Principled Methods for Advising Reinforcement Learning Agents

Eric Wiewiora
Garrison Cottrell
Charles Elkan

Department of Computer Science and Engineering
University of California, San Diego
La Jolla, CA 92093-0114, USA

Abstract

An important issue in reinforcement learning
is how to incorporate expert knowledge in a
principled manner, especially as we scale up
to real-world tasks. In this paper, we present
a method for incorporating arbitrary advice
into the reward structure of a reinforcement
learning agent without altering the optimal
policy. This method extends the potential-
based shaping method proposed by Ng et al.
(1999) to the case of shaping functions based
on both states and actions. This allows for
much more specific information to guide the
agent — which action to choose — without re-
quiring the agent to discover this from the re-
wards on states alone. We develop two qual-
itatively different methods for converting a
potential function into advice for the agent.
We also provide theoretical and experimen-
tal justifications for choosing between these
advice-giving algorithms based on the prop-
erties of the potential function.

1. Introduction

Humans rarely approach a new task without presump-
tions on what type of behaviors are likely to be ef-
fective. This bias is a necessary component to how
we quickly learn effective behavior across various do-
mains. Without such presumptions, it would take a
very long time to stumble upon effective solutions.

In its most general definition, one can think of advice
as a means of offering expectations on the usefulness
of various behaviors in solving a problem. Advice is
crucial during early learning so that promising behav-
iors are tried first. This is necessary in large domains,
where reinforcement signals may be few and far be-
tween. A good example of such a problem is chess.

WIEWIORAQCS.UCSD.EDU
GARY@CS.UCSD.EDU
ELKAN@CS.UCSD.EDU

The objective of chess is to win a match, and an appro-
priate reinforcement signal would be based on this. If
an agent were to learn chess without prior knowledge,
it would have to search for a great deal of time before
stumbling onto a winning strategy. We can speed up
this process by advising the agent such that it real-
izes that taking pieces is rewarding and losing pieces
is regretful. This advice creates a much richer learning
environment but also runs the risk of distracting the
agent from the true goal — winning the game.

Another domain where advice is extremely important
is in robotics and other real-world applications. In the
real world, learning time is very expensive. In order to
mitigate “thrashing” — repeatedly trying ineffective ac-
tions — rewards should be supplied as often as possible
(Mataric, 1994). If the problem is inherently described
by sparse rewards it is very difficult to change the re-
ward structure of the environment without disrupting
the goal.

Adpvice is also necessary in highly stochastic environ-
ments. In such an environment, the expected effect of
an action is not immediately apparent. In order to get
a fair assessment of the value of an action, the action
must be tried many times. If advice can focus this
exploration on actions that are likely to be optimal, a
good deal of exploration time can be saved.

2. Previous Approaches

Incorporating bias or advice into reinforcement learn-
ing takes many forms. The most elementary method
for biasing learning is to choose some initialization
based on prior knowledge of the problem. A brief study
of the effect of different Q-value initializations for one
domain can be found in Hailu and Sommer (1999).
The relevance of this method is highly dependent on
the internal representations used by the agent. If the
agent simply maintains a table, initialization is easy,

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

but if the agent uses a more complex representation,
it may be very difficult or impossible to initialize the
agent’s Q-values to specific values.

A more subtle approach to guiding the learning of an
agent is to manipulate the policy of the agent directly.
The main motivation for such an approach is that
learning from the outcomes of a reasonably good policy
is more beneficial than learning from random explo-
ration. A method for incorporating an arbitrary num-
ber of external policies into an agent’s policy can be
found in Malak and Kholsa (2001). Their system uses
an elaborate policy weighting scheme to determine
when following an external policy is no longer benefi-
cial. Another twist on this idea is to learn directly from
other agents’ experiences (Price & Boutilier, 1999).
These methods have the advantage that they do not
rely on the internal representations the agent uses. On
the other hand, they only allow advice to come in the
form of a policy. Also, because the policy the agent
is learning from may be very different from the policy
an agent is trying to evaluate, the types of learning
algorithms the agent can use are restricted.

If reliable advice on which actions are safe and effec-
tive is known, one can restrict the agent’s available
actions to these. Deriving such expert knowledge has
been heavily studied in the control literature and has
been applied to reinforcement learning by Perkins and
Barto (2001). This method requires extensive domain
knowledge and may rule out optimal actions.

