated as

H(s) = q(ε)>
(∏

i

Msi

)
mε,

= b(s)>D
(∏

i

D−1Dsi
D

)
D−1mε,

= b(s)>
(∏

i

Dsi

)
mε.

In the final calculation, each D is canceled by being multiplied by its inverse.

It is reasonable to ask why such a parametrization is desirable. The key here is

that in the new model, the NBE parameters that define the influence of latent variable

Y are replaced with parameters that describe how the probability of the core queries

relate to the probability of other queries. The probabilities of various queries can be

directly approximated from data, while the probabilities related to a latent variable must

be indirectly deduced using techniques such as expectation-maximization.

96

7.4.4 Modeling Power

It has been shown that PSRs and OOMs model a larger family of processes than

POMDPs or HMMs (Jaeger, 2000). Specifically, Jaeger demonstrated that there is a

stochastic process called the probability clock, which can be modeled with a three-event

PSR, but could not be modeled with a HMM with a finite number of latent states. It is

reasonable to ask if the same type of argument can be made for LiDD versus NBE.

The first observation is that if each variable were sampled only once, then a

NBE could model any joint distribution on these variables. The model keeps a latent

variable Y with r = |X ||O| latent states, where each state keeps the probability of one

particular configuration of all the variables of X . The matrices Dxo only have entries of

0 or 1, where Dxo[i, i] = 1 if the configuration corresponding to state yi has variable x

taking on value o. Although this NBE model is terribly large, it is capable of modeling

any process where variables are sampled once. This means that the only fundamental

difference in modeling power between LiDDs and NBE will stem from sampling at least

one variable multiple times.

We can modify the probability clock used in Jaeger’s proof such that it becomes

a multivariate process. We define a multivariate process H with one variable x, taking

two values a, b. Define q(ε) = [.75, 0, 0.25], mε = [1, 1, 1], and the two operators as

follows:

Mxa =
1

2
∗

1 0 0

0 c −s

0 s c

 ,

Mxb = I−Mxa.

Here c is the cosine of 1 and s is the sine of 1. The operator Mxa can be thought of as

rotating the conditional probability of observing an a around a sine wave. The amount

that is rotated is 1 radian, which does not produce a regular, periodic cycle of values.

See figure 7.3 for a visualization. Jaeger (2000) has shown that this process cannot be

represented by any HMM or POMDP.

97

Some simple algebra shows that H meets all the requirements of a controlled

process. It also satisfies the commutativity constraint. Note that Mxb is a polynomial3

of Mxa . Matrices that are polynomials of some base matrix will commute (Horn and

Johnson, 1986). Thus, because these matrices commute, the multivariate process built

from these matrices also commutes.

It appears that LiDDs can model more distributions on multivariate processes,

but it is still uncertain if this extra flexibility corresponds to being better able to model

any processes that appear in the real world. On the face of it, our example process is

rather odd. Basically, this process keeps the count of both a’s and b’s already observered,

and then assigns a probability to the nextobservationn that is a highly nonlinear function

of these counts.

7.4.5 Enforcing Commutativity

We now briefly discuss the commutativity constraint omultivariatete processes,

and how this constraint relates to LiDDs. It is clear that the commutativity constraint

holds if the set of matrices {Mxo} commute. There has been a good deal of interest in

studying the conditions when a group of matrices commute (Horn and Johnson, 1986;

Carrette, 1998). To my knowledge, there are no properties that easily characterize nec-

essary and sufficient conditions for a collection of matrices to commute. In other words,

it is difficult to find structural constraints on M that will be easy to enforce by a learning

algorithm.

There is one sufficient condition that we have used in our conversion of NBE to

LiDD:

Definition 7 A collection of r × r matrices M1 . . .Mn is simultaneously diagonaliz-

able if we can find some k ≥ r, a k × r matrix T and a r × k matrix T† such that

• T†T = I

3A polynomial of a matrix is a sum of powers of a matrix, multiplied by a scalar:
∑

k αkMβk .

98

0 5 10 15 20

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of previous "a"

H
(a

|a
i)

Figure 7.3: The conditional probability that the next query of x will be a, given se-

quences of a of varying length. Note that the point values oscillate, but are not periodic.

