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Abstract

In the task of visual object categorization, semantic con-
text can play the very important role of reducing ambigu-
ity in objects’ visual appearance. In this work we propose
to incorporate semantic object context as a post-processing
step into any off-the-shelf object categorization model. Us-
ing a conditional random field (CRF) framework, our ap-
proach maximizes object label agreement according to con-
textual relevance. We compare two sources of context:
one learned from training data and another queried from
Google Sets. The overall performance of the proposed
framework is evaluated on the PASCAL and MSRC datasets.
Our findings conclude that incorporating context into object
categorization greatly improves categorization accuracy.

1. Introduction
Object categorization has been an active topic of re-

search in psychology and computer vision for decades. Ini-
tially, vision scientists and psychologists formulated hy-
potheses about models of object categorization and recogni-
tion [7, 8, 25]. Subsequently, in the past 10 years or so, ob-
ject recognition and categorization have become very pop-
ular areas of research in computer vision. With two general
models emerging, generative and discriminative, the newly
developed algorithms aim to adhere to the original modeling
constraints proposed by vision scientists. For example, the
hypothesis put forth by Biederman et al. [1] suggests five
classes of relations between an object and its setting that
can characterize the organization of objects into real-world
scenes. These are: (i) interposition (objects interrupt their
background), (ii) support (objects tend to rest on surfaces),
(iii) probability (objects tend to be found in some contexts
but not others), (iv) position (given an object is probable in
a scene, it often is found in some positions and not others),
and (v) familiar size (objects have a limited set of size rela-
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tions with other objects).
Classes (i, ii, iv, and v) have been addressed fairly well

in the models proposed by the computer vision commu-
nity [2, 5, 24]. Class (iii), referring to the contextual inter-
actions between objects in the scene, however, has received
comparatively little attention.

Existing context based methods for object recognition
and classification consider global image features to be the
source of context, thus trying to capture object class spe-
cific features. In [9, 14, 26, 29], the relationship between
context and object properties is based on the correlation be-
tween the statistics of low-level features across the image
that contains the object, or even the whole object category.

LEMON

Figure 1. Idealized Context Based Object Categorization System.
An original image is perfectly segmented into objects; each ob-
ject is categorized; and objects’ labels are refined with respect to
semantic context in the image.

Semantic context1 among objects has not been explicitly
incorporated into existing object categorization models. Se-
mantic context requires access to the referential meaning of
the object [1]. In other words, when performing the task
of object categorization, objects’ category labels must be
assigned with respect to other objects in the scene, assum-
ing there is more than one object present. To illustrate this

1For simplicity we will use context and semantic context interchange-
ably from now on.



further, consider the example in Figure 1. In the scene of
a tennis match, four objects are detected and categorized:
“Tennis court”, “Person”, “Tennis Racket”, and “Lemon”.
Using a categorization system without a semantic context
module, these labels would be final; however, in context,
one of these labels is not satisfactory. Namely, the object la-
beled “Lemon”, with an appearance very similar to a “Ten-
nis Ball” is probably mis-labeled, due to the ambiguity in
visual appearance. By enforcing semantic contextual con-
straints, provided by an oracle, the label of the yellow blob
changes to “Tennis Ball”, as this label better fits in context
with other labels more precisely.

In this work, we propose to use contextual relations be-
tween objects’ labels to help satisfy semantic constraints.
We extend the popular bag-of-features (BoF) model by in-
corporating contextual interactions between objects in the
scene. In particular, we advocate using image segmentation
as a pre-processing step to object categorization. Segment
based representation of test images adds spatial grouping to
the discriminative recognition model and provides for an in-
tuitive representation of context based interactions between
objects in the image. With object categorization in hand, a
conditional random field (CRF) formulation is used as post-
processing to maximize the objects’ labels contextual agree-
ment. The flow chart of our approach is shown in Figure 2.
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Figure 2. Object Categorization using Semantic Context.
S1 . . . Sk is the set of k segments for an image drawn from multi-
ple stable segmentations; L1 . . . Ln is a ranked list of n labels for
each segment; O1 . . . Om is a set of m objects categories in the
original image.

The paper is organized as follows. Section 2 formalizes
the theoretical framework used in this work for including
context information in the object categorization task. Sec-
tion 3 details the source of contextual information and its
representation. In Section 4 we present experimental re-
sults. We conclude with the discussion of our approach,
optimizations and future work in Section 5.