The method we develop in this paper closely resembles
shaping. With shaping, the rewards from the environ-
ment are augmented with additional rewards. These
rewards are used to encourage behavior that will even-
tually lead to goals, or to discourage behavior that will
later be regretted. When done haphazardly, shaping
may alter the environment such that a policy that was
previously suboptimal now becomes optimal with the
incorporation of the new reward. The new behavior
that is now optimal may be quite different from the
intended policy, even when relatively small shaping re-
wards are added. A classic example of this is found in
Randlgv and Alsrgm (1998). While training an agent
to control a bicycle simulation, they rewarded an agent
whenever it moved towards a target destination. In re-
sponse to this reward, the agent learned to ride in a
tight circle, receiving reward whenever it moved in the
direction of the goal. Potential-based shaping, which
we will describe in detail later, was developed to pre-
vent learning such policies (Ng et al., 1999).

Q-VALUES

ISOR
ENVIRONMENT

Figure 1. The model we assume for our advising system.
The environment, the advice function, and the Q-value es-
timator are all “black boxes”. We show methods for alter-
ing the policy, and the environmental feedback such that
they incorporate the advice.

3. Preliminaries

We follow the standard reinforcement learning frame-
work, making as few assumptions as possible about ac-
cess to the dynamics of the environment or the internal
representations of the agent. Our method alters learn-
ing by adding an advisor that is capable of changing
the reinforcement the agent receives, as well as altering
the agent’s policy. Below we list common assumptions
made about the environment and learning mechanisms
used by the agent.

3.1. Terminology

Most reinforcement learning techniques model the
learning environment as a Markov decision process
(MDP) (see Sutton & Barto, 1998). An MDP is de-
fined as (5, S0, A, T, R,), where S is the (possibly in-
finite) set of states, Sy(s) is the probability of the agent
starting in state s, A is the set of actions, T'(s'|s,a) is
the probability of transitioning to state s’ when per-
forming action « in state s, R(s,a,s’) is a stochastic
function defining reinforcement received when action
a is performed in state s resulting in a transition to
state s’, and « is the discount rate that weighs the
importance of short term and long term reward.

The usual reinforcement learning task is to find a pol-
icy m: S — A that maximizes the expected total dis-
counted reinforcement:

o0

ZWtTt,

t=0

where r; is the reinforcement received at time t. Some

MDPs contain special terminal states to represent ac-
complishing a task’s goal or entering an irrecoverable
situation. When an agent transitions to one of these
states all further actions transition to a null state, and
all further reinforcements are zero.

We focus on reinforcement learning algorithms that
use Q-value estimates to determine the agent’s policy.
Q-values represent the expected future discounted re-
ward after taking action a in state s. When the Q-
values for a particular policy 7 are accurate, they sat-
isfy the following recursion relation:

Q"(s,a) =Y P(s'|s,a)(E[R(s,a,8")[+1Q" (s, n(s)))

The greedy policy, 79(s) = argmax, Q(s, a), is optimal
if the Q-values are accurate for this policy.

In order to learn the proper Q-values for the greedy
policy, we could use either Q-learning or Sarsa. Both
of these methods update the Q-values based on expe-
riences with the MDP. An experience is a quadruple
(s,a,r,s’) where action a is taken in state s, result-
ing in reinforcement r and a transition to next state
s’. For each experience, these methods update the Q-
values according to the rule

Q(S7 a’)ﬂ- — Q(S7 a’) + Ot(’l” + ’YQ(S/a a/) - Q(S7 a’))

where « is the learning rate, and a’ is an action spec-
ified by the specific learning method. For Sarsa learn-
ing, a’ is the next action the agent will perform. Q-
learning sets a’ to be the greedy action for state s’
See Sutton and Barto (1998) for more details on these
and other reinforcement learning algorithms.

3.2. Potential-based Shaping

Ng et al. proposed a method for adding shaping re-
wards to an MDP in a way that guarantees the optimal
policy maintains its optimality. They define a poten-
tial function ®() over the states. The shaping reward
for transitioning from state s to s’ is defined in terms
of ®() as:

F(s,s) = 7(s') — D(s),

The advisor adds this shaping reward to the environ-
mental reward for every state transition the learner
experiences.

The potential function can be viewed as defining a to-
pography over the state space. The shaping reward
for transitioning from one state to another is there-
fore the discounted change of this potential function.
Because the total discounted change in potential along
any path that starts and ends at the same state is zero,

this method guarantees that no cycle yields a net ben-
efit due to the shaping. This was the problem faced in
the bicycle simulation mentioned before. In fact, Ng
et al. prove that any policy that is optimal for an MDP
augmented with a potential-based shaping reward will
also be optimal for the unaugmented MDP.