• ∀i,Ki = TMiT
† is a diagonal matrix.

Our definition differs slightly from more conventional ones (see, e.g. Horn and

Johnson (1986)), in that we allow the diagonalizing matrices T and T† to be non-square.

In our conversion from a NBE to a LiDD, we used matrices D and D−1 to convert a

diagonalized collection of NBE matrices to a LiDD representation on core queries. We

can reverse the process by assigning T = D−1 and T† = D.

If T and T† are fixed and known, then we can directly learn Ki, and we’ll be sure

that the resulting LiDD will satisfy commutativity. It is unclear what, if any, flexibility

is lost by constraining the LiDD to have this form. Also, there is no obvious guideline

99

for choosing T and T† .

In practice, we do not explicitly enforce commutativity on our learned LiDDs.

Even so, the resulting parameters will usually satisfy commutativity up to a relatively

small margin of error. Instead, we enforce that all queries are handled in order, where

queries on variable xi are handled before xj for i < j, and queries (xi = ok) are handled

before (xi = ol) for k < l.

7.5 Learning LiDDs

One of the primary advantages of LiDDs is that all parameters are in terms of the

relation between the probability of queries that involve only observable variables. The

task of learning a LiDD is to find a basis that describes a LiDD’s subspace through query

probabilities, and then the parameters necessary to define it. We do this by applying

variants of the system matrix-based PSR algorithms to a version of S.

We assume that the training data consists of a collection of examples E =

e1, . . . et. Each example is a collection of one or more samples from the variables

x1, . . . , xm. We assume that the sampling process is not influenced by the outcome of

the samples. In fact, we only consider training sets where each variable is sampled ex-

actly once, though the learning algorithms we present can be adapted to other sampling

processes.

7.5.1 Approximate Hankel Matrix

As for learning a PSR, we must build an approximate Hankel matrix S that

captures the structure present in query probabilities. This involves the following steps:

1. Construct a submatrix S by choosing particular rows and columns of S.

2. For each entry in S, corresponding to query g, we must approximate H(g) from

training data.

100

First, we need a method for estimating the probability that some query occurs

in a single ei . Assume ei = xi1oi1 . . . xikoik . The probability of some query g =

x1o1 . . . xhoh is

Ĥ(g|ei) =
h∏

j=1

P̂ (xjoj|ei) =
h∏

j=1

∑
xil

=xj
I(oil = oj)∑

xil
=xj

1
.

In words, we calculate the empirical probability of each of the primitive queries being

true in our example, and then multiply them together. Note that if each variable xi is

sampled only once, then the probability of a query given an example will always be 0 or

1. Also, if our query asks us to sample one variable multiple times, then the estimated

probability will be biased. This is because we are using the one sample in ei to estimate

multiple samples that are supposed to be independent. This bias is evident when multiple

instances of the same primitive query are composed. If the primitive query succeeds,

then the estimated probability of the query succeeding an arbitrary number of times will

always be 1. This could only be true if the true success probability or the primitive

query is 1. This is a serious issue, which needs to be addressed in future research. Note

that this problem is present in our estimation procedure for steady-state event and test

probabilities, though if the history is long relative to the size of the tests, this bias is not

particularly large.

In order to estimate the unconditioned query probability, we take the expectation

of the query probability over all examples:

Ĥ(g) =
∑
ei∈E

Pr(ei)Ĥ(g|ei).

Assuming that the examples are sampled from the distribution we are interested in mod-

eling, we use the following approximation (recall that our set of examples E has t ex-

amples in it):

Ĥ(g) =
1

t

∑
ei∈E

Ĥ(g|ei).

Note that our estimates of Ĥ do not converge to the true values H() as the number

of examples increases. This is because the biases present in each of our conditional

101

estimates does not decrease as the number of examples increases. For example, consider

these two queries that are estimated from a data set where each variable is sampled once:

Ĥ(xo) =
1

t

∑
ei∈E

I(xo ∈ ei),

Ĥ(xoxo) =
1

t

∑
ei∈E

I(xo ∈ ei)I(xo ∈ ei)

= Ĥ(xo).