2. Object Categorization Model
Our categorization is based on the popular BoF discrim-

inative model. As the main drawback of this type of ap-
proach is the disregard for the spatial layout of the image
patches/features, we pre-process all test images with an im-
age segmentation stage. As reported in [19], this approach

significantly improves categorization accuracy of discrimi-
native models.

2.1. Shortlist of Stable Segmentations

In an attempt to segment test images before categoriza-
tion one is faced with a number of difficulties: the appropri-
ate grouping criterion (cue selection and combination) and
the number of clusters (model order). Recent advances in
stability based clustering algorithms have shown promise
in overcoming these problems. In this work we adopt the
framework of [18] to generate a shortlist of stable segmen-
tations.

Let us review the basics of stability based image
segmentation. Cues are combined into one similar-
ity measure using a convex combination: Wij =∑F

f=1(pf · Cf
ij), subject to

∑F
f=1 pf = 1, where Wij is

the overall similarity between pixels i and j, Cf
ij is the sim-

ilarity between the i-th and j-th pixels according to some
cue f , and F is the number of cues. Since the “correct” cue
combination ~p and the number of segments k yielding to
“optimal” segmentations are unknown a priori, we would
like to explore all possible parameter settings. However,
this is not computationally viable and we adopt an efficient
sampling scheme. Nonetheless, we are still left with defin-
ing the optimal segmentations, which we describe next.

Stability Based Clustering. For each choice of cue weight-
ings ~p and number of segments k one obtains different seg-
mentations of the image. Of all possible segmentations aris-
ing in this way, some subset can be considered “meaning-
ful.” Here we use stability as a heuristic to define and com-
pute the meaningful segmentations.

For a choice of the parameters ~p and k, the image
is segmented using Normalized Cuts [12, 22]. The seg-
mentation is considered stable if small perturbations of
the image do not yield substantial changes in the seg-
mentation. The image is perturbed and segmented T
times and the following score is evaluated: Φ(k, ~p) =

1
n−n

k

(∑n
i=1

∑T
j=1 δij −

n
k

)
. Here n is the number of pix-

els and δij is equal to 1 if the i-th pixel is mapped to a dif-
ferent segment in the j-th perturbed segmentation and zero
otherwise. Thus Φ is a properly normalized2 measure of
the probability of a pixel to change label due to a perturba-
tion of the image. Segmentations with high stability score
are retained. Notice that, in general, there may exist several
stable segmentations.

2.2. Bag of Features

In this work we utilize the BoF object recognition frame-
work [4, 16] because of its popularity and simplicity. This

2In particular Φ ranges in [0, 1] and it is not biased towards a particular
value of k.



method consists of four steps: (i) images are decomposed
into a collection of “features” (image patches); (ii) features
are mapped to a finite vocabulary of “visual words” based
on their appearance; (iii) a statistic, or signature, of such
visual words is computed; (iv) the signatures are fed to a
classifier for labeling. Here we adopt the implementation
and default parameter settings provided by [27], however,
a more sophisticated version of bags-of-features is likely to
improve the categorization accuracy.

2.3. Integrating Bag of Features and Segmentation

We integrate segmentation into the BoF framework as
follows: each segment is regarded as a stand-alone image
by masking and zero padding the original image. Then the
signature of the segment is computed as in regular BoF, but
discarding any feature that falls entirely outside its bound-
ary. Eventually, the image is represented by the ensemble
of the signatures of its segments.

This simple idea has a number of effects: (i) by clus-
tering features in segments we incorporate coarse spatial
information; (ii) masking greatly enhances the contrast of
the segment boundaries making features along the bound-
aries more shape-informative; (iii) computing signatures
segments improves the signal-to-noise ratio.

Next we discuss how segments and their signatures are
used to classify segments and whole images and to localize
objects in them.

Labeling Segments. Let i be the image index, c the cate-
gory index and s the segment index, so Iic is the i-th train-
ing image of the c-th category. Let I be a test image and
Sq its q-th segment. Let φ(I) (or φ(S)) be the signature of
image I (or segment S) and Ω(I) (or Ω(S)) the number of
features extracted in image I (or segment S).

Notice that we only segment the test images and leave
the training data untouched. As such, the method does not
require labeled segments for training.

Segments are classified based on a simple nearest neigh-
bor rule. Define the un-normalized distance of the test seg-
ment Sq to class c as:

d(Sq, c) = min
i
d(Sq, Iic) = min

i
‖φ(Sq)− φ(Iic)‖1

So d(Sq, c) is the minimum l1 distance of the test segment
Sq to all the training images Iic of category c. We assign
the segment Sq to its closest category c1(Sq):

c1(Sq) = argmin
c

d(Sq, c).