4. Potential-based Advice

Although potential-based shaping is an elegant tool
for giving guidance to a reinforcement learner, it is
not general enough to represent any type of advice.
Potential-based shaping can give the agent a hint on
whether a particular state is good or bad, but it cannot
provide the same sort of advice about various actions.

We extend potential-based shaping to the case of a po-
tential function defined over both states and actions.
We define potential-based advice as a supplemental re-
ward determined by the states the agent visits and the
actions the agent chooses.

One of the consequences of this extension is that the
modification to the MDP cannot be described as the
addition of a shaping function. A shaping function’s
parameters are the current state, the action chosen,
and the resulting state. This is the same information
that determines the reward function. The advice func-
tion requires an additional parameter related to the
policy the agent is currently evaluating. Note that if
the policy being evaluated is static, this parameter is
effectively constant, and therefore the advice may be
represented as a shaping function.

We propose two methods for implementing potential-
based advice. The first method, which we call look-
ahead advice, is a direct extension of potential-based
shaping. A second method, called look-back advice, is
also described. This method provides an alternative
when the agent’s policy cannot be directly manipu-
lated or when Q-value generalization may make look-
ahead advice unattractive.

4.1. Look-Ahead Advice

In look-ahead advice, the augmented reward received
for taking action a in state s, resulting in a transition
to s’ is defined as

F(s,a,s',d") = y®(s',d’) — (s, a),

Where o’ is defined as in the learning rule. We refer
to the advice component of the reward given the the
agent at time ¢ as f;.

We analyze how look-ahead advice changes the Q-
values of the optimal policy in the original MDP. Call

the optimal Q-value for some state and action in the
original MDP Q*(s,a). We know that this value is
equal to the expected reward for following the optimal

policy 7*():

Q*(s.a) =E[3 y'rilso = 5,7 = 7*

t=0

When this policy is held constant and its Q-values are
evaluated in the MDP with the addition of advice re-
wards, the Q-values differ from their true value by the
potential function:

Q*(s,a)

B[S+ £0)]

0

~
Il

Y (re + v (st41, arg1)

M8

= E[t

Il
=]

~®(si,a))]
= E{iwt(rt)}
t=0

+E{i”ytfb(st,at)}
t=1

oo

—E{Z”ytfb(st, at)}
t=0
= E[iytrt] — ®(s,a)
t=0

In order to recover the optimal policy in a MDP aug-
mented with look-ahead advice rewards, the action
with the highest Q-value plus potential must be cho-
sen. We call this policy biased greedy. It is formally
defined as

7t (s) = argmax (Q(s, a) + <I>(s,a)).

Notice that when the Q-values are initialized are zero,
the biased greedy policy chooses actions with the high-
est value in the potential function, encouraging explo-
ration of the highly advised actions first. Any policy
can be made biased by adding the potential function
to the current Q-value estimates for the purpose of
choosing an action.

4.1.1. LEARNABILITY OF THE OPTIMAL PoLICY

Although we can recover the optimal policy using
the biased greedy policy, we still need to determine
whether the optimal policy is learnable. While we can-
not make a claim on the learnability of the optimal

policy under any learning scheme, we can make claims
on its learnability when the state and action space are
finite. In this case, the learning dynamics for the agent
using look-ahead advice and a biased policy are essen-
tially the same as an unbiased agent whose Q-values
were initialized to the potential function.

We define two reinforcement learners, L and L', that
will experience the same changes in Q-values through-
out learning. Let the initial values of L’s Q-table be
Q(s,a) = Qo(s,a). Look-ahead advice F(), based
upon the potential function ®() will be applied during
learning. The other learner, L', will have a Q-table ini-
tialized to Qy(s,a) = Qo(s,a) + ®(s,a). This learner

will not receive advice rewards.

Both learners’ Q-values are updated based on an ex-
perience using the standard reinforcement learning up-
date rule described previously:

Q(s,a) — Q(s,a)+af
r+F()+7Q(s',d') — Q(s,a)),
6Q(s,a)
Q'(s.a) — Q'(s,a)+af
r+~Q'(s',a') — Q'(s,a))
8Q’ (s,a)

One can think of the above equations as updating the
Q-values with an error term scaled by «, the learn-
ing rate. We refer to the error terms as 6Q(s,a) and
dQ’(s,a). We also track the total change in Q(-) and
Q' (+) during learning. The difference between the orig-
inal and current values in Q(-) and @’(-) are referred
to as AQ(-) and AQ’(-), respectively. The Q-values for
the learners can be represented as their initial values
plus the change in those values that resulted from the
updates:

Qo(s,a) + AQ(s,a)
Qo(s,a) + ®(s,a) + AQ'(s,a).