Again, this estimate can only be correct if Ĥ(xo|xo) = 1. We partially address this issue

in our algorithms.

The Training Matrix

We can arrange the estimated query probabilities Ĥ() into an approximate Han-

kel matrix Ŝ. Note that we can do this efficiently using linear algebra. We define the

training matrix T, where the rows index examples in our training set, and the columns

index the queries in our Hankel matrix. The entry T(i, j) equals 1 if query gj is present

in example ei. We can produce a symmetric sub-sample of the Hankel matrix where

rows and columns are indexed by the columns of T using a simple matrix multiply:

Ŝ =
1

t
T>T.

We can work with this matrix Ŝ as if it were a Hankel matrix derived from a stochastic

process, and then learn a PSR based on this matrix.

Alternately, we could learn using the matrix T directly. Note that the rank of S

will be the same as for T, and the right eigenvectors for T will be the same as those of

S. The main difference is that the rows of S average information across examples, while

in T, the probabilities for each example are approximated separately.

In this setting, we assume that all examples have some fixed but unknown value

for the core queries q(ei). The values in T represent one sample from the distribution

q(ei)
>mj . Note that when the query gj does not sample a variable more than once, this

102

is a draw from the actual distribution, but when query calls for a variable to be sampled

multiple times, the sample in T is biased.

7.5.2 Basic LiDD Learning Framework

The algorithm we use for learning a LiDD is based on the TPSR algorithm

(Rosencrantz et al., 2003). We find some training matrix T, and a characterizer V

such that the core event probabilities for each row are calculated as

Q = TV.

We use two types of characterizer. The simpler method chooses V as the set of columns

in T least well approximated by the other columns selected in V. We also use the SVD

to find a low rank basis for T, and use this basis as our characterizer.

From this basis, we can estimate the LiDD parameters. We create a diagonal

matrix Dxo where the (i, i)th entry is 1 if xo was observed in ei. Using this matrix, we

can estimate the update operators Mxo:

QMxo ≈ Txo

= DxoQ

We solve this approximation using the pseudo-inverse :

Mxo = Q†DxoQ.

The remaining parameters are calculated as follows:

mε = Q†1,

q(ε)> = =
1

t

t∑
i=1

Q[i, :].

7.6 Experiments

We perform two set of experiments on learning LiDDs. The first experiment

examines the representation that can be learned using LiDDs, and the second evaluates

103

the quality of the LiDD as a generative model of handwritten digits. The results here are

exploratory and qualitative in nature. Further work has shown that on more quantitative

evaluations of model performance, the NBE consistently outperforms LiDDs. This is

undoubtedly related to the fact that NBE is trained to directly maximize training data

likelihood, and that the NBE is a simpler model, less prone to overfitting.

7.6.1 MNIST Handwritten Digit Corpus

In this experiment, we learn LiDD models using MNIST digit dataset. We repli-

cate some of the experiments done in the work of Bach and Jordan (2001). The original

training dataset consists of 60,000 images of size 28 X 28. We crop the white space

around each image and then resize them to 16 X 16 pixels. We then discretize the im-

ages such that each pixel value is thresholded to 0 or 1.

LiDD Representation

In the first experiment, we investigate the representation that is learned by a

LiDD. We use a core query discovery algorithm that incrementally learns core queries

with procedure similar to the suffix history discovery algorithm presented in algorithm

2:

Greedy LiDD Discovery (δ)

1. Build T as described above, with the null query as the only column.

2. Calculate q(i) for every row of T

3. For each primitive query xo, calculate Txo, and approximate Mxo using least

squares regression using the current core queries as a basis.

4. From all Txo, choose the column j with highest squared error (Txo −TMxo)
2.

Add this column to T as the new core event.

5. Repeat steps 2 through 4 until no column of Txo has error greater than δ.

104

We iterate this procedure 150 times on the handwritten “two” corpus. In order to

understand what information the core queries are capturing, we calculate images where

the probability of each pixel p being on is determined, assuming that some core query

qi has occured:

Ĥ(p1|qi) =
q(ε)>Mqi

Mp1mε

q(ε)>Mqi
mε

.