In order to combine segment labels into a unique image
label it is useful to rank segments by classification relia-
bility. To this end we introduce the following confidence
measure.

Labeling Confidence. Define the second best labeling of
segment Sq the quantity:

c2(Sq) = argmin
c 6=c1(Sq)

d(Sq, c).

In order to characterize the ambiguity of the labeling c1(Sq)
we compare the distance of Sq to c1(Sq) and c2(Sq). Define

p(c1(Sq)|Sq) = (1−γ)+γ/C, where γ =
d(Sq, c1(Sq))
d(Sq, c2(Sq))

and C is the number of categories. This is the belief that Sq

has class c1(Sq); for other labels, c 6= c1(Sq):

p(c|Sq) =
1− p(c1(Sq)|Sq)

C − 1
.

Thus, p(c|Sq) is a probability distribution over labels and it
is uniform when d(Sq, c1(Sq)) ≈ d(Sq, c2(Sq)) and peaked
at c1(Sq) when d(Sq, c1(Sq)) � d(Sq, c2(Sq)). To reflect
the importance and reliability of the segment Sq , p(c|Sq) is
weighted by w(Sq) = Ω(Sq)/Ω(Smax), where Smax is the
largest segment (in terms of number of features).

p(c|Sq) = p(c|Sq)w(Sq)

Localization. In many approaches to object localization,
the bounding box that yields highest recognition accuracy
is used to describe objects’ location [13, 28]. Here we use
the segment boundaries instead.

Given the labels of each segment, c1(Sq), and the overall
image label, c(I), we look for segments whose labels match
the image label, i.e. c(I) = c1(Sq). Among these, we check
for overlapping segments and we return the first k unique
segment boundaries. Note that this method is not limited
to BoF and could be used to add localization capabilities
to other recognition methods. Given all segments Sq , we
remove all overlapping segments (overlap≥ 90%) and rank
the remaining ones with respect to their label confidence
p(c1(Sq)|Sq). The first k segment boundaries and category
labels are returned.

3. Incorporating Semantic Context
To incorporate semantic context into the object catego-

rization, we use a conditional random field (CRF) frame-
work to promote agreement between the segment labels.
CRFs have been widely used in object detection, labeling,
and classification [9, 10, 14, 23]. The proposed CRF dif-
fers in two significant ways. First, we use a fully connected
graph between segment labels instead of a sparse one. Sec-
ond, instead of integrating the context model with the cat-
egorization model, we train the CRF on simpler problems
defined on a relatively small number of segments.
Context Model. Given an image I and its segmentation
S1, . . . , Sk, we wish to find segment labels c1, . . . , ck such



that they agree with the segment contents and are in contex-
tual agreement with each other. We assume the labels come
from a finite set C.

We model this interaction as a probability distribution:

p(c1 . . . ck|S1 . . . Sk) =
B(c1 . . . ck)

∏k
i=1A(i)

Z(φ, S1 . . . Sk)
,with

A(i) = p(ci|Si) and B(c1 . . . ck) = exp
( k∑

i,j=1

φ(ci, cj)
)
,

where Z(·) is the partition function. We explicitly sepa-
rate the marginal terms p(c|S), which are provided by the
recognition system, from the interaction potentials φ(·).

To incorporate semantic context information into object
categorization, namely into the CRF framework, we con-
struct context matrices. These are symmetric, nonnegative
matrices that contain the co-occurrence frequency among
object labels in the training set of the database (note that
both MSRC and PASCAL databases have strongly labeled
training data).
Co-occurence Counts. Our first source of data for learning
φ(·) is a collection of multiply labeled images I1, . . . , In.
We indicate the presence or absence of label i with an indi-
cator function li. The probability of some labeling is given
by the model

p(l1 . . . l|C|) =
1

Z(φ)
exp

( ∑
i,j∈C

liljφ(i, j)
)
.

We wish to find a φ(·) that maximizes the log likelihood of
the observed label co-occurences. The likelihood of these
images turns out to be a function only of the number of im-
ages, n, and a matrix of label co-occurence counts. An entry
ij in this matrix counts the times an object with label i ap-
pears in a training image with an object with label j. The
diagonal entries correspond to the frequency of the object
in the training set. Figures 3(c) and 4(c) illustrate the struc-
ture and content of these matrices for MSRC and PASCAL
training datasets respectively.

It is intractable to maximize the co-occurence likelihood
directly, since we must evaluate the partition function to
do this. Hence, the partition function is approximated us-
ing Monte Carlo integration [20]. Importance sampling is
used where the proposal distribution assumes that the la-
bel probabilities are independent with probability equal to
their observed frequency. Every time the partition function
is estimated, 40, 000 points are sampled from the proposal
distribution.