<
—~
\‘EIJ
S
~—
Il

Theorem 1 Given the same sequence of experiences
during learning, AQ(-) always equals AQ'(-).

Proof: Proof by induction. The base case is when the
Q-table entries for s and s’ are still their initial values.
The theorem holds for this case, because the entries in
AQ(-) and AQ'(-) are both uniformly zero.

For the inductive case, assume that the entries
AQ(s,a) = AQ'(s,a) for all s and a. We show that
in response to experience (s, a,r,s’), the error terms
0Q(s,a) and 6Q)’(s,a) are equal.

First we examine the update performed on Q(s,a) in
the presence of the advice:

0Q(s,a) = 1+ F()+1Q(s,a") - Q(s,a)
= r4+y®(s',a") — D(s,a)
+7(Qo(s',a") + AQ(s', a’))
—Qo(s,a) — AQ(s,a)

Now we examine the update performed on Q’(s,a):

0Q'(s,a) r+9Q'(s',a") — Q'(s,a)

= r+ ’y(Qo(s’, a')+ (s, a)
+AQ(s',a’))
—Qo(s,a) — D(s,a) — AQ(s,a)

= r+y9(s,d") — ®(s,a)
+7(Qo(s',a") + AQ(s',a’))
—Qo(s,a) — AQ(s,a)

= 0Q(s,a)

Both Q-tables are updated by the same value, and thus
AQ(-) and AQ'(+) are still equal. O

Because the Q-values of these two agents change the
same amount given the same experiences, they will al-
ways differ by the amount they differed in their initial-
ization. This amount is exactly the potential function.

Corollary 1 After learning on the same experiences
using standard reinforcement learning update rules, the
biased policy for an agent receiving look-ahead advice
is identical to the unbiased policy of an agent with Q-
values initialized to the potential function.

This immediately follows from the proof. The impli-
cation of this is that any theoretical results for the
convergence of a learner’s greedy policy to the opti-
mal policy will hold for the biased greedy policy of an
agent receiving look-ahead advice.

If the potential function makes finer distinctions in the
state space than the agent’s Q-value approximator, the
agent may perceive the potential function as stochas-
tic. Because the difference in Q-values between the
optimal action and a sub-optimal action can be ar-
bitrarily close, any amount of perceived randomness
in the potential function may cause the biased greedy

policy to choose a suboptimal action'. This remains

!Generalized Q-values are usually not capable of rep-
resenting the optimal policy. State distinctions made by
the potential function may allow the agent to learn a bet-
ter policy than its Q-value approximation would ordinarily
allow.

true after any amount of learning.

5. Look-Back Advice

So far we have assumed that the potential function is
deterministic and stable throughout the lifetime of the
agent, and that we can manipulate the agent’s policy.
If either of these conditions is violated, look-ahead ad-
vice may not be desirable.

An alternate approach to potential-based biasing ex-
amines the difference in the potential function of the
current and previous situations an agent experienced.
The advice received by choosing action a; in state s,
after being in state s;_; and choosing a;_1 in the pre-
vious time step is

F(st,at,si—1,ai-1) = ®(s¢,a¢) — 7 ' (5421, ar1).

When the agent starts a trial, the potential of the pre-
vious state and action is set to 0.

Let’s examine what the Q-values are expected to con-
verge to while evaluating a stationary policy © and
receiving look-back advice:

Q"(s,a)

E[v (re + ft)}

[z 1~

— E|: ’}/t(Tt —l—fI)(st,at)

~
Il
o

—7_1‘1’(81:—1,@1&—1))}

- £[3e]

+E[Zwt<1>(st, at)}
t=0

—E{ i vt@(st,at)}

t=—1

B R

Here E[®(s_1,a_1)] is the expected value of the po-
tential function of the previous state, given w. Because
the agent’s exploration history factors into the advice,
only on-policy learning rules such as Sarsa should be
used with this method.