The results of this can be seen in figure 7.4. Note that most core tests predict a small

area of the image will contain dark pixels, while the pixel values in the rest of the image

are less certain. Despite this localized certainty, each core query seems specialized for a

particular type of two. Note that some core queries assign higher probabilities to curly

twos, while others specialize in straight-bottomed twos.

Figure 7.4: The conditional probabilities of each pixel, given one of 150 core queries.

Red represents a high probability, and blue represents a low probability. Note this diver-

sity of representation of the different types of twos.

105

Digit Reconstruction

We learn one LiDD for each of the ten digits. To train our model for the 256

dimensional data, we use a heuristic to decide which possible queries should be used

as the core queries. We want core events that show high variability and are relatively

uncorrelated. Our heuristic starts by choosing primitive queries as core queries. We

choose the primitive query with the highest variance on the training set, and then choose

primitive queries that are least correlated with previous core queries, but still have a high

variance. We iterate this procedure until 80 primitive queries are picked. Then we look

at all the events that are formed by conjunctions of the 80 chosen events, generating

approximately, 6400 events. We then choose 60 two-variable queries by using the same

method as that of primitive queries. We get total of 141 core queries including the ε

event. We then run PCA on these events and keep the top 80 principal components as

our basis.

We use our models to regenerate a digit when less than half of the original image

is given. We give the model a query containing the value of some of the pixels x. To

reconstruct the image, we calculate for each pixel p,

Ĥ(p1|x) =
q(ε)>MxMp1mε

q(ε)>Mxmε

.

If the conditional probability of a pixel is greater than 1
2
, then we mark the pixel as ”on”.

Note that we calculate this value even on the pixels that were given in X.

Example results of the experiments are tallied in figures 7.5 and 7.6. The sample

image given to the model was taken from a separate test set that consisted of 10,000

images. The pixels from the image were deleted in two ways. The first method, erased

randomly 80% of both “on” and “off” pixels in the image. The second method had the

right 10 columns erased from the image. The correct model was then used to regenerate

the image, that being the model learned for the digit that test sample belonged to. We

also used a model that was learned on a similar digit but not the test sample digit. We

determine that a pixel is “on” if it has a greater than 50% chance of being on, given

106

the pixels that were not deleted. Notice that there is a great deal of variation in the “2”

reconstructions when the model is given different initial pixel values.

Figure 7.5: Handwritten twos reconstructed from a small amount of data

7.7 Discussion and Future Work

In this chapter, we presented a new method for modeling probability distribu-

tions on multiple variables. The Linearly Dependent Distribution (LiDD) is a model

capable of modeling a huge class of distributions, while remaining tractable to learn and

predict with. We have shown that the LiDD is a special case of a PSR, where we enforce

additional properties that the model must obey.

Learning LiDDs is possible with an adaptation of methods used for learning

PSRs. We have shown that the learning algorithm seems to learn reasonable models,

107

Figure 7.6: Handwritten threes and eights reconstructed from a small amount of data

108

though these results are quite preliminary. Further experiments have shown that in

general, learned model performance is worse than the Naive Bayes Estimator (NBE),

learned through E-M. It is important to address the issues that lead to worse perfor-

mance. It is likely that the problems with learning LiDDs closely track the problems

with learning PSRs. Due to the simpler structure of the LiDD, this is a good starting

point for producing more robust and accurate learning methods for all PSRs.

Chapter 8

Conclusion

In this dissertation, I have developed the theoretical framework for analyzing

Predictive State Representations. In chapter 3, I present necesarry and sufficient condi-

tions for a PSR to produce valid probability estimates. I also show that checking one of

these conditions – nonegative predicitons – is undecidable.

In chapter 4, I develop the theory of PSR for modeling controlled processes. I

show that we can extend the definition of test to model both the process generating ob-

servations, and the policy generating actions. I also show that we can model a controlled

process interacting with a policy as a single uncontrolled process.

In Chapter 5, I discuss the theory behind the system matrix, a data structure that

is used to learn PSRs. I show that we do not have to search the entire system matrix in

order to discover its low rank structure. I also show that if the process to be modeled

can be described as a PSR, then we can build a system matrix from the process’ avarage

event probabilities.