We use simple gradient descent to find a φ(·) that ap-
proximately optimizes the data likelihood. Due to noise in
estimating Z, it is hard to check for convergence; instead
training is terminated when 10 iterations of gradient descent

(a) (b)

(c)

Figure 3. Context matrices for MSRC dataset. (a) Binary con-
text matrix from GSs. Blue pixels indicate a contextual rela-
tionship between categories. (b) Differences between small and
large Google Sets context matrices. ‘-’ signs correspond to re-
lations present GSs but not in GSl; ‘+’ correspond to relations
present GSl but not in GSs. (c) Ground Truth, training set label
co-occurence, context matrix.

do not yield average improved likelihood over the previous
10.
Google Sets. In practice, most image databases – and im-
ages in general – do not have a training set with an equal
semantic context prior and/or strongly labeled data. Thus,
we would like to be able to construct φ(·) from a common
knowledge base, obtained from the Internet. In particular,
we wish to generate contextual constraints among object
categories using Google Sets3 (GS).

Google Sets generates a list of possibly related items, or
objects, from a few examples. It has been used in linguis-
tics, cell biology and database analysis to enforce contextual
constraints [6, 17, 21]. In order to obtain this information
for object categorization we queried Google Sets using the
labeled training data available in the MSRC and PASCAL
databases. We generated a query using every category la-
bel (one example) and then matched the results against all

3http://labs.google.com/sets



(a) (b)

(c)
Figure 4. Context matrices for PASCAL dataset. (a) Binary con-
text matrix from GSs. Blue pixels indicate a contextual relation-
ship between categories. (b) Differences between small and large
Google Sets context matrices. ‘-’ signs correspond to relations
present GSs but not in GSl; ‘+’ correspond to relations present
GSl but not in GSs. (c) Ground Truth, training set label co-
occurence, context matrix.

the categories present in these datasets. This task was per-
formed for each database using the small set,GSs, of results
and the large set GSl, which contains more than 15 results.
Figures 3(a) and 4(a) show binary contexts from GSs, for
MSRC and PASCAL respectively. Intuitively, we expected
GSS ⊂ GSl, however, GSs \ GSl 6= ∅ as shown in Fig-
ures 3(b) and 4(b). The larger set implies broader relations,
thus changing the context of the set to be too general. In
this work we retrieve objects labels’ semantic context from
GSs.

In this case, φ(i, j) = γ if GSs marks them as related,
or 0 otherwise. We set γ = 1 for our experiments, though
γ could be chosen using cross-validation on training data if
available.

Besides Google Sets, we considered other sources of
contextual information such as WordNet [3] and Word As-
sociation4. In the task of object categorization we found

4http://www.wordassociation.org

that these databases cannot offer sufficient semantic context
information for the visual object categories; either due to
the limited recall (in Word Association) or irrelevant inter-
connections (in Wordnet).

4. Experimental Results and Discussion
As mentioned earlier, we are interested in a relative

performance change in object categorization accuracy, i.e.,
with and without post-processing with semantic context. In
Table 1 we summarize the performance of average catego-
rization accuracy for both the MSRC and PASCAL datasets.
These results are competitive with the current state-of-the-
art approaches [23, 30]. The confusion matrices, which de-
scribe the results in more details, are shown in Figure 5.
For both datasets the categorization results improved con-
siderably with inclusion of context. For the MSRC dataset,
the average categorization accuracy increased by more than
10% using the semantic context provided by Google Sets,
and by over 20% using the ground truth training context. In
the case of PASCAL, the average categorization accuracy
improved by about 2% using Google Sets, and by over 10%
using the ground truth. In Figure 6 are examples where con-
text improved object categorization. In examples 1 and 3,
semantic context constraints help correct an entirely wrong
appearance based labeling: bicycle – boat, and boat – cow.
In examples, 2,4,5 and 6, mislabeled objects are visually
similar to the ones they are confused with: boat – building,
horse – dog, and dog – cow. Thus, it seems that contex-
tual information may not only help disambiguate between
visually similar objects, but also correct for erroneous ap-
pearance representation.

Clearly, context constraints can also lower or leave the
categorization accuracy unchanged. As shown in Figure 7,
the initially correct labels, “building” in the first image, and
“grass” in the second, were relabeled incorrectly in favor of
semantic context relations learned from the co-occurences
in the training data. Most of such mistakes are due to the
initial probability distribution over labels, p(c|Sq); the fea-
ture description is not very rich as the SIFT descriptor used
in this work is color-blind and segment shapes are only cap-
tured implicitly. In combining our approach with a method
of strong feature description, e.g., [23], many of currently
encountered errors will likely be eliminated.