The correct Q-values for all actions in a given state dif-
fer from their value in the absence of look-back advice
by the same amount. This means that we can use most

T
— None

- — Value
450 Advantage ||
—— Optimal

Steps to Goal

50
L
0
0 50 100 150 200 250 300 350 400 450 500
Learning Trials

500 T
nn Advantage
I — — Value

4501

Optimal
4001 b
3501 || g
300- 1y]

250 i, 7

Steps to Goal

200f 1
1s0f
1001

sol V/‘\h’“‘“‘“ﬁ‘/*wum |

NPSA gy e

0 100 200 300 400 500
Learning Trials

Figure 2. Experiments with different types of bias in a gridworld. On the left look-ahead advice is used, and on the right
look-back advice is used. Both methods seem specialized for one type of advice

policies with the assurance that the advised agent will
behave similarly to a learner without advice after both
have learned sufficiently. The policies where this holds
true share the property that they are invariant to a
constant addition to all the Q-values in a given state.
Some examples of such policies are greedy, e-greedy,
and (perhaps surprisingly) softmax. Because we do
not have to manipulate the agent’s policy to preserve
optimality, this advising method can also be used in
conjunction with an actor-critic learning architecture.

This analysis also suggests that look-back advice is
less sensitive to perceived randomness in the potential
function. Learning with this form of advice already
faces randomness in approximation the value of the
potential function of the state and action previous to
the current choice. Extra randomness in the potential
function would be indistinguishable from other sources
of randomness in the agent’s experience. This robust-
ness to noise will likely come at a cost of learning time,
however.

At this point we do not have a proof that an agent’s
Q-values will converge to the the expected values de-
rived above. All experiments in tabular environments
support this claim, however.

6. Experiments

We have tested our advice-giving algorithms in a
stochastic gridworld to gain some insight into the algo-
rithms’ behavior. Our gridworld experiments replicate
the methodology found in Ng et al. (1999). We use a
10 x 10 gridworld with a single start state in the lower
left corner. A reward of —1 is given for each action

the agent takes, except that the agent receives a re-
ward of 0 for transitioning to the upper right corner.
When the agent reaches the upper right corner, the
trial ends and the agent is placed back at the start
state. Agents choose from four actions, representing
an intention to move in one of the four cardinal di-
rections. An action moves the agent the intended di-
rection with probability 0.8, and a random direction
otherwise. Any movement that would move the agent
off the grid instead leaves the agent in its current po-
sition. All learners use one-step Sarsa learning with a
learning rate of 0.02, a tabular Q-table initialized uni-
formly 0, and follow a policy where the greedy action
is taken with probability 0.9, and a random action is
taken otherwise.

Under our framework, advice is interpreted by the
agent as a hint on the Q-values. This advice may take
two qualitatively different forms. State-value advice
provides an estimate of the value of a state while fol-
lowing the agent’s objective policy. This is the only
type of advice potential-based shaping can use. The
potential function used in state-value advice is equal
to the minimum steps from the current state to the
goal, divided by the probability an action will move
the agent in the intended diretion.

Advantage advice provides an estimate of the relative
advantage of different actions in a given state. In many
situations, advantage advice is much simpler and more
readily available than state-value advice. In our do-
main, advantage advice has a potential function equal
to —1 for the move down or move left actions, and a
value of 0 for the other two actions. This is approxi-
mately the difference between the true Q-values of the

sub-optimal actions and the preferable move up or left
actions.

It is also possible to receive combinations of the two
forms of advice. In this case, the potential functions
are added together. We define optimal advice as the
sum of the previously mentioned state-value and ad-
vantage advice. This advice is very close to the true
Q-values for all states and actions, making it nearly
optimal in terms of reducing learning time.

Figure 2 shows the results of experiments with differ-
ent types of advice using both of the algorithms. For
the look-ahead advice algorithm, advice on the value of
states appears more useful than the advantage of dif-
ferent actions. This is due to the large discrepancy be-
tween the agent’s initial Q-values and the values they
converge to. The average value of a state in the en-
vironment is -12. Without advice on the magnitude
of the Q-values, a good deal of exploration is required
before the agent learns a good approximation of the
value of states.

When advice only consists of the advantage of different
actions, an interesting behavior emerges. The agent
begins learning following an optimal policy. However,
later during learning the agent abandons the optimal
policy. Because the agent has explored the optimal
actions more than others, the agent learns a better
approximation for their Q-values, which are negative.
The suboptimal actions are explored less, and thus
have values closer to zero.