In chapter 6, I compare the prediction performance of learned PSRs to other pop-

ular generative models. Often, the comparison is not flattering for the PSR algorithms.

Finally, in chapter 7 I present a framework for applying PSR algorithms to other

prediction problems. The Linearly Dependent Distribution (LiDD) is the result of this

exploration. Although the results on this model are quite preliminary, this framework

109

110

offers an interesting interpretation of multivariate prediction.

8.1 Future Directions

The framework and analysis presented in this work suggest many directions for

future research.

An important contribution of this work is the introduction of the a-test for rep-

resenting policies. This formalism has the promise of unifying the analysis of many

classes of policies. For example, the PSR framework may be provide the proper an-

alytic tools for justifying the benefit of temporal abstraction through options (Sutton

et al., 1999). Also, it is possible to use this framework to directly learn a PSR-based

policy through policy gradient or actor-critic techniques (Sutton and Barto, 1998).

The results on PSR learning performance show that much more work needs to

be put into learning PSRs with small amounts of data. There is no inherent reason why

VMM predictors should be more accurate than PSRs, given that PSRs can represent

any process that a VMM can. The performance discrepancy may be attributed to many

causes:

• Regularization: VMMs model a smaller class of distributions than PSRs. This

allows for a faster convergence on the one model that best predicts the data. In

addition to this, VMM learning algorithms employ advanced probability smooth-

ing techniques that provide robustness against poorly estimated distributions.

In order to transfer these advantages to PSRs, two things must be done. One

is to regularize the estimates in the system or Hankel matrix using probability

smoothing techniques. This has been done, in a fashion, in the work of Mc-

Cracken and Bowling (2006).

Second, we should regularize the gross structure of the transition operators Mu

learned by the PSR. Lacking evidence in the training data to suggest otherwise,

a PSR learning algorithm should prefer operators that are ”close to” those pro-

111

duced by converting a VMM into a PSR. In order to do this, we need to better

characterize the set of PSRs that represent the same distribution as a VMM.

• Temporal Robustness: One of the foundational principles of PSRs is that we

can use predictions about some possible future observations to predict other ob-

servations. In theory, such a representation is incredibly powerful, but in prac-

tice, learned PSRs are often unstable. This is because errors in predictions accu-

mulate over time as one set of predictions leads to the next. VMMs, in contrast,

base their predictions on information outside of the model: the recent history.

Thus, any errors in previous predictions do not propagate into future predic-

tions. While the auto-regressive nature of PSRs is essential for their modeling

power, it may be possible to ”reset” the predictions under some circumstances.

This issue has been explored by James (2005), though the current results are still

preliminary.

• Learning Objective: In my opinion, the largest problem with the current state

of PSR learning is the learning objective. The algorithms I’ve described in this

dissertation attempt to minimize the error of the tests in the system or Hankel

matrix. This objective only loosely corresponds to minimizing prediction error

on the training string. VMM and HMM learning is much more oriented toward

reducing prediction error on the training string. A learning algorithm such as

E-M, which is proven to reduce training error on every iteration would be a huge

advance. There has been some work on this topic for a restricted class of PSRs,

but nothing for unconstrained models (Jaeger et al., 2006a). I have worked on

this problem, and have found it to be more difficult than I thought.

Appendix A

List of Notation

◦ Sequence concatenation operator

A set of actions

at action at time t

D system dynamics matrix

D a finite submatrix of D

ht observation history at time t

Mo PSR update operator for observation o

mo PSR projection vector for observation o

O set of observations

Ot random variable for the observation at time t

ot observation at time t

qi a core test, event or query

q(ht) probability of core tests at time t

st suffix at time t

112

References

Bach, F. R., and Jordan, M. I., 2001: Thin junction trees. In Advances in Neural Infor-
mation Processing Systems (NIPS). MIT Press.

Begleiter, R., El-Yaniv, R., and Yona, G., 2004: On prediction using variable order
Markov models. Journal of Artificial Intelligence Research (JAIR), 22, 385–421.