No Context Google Sets Using Training
MSRC 45.0% 58.1% 68.4%

PASCAL 61.8% 63.4% 74.2%

Table 1. Average Categorization Accuracy.

Run Time and Implementation Details. The stabil-
ity based image segmentation was done with normalized
cuts [22], using brightness and texture cues. A varying
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Figure 5. Confusion matrices of average categorization accuracy for MSRC and PASCAL datasets. First row: MSRC dataset; second
row: PASCAL dataset. (a) Categorization with no contextual constraints. (b) Categorization with Google Sets context constraints. (c)
Categorization with Ground Truth context constraints.

number of segments per segmentation, k = 2, . . . , 10,
which together results in 54 segments was considered. Im-
plemented in MATLAB, each segmentation takes between
10-20 seconds per image, depending on the image size.

15 and 30 training images were used for the MSRC and
PASCAL databases respectively. 5000 random patches at
multiple scales (from 12 pixels to the image size) are ex-
tracted from each image such that larger patches are sam-
pled less frequently (as these would be redundant). The
feature appearance is represented by SIFT descriptors [11]
and the visual words are obtaining by quantizing the feature
space using hierarchical K-means with K = 10 at three
levels [15]. The image signature is a histogram of such
hierarchical visual words, L1 normalized and TFXIDF re-
weighed [15]. In a MATLAB/C implementation, the com-
putation of SIFT and the relevant signature, takes on aver-
age 1 second for each segment in the image. Training the
classifier and constructing the vocabulary tree takes under 1
hour for 20 categories with 30 training images in each cate-
gory. Classification of test images, however, is done in just
a few seconds.

Training the CRF takes 3 minutes for 231 training im-
ages for MSRC and around 5 minutes for 645 images in
PASCAL training dataset. Enforcing semantic constraints
on a given segmentation takes between 4-7 seconds, de-

pending on the number of segments. All the above oper-
ations were performed on a Pentium 3.2 GHz.

5. Conclusion
The importance of semantic context in object recogni-

tion and categorization has been discussed for many years.
However, to our knowledge, there does not exist a catego-
rization method that incorporates semantic context explic-
itly at the object level. In this work, we developed an ap-
proach that uses semantic context as post-processing to an
off-the-shelf discriminative model for object categorization.
We observed that semantic context can compensate for am-
biguity in objects’ visual appearance. Our approach max-
imizes object label agreement according to the contextual
relevance.

We have studied two sources of semantic context infor-
mation: the co-occurence of object labels in the training set
and generic context information retrieved from Google Sets.

In addition, as pre-processing to object categorization,
we advocate segmenting images into multiple stable seg-
mentations. Using segment representations incorporates
spatial groupings between image patches and provides an
implicit shape description.

We evaluated the performance of our approach on two
challenging datasets: MSRC and PASCAL. For both, the
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Figure 6. Examples of MSRC (first 3) and PASCAL (last 3) test images, where contextual constraints have improved the categorization
accuracy. Results are shown in two different ways, one for each dataset. In MSRC, full segmentations of highest average categorization
accuracy are shown; in PASCAL individual segments of highest categorization accuracy are shown. (a) Original Segmented Image. (b)
Categorization without contextual constraints. (c) Categorization with co-occurence contextual constraints derived from the training data.
(d) Ground Truth.

categorization results improved considerably with inclusion
of context. For both datasets, the improvements in cate-
gorization using ground truth semantic context constraints

were much higher than those of Google Sets due to the spar-
sity in the contextual relations provided by Google Sets.
However, in considering datasets with many more cate-
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Figure 7. Examples of MSRC test images, where contextual constraints have reduced the categorization accuracy. (a) Original Segmented
Image. (b) Categorization without contextual constraints. (c) Categorization with co-occurence contextual constrains derived from training
data. (d) Ground Truth Categorization.

gories, we believe that context relations provided by Google
Sets will be much denser and the need for strongly labeled
training data will be reduced.

In our ongoing work, we are exploring alternative meth-
ods for generating semantic context relations between ob-
ject categories without the use of training data. Semantic
object hierarchies exist on the web, e.g., from Amazon.com,
and will be utilized in this research. Finally, we are incorpo-
rating a parts-based generative model for categorization to
be able to model the interactions between image segments
more explicitly.
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