Beimel, A., Bergadano, F., Bshouty, N. H., Kushilevitz, E., and Varricchio, S., 2000:
Learning functions represented as multiplicity automata. Journal of the ACM, 47(3),
506–530.

Bell, T. C., Cleary, J. G., and Witten, I. H., 1990: Text Compression. Prentice-Hall,
Englewood Cliffs, NJ.

Bilmes, J., 1997: A gentle tutorial on the EM algorithm and its application to parameter
estimation for Gaussian mixture and hidden Markov models. Technical Report ICSI-
TR-97-021, International Computer Science Institute, Berkeley CA.

Blei, D., Ng, A., and Jordan, M., 2003: Latent Dirichlet allocation. Journal of Machine
Learning Research (JMLR), 3, 993–1022.

Bowling, M., McCracken, P., James, M., Neufeld, J., and Wilkinson, D., 2006: Learn-
ing predictive state representations using non-blind policies. In Proceedings of the
Twenty-Third International Conference on Machine learning (ICML), 129–136. ACM
Press.

Brafman, R. I., and Tennenholtz, M., 2002: R-MAX - a general polynomial time al-
gorithm for near-optimal reinforcement learning. Journal of Machine Learning Re-
search (JMLR), 3, 213–231.

Brown, P. F., Pietra, V. J. D., deSouza, P. V., Lai, J. C., and Mercer, R. L., 1992: Class-
based n-gram models of natural language. Computational Linguistics, 18(4), 467–
479.

Carrette, P., 1998: Reliable method for the evaluation of commuting matrices. Technical
report, Linkoping University.

113

114

Cassandra, A. R., Kaelbling, L. P., and Littman, M. L., 1994: Acting optimally in par-
tially observable stochastic domains. In Proceedings of the Twelfth National Confer-
ence on Artificial Intelligence (AAAI). AAAI Press/MIT Press.

Dailey, M. N., Cottrell, G. W., Padgett, C., and Adolphs, R., 2002: EMPATH: A neural
network that categorizes facial expressions. Journal of Cognitive Neuroscience, 14(8),
1158–1173.

Denis, F., and Esposito, Y., 2004: Learning classes of probabilistic automata. In Seven-
teenth Annual Conference on Learning Theory (COLT).

Denis, F., and Esposito, Y., 2006: Rational stochastic languages. arXiv cs.LG/0602093.

Denis, F., Esposito, Y., and Habrard, A., 2006: Learning rational stochastic languages.
In Nineteenth Annual Conference on Learning Theory (COLT).

Duff, M., 2003: Design for an optimal probe. In Proceedings of the Twentieth Interna-
tional Conference on Machine Learning (ICML).

Durbin, R., Eddy, S. R., Krogh, A., and Mitchison, G., 1999: Biological Sequence
Analysis : Probabilistic Models of Proteins and Nucleic Acids. Cambridge University
Press, Cambridge.

Even-Dar, E., Kakade, S., and Mansour, Y., 2005: Planning in POMDPs using multi-
plicity automata. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI).

Fazel, M., Hindi, H., and Boyd, S., 2004: Rank minimization and applications in system
theory. In Proceedings of the American Control Conference.

Freund, Y., Kearns, M., Ron, D., Rubinfeld, R., Schapire, R. E., and Sellie, L., 1993:
Efficient learning of typical finite automata from random walks. In Proceedings of
the twentyfourth Annual ACM Symposium on Theory of Computing.

Gavalda, R., Keller, P. W., Pineau, J., and Precup, D., 2006: PAC-learning of Markov
models with hidden state. In Proceedings of the 11th European Conference on Ma-
chine Learning (ECML). Springer-Verlag Lecture Notes in Artificial Intelligence.

Grimmett, G., and Stirzaker, D., 1982: Probability and Random Processes. Claredon
Press, Oxford.

Hansen, E., 1997: An improved policy iteration algorithm for partially observable
MDPs. In Advances in Neural Information Processing Systems (NIPS). MIT Press.

Hastie, T., Tibshirani, R., and Friedman, J. H., 2001: The Elements of Statistical Learn-
ing. Springer-Verlag, New York.

115

Horn, R. A., and Johnson, C. R., 1986: Matrix analysis. Cambridge University Press,
Cambridge.

Ito, H., Amari, S., and Kobayashi, K., 1992: Identifiability of hidden markov informa-
tion sources and their minimum degrees of freedom. IEEE Transactions on Informa-
tion Theory, 38(2).

Jaeger, H., 1998: Discrete-time, discrete-valued observable operator models: a tutorial
(updated through 2004). Technical Report 42, GMD - German National Research
Center for Information Technology.

Jaeger, H., 2000: Observable operator models for discrete stochastic time series. Neural
Computation, 12(6), 1371–1398.

Jaeger, H., Zhao, M., and Kolling, A., 2006a: Efficient estimation of OOMs. In Ad-
vances in Neural Information Processing Systems (NIPS). MIT Press.

Jaeger, H., Zhao, M., Kretzschmar, K., Oberstein, T., Popovici, D., and Kolling, A.,
2006b: Learning observable operator models via the ES algorithm. In New Directions
in Statistical Signal Processing: from Systems to Brain, editors S. Haykin, J. Principe,
T. Sejnowski, and J. McWhirter, 417–464. MIT Press.

James, M. R., 2005: Using Predictions for Planning and Modeling in Stochastic Envi-
ronments. Ph.D. thesis, University of Michigan.

James, M. R., and Singh, S., 2004: Learning and discovery of predictive state represen-
tations in dynamical systems with reset. In Proceedings of the Twenty-first Interna-
tional Conference on Machine Learning (ICML).

Kearns, M., and Singh, S., 1998: Near-optimal reinforcement learning in polynomial
time. In Proceedings of the fifteenth International Conference on Machine Learning
(ICML). Morgan Kaufmann, San Francisco, CA.

Kearns, M. J., Mansour, Y., and Ng, A. Y., 1999: A sparse sampling algorithm for
near-optimal planning in large markov decision processes. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI).

Kretzschmar, K., 2003: Learning symbol sequences with observable operator models.
Technical report, GMD - German National Research Center for Information Technol-
ogy.

Landauer, T., Foltz, P., and Laham, D., 1998: Introduction to latent semantic analysis.
Discourse Processes, 25, 259–284.

Littman, M., Sutton, R., and Singh, S., 2001: Predictive representations of state. In
Advances in Neural Information Processing Systems (NIPS). MIT Press.

116

Lowd, D., and Domingos, P., 2005: Naive Bayes models for probability estimation. In
Proceedings of the Twenty-Second International Conference on Machine Learning
(ICML).

McCallum, A., 1995: Instance-based utile distinctions for reinforcement learning with
hidden state. In Proceedings of the Twelth International Conference on Machine
Learning (ICML).

McCracken, P., and Bowling, M., 2006: Online discovery and learning of predictive
state representations. In Advances in Neural Information Processing Systems (NIPS).
MIT Press.

Meila, M., and Jordan, M. I., 2000: Learning with mixtures of trees. Journal of Machine
Learning Research (JMLR), 1, 1–48.

Murphy, K. P., 2001: An introduction to graphical models. Technical report.

Pearl, J., 1988: Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Puterman, M., 1994: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley and Sons, New York.

Rabiner, L., 1989: A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77.

Rissanen, J., and Langdon, G., 1981: Universal modeling and coding. IEEE Transac-
tions on Information Theory, 27(1), 12–23.

Rivest, R. L., and Schapire, R. E., 1994: Diversity-based inference of finite automata.
Journal of the ACM, 41(3), 555–589.

Rosencrantz, M., Gordon, G., and Thrun, S., 2003: Learning low dimensional predic-
tive representations. In Proceedings of the Twenty-first International Conference on
Machine Learning (ICML).

Rudary, M., and Singh, S., 2006: Predictive linear-gaussian models of controlled
stochastic dynamical systems. In Proceedings of the twenty-third international con-
ference on Machine learning (ICML). ACM Press.

Shatkay, H., and Kaelbling, L. P., 1997: Learning topological maps with weak local odo-
metric information. In Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence (IJCAI).

Singh, S., James, M., and Rudary, M., 2004: Predictive state representations: A new
theory for modelling dynamical systems. In Conference on Uncertainty in Artificial
Intelligence (UAI).

117

Singh, S., Littman, M., Jong, N., Pardoe, D., and Stone, P., 2003: Learning predictive
state representations. In Proceedings of the Twentieth International Conference on
Machine Learning (ICML).

Sutton, R., Precup, D., and Singh, S., 1999: Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial Intelligence,
112(1-2), 181–211.

Sutton, R. S., and Barto, A. G., 1998: Reinforcement Learning: An Introduction. The
MIT Press, Cambridge, MA.

Tanner, B., and Sutton, R. S., 2005: TD(λ) networks: temporal-difference networks with
eligibility traces. In Proceedings of the Twenty-Second International Conference on
Machine learning (ICML). ACM.

Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., and Carrasco, R., 2005: Prob-
abilistic finite-state machines-part II. PAMI, 27(7), 1026–1039.

Vovk, V., 2001: Probability theory for the brier game. Theoretical Computer Science,
261(1), 57–79.

Wiewiora, E., 2005: Learning predictive representations from a history. In Proceedings
of the Twenty-Second International Conference on Machine Learning (ICML). ACM
Press.

Willems, F. M. J., Shtarkov, Y. M., and Tjalkens, T. J., 1995: The context-tree weighting
method: basic properties. IEEE Transactions on Information Theory, 41(3), 653–664.

Wolfe, B., James, M. R., and Singh, S., 2005: Learning predictive state representations
in dynamical systems without reset. In Proceedings of the Twenty-second Interna-
tional Conference on Machine learning (ICML). ACM.

Xue, H., and Govindaraju, V., 2002: A stochastic model combining discrete symbols
and continuous attributes and its application to handwriting recognition. In Proceed-
ings of the Fifth International Workshop on Document Analysis Systems.

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Chapter 1. Introduction
	My Contribution

	Chapter 2. Conventional Models for Sequence Prediction
	Stochastic Processes
	Sequence Prediction
	Variable-ordered Markov Models
	Context Trees
	Context-Tree Weighting
	Applications and Limitations

	Hidden Markov Models
	HMM Parameters
	VMMs and HMMs
	Applications
	Learning

	Chapter 3. Predictive State Representations
	Events in Uncontrolled Systems
	Linear PSRs
	PSRs and OOMs
	Properties and Invariants of the PSR
	Multiplicity Automata
	Regular Form PSRs

	The Negative Prediction Problem
	Practical Solutions

	Chapter 4. Controlled Processes
	 Previous Models
	Markov Decision Processes
	Partially-observable Markov Decision Processes

	Policies
	PSRs for Controlled Processes
	Tests
	PSRs with tests

	Linear Policies
	Modeling Controlled Processes as Uncontrolled
	The System Identification Problem

	Chapter 5. The System Matrix
	System Matrix Definition
	System Matrix Rank

	Hankel Matrix Representation
	The Steady-State Hankel Matrix
	A Limit Property of PSRs

	Subsampling the Hankel Matrix
	Summary

	Chapter 6. Learning Predictive State Representations
	The General Framework
	Approximating Steady-State Probabilities
	The Suffix History Algorithm
	Discovery of Core Tests
	Robust Estimation

	Extending the Definition of Core Tests
	The T-PSR Algorithm
	Efficiency Sharpening Procedure
	 Shortcomings of System Matrix Learning Procedures
	Experiments
	Methods and Algorithms
	Learning POMDPs
	Calgary Corpus

	Conclusion and Open Problems

	Chapter 7. Multivariate Prediction
	Previous Methods
	Generalized Stochastic Processes
	Naïve Bayes for Probability Estimation
	Learning NBE Model

	Linearly Dependent Distributions
	Multivariate Hankel Matrix
	LiDD Parameters
	From NBE to LiDD
	Modeling Power
	Enforcing Commutativity

	Learning LiDDs
	Approximate Hankel Matrix
	Basic LiDD Learning Framework

	Experiments
	MNIST Handwritten Digit Corpus

	Discussion and Future Work

	Chapter 8. Conclusion
	Future Directions

	Appendix A. List of Notation
	References