The look-back advising algorithm shows the opposite
result. Value advice starts off very bad. The reason
for this behavior can be explained by examining how
the advice reward function interacts with the potential
function. When the agent transitions from a state with
low potential to one with a higher potential, it will
receive a positive reward. Unfortunately, the agent
receives this reward only after it has taken another
action. Thus, if the agent takes a step towards the
goal, and then immediately steps away from the goal,
the Q-value for stepping away from the goal will be
encouraged by the advice reward.

The look-back advice algorithm performed much bet-
ter with advantage advice. The agent immediately
finds a reasonable policy, and maintains a good level
of performance throughout learning. The agent us-
ing look-back advice is able to maintain good perfor-
mance because it follows the policy suggested by the
bias less diligently than the look-ahead agent. Thus,
the look-back agent can pace exploration more evenly
as learning progresses.

These experiments shed light on when one of these

1800) — Advice

- = No Advice
1600
1400
1200

10001
'

Steps to Goal

'
8001 1

6001 1

v
400 \ 4
200 1
0 10 2 3 40 5 60 70 8 90 100
Trial

Figure 3. Results for the mountain car problem averaged
over 20 runs. The baseline learning algorithm partitions
the state space using CMACS, and uses Sarsa(\) as its
learning rule. The advice is given using look-back advice.
The advice is based on a policy that aimed to increase a
the car’s mechanical energy.

methods should be preferred over the other. When ad-
vice on state values prevails, look-ahead advice should
be used. When the advice comes in the form of a pref-
erence for action selection, look-back advice should be
given. When both types of advice are present, both
algorithms do very well.

6.1. Mountain-Car Problem

Our second experiment examines how simple advice
can improve learning performance in a continuous-
state control task. The problem we examine is the
mountain car problem, a classic testbed for RL algo-
rithms. The task is to get a car to the top of the
mountain on the right side of the environment. The
mountain is too steep for the car to drive up directly.
Instead the car must first back up in order to gain
enough momentum to reach the summit. Like the grid-
world environment, the agent receives a —1 penalty for
every step the agent takes until the goal condition is
met.

We took existing code that solves the mountain car
problem written by Sridhar Mahadevan®. By testing
on existing code, we show that our algorithm can treat
the agent as a black box, and that advice can improve
the performance of agents who can already solve the
problem efficiently.

In order to improve learning, We use a potential func-
tion that encourages the agent to increase its total me-

*http://www-anw.cs.umass.edu/rlr/distcode/mcar.tar
The code was modified so that the agent starts a new trial
in the center of the valley with zero velocity. The modified
code is available on request.

chanical energy. This is accomplished by setting the
potential to —1 for choosing an action that accelerates
the car in the direction opposite its current velocity,
and 0 otherwise. Following this strategy will cause the
agent to make consistently faster swings through the
valley, reaching higher positions on slopes before the
car’s momentum is expended. Note that this poten-
tial function depends upon the agent’s actions and the
car’s current velocity, but ignores the agent’s position
in the world. Also, this strategy is not the fastest way
for the agent to reach the goal.

Because the advice makes suggestions on appropriate
actions but not states, we used the look-back algorithm
to add advice. The agent’s learning algorithm, Q-value
representation and policy remain unaltered with the
incorporation of the advice.

As can be seen in figure 3, the advice reduces early
learning time by 75%. We show results with the eli-
gibility trace decay rate, A, individually optimized for
each method. The remaining parameters are left at
their original value. Without advice, a A = 0.9 yields
good results. With advice, however, A = 0.2 provided
the best performance. When lambda is set near one,
the influence of the advice tends to be cancelled by
future experiences, leaving little improvement over no
advice. This effect can be mitigated by scaling the ad-
vice by 1/(1 —) if this parameter value is available to
the advisor.

7. Discussion

We have presented a method for incorporating advice
into an arbitrary reinforcement learner in a way that
preserves the value of any policy in terms of the origi-
nal MDP. Although the advice in itself does not alter
the agent’s ability to learn a good policy, the learn-
ing algorithm and state representation the agent uses
must be capable of representing a good policy to begin
with. Also, it should be stressed that our method does
not act as a replacement for the original rewards in the
MDP. Without environmental reinforcement, an agent
recieving advice will eventually learn flat Q-values for
every state.

Although we have assumed no inherent structures in
the reinforcement learning agent, our advising method
has analogues in many specific learning architectures.
We have already mentioned the connection between
look-ahead advice and Q-value initialization. If the
agent uses a linear combination of features to represent
its Q-values, the potential function can be incorpo-
rated into the feature set. If the potential feature had
a fixed weight of 1 throughout learning, it would be an

exact emulation of look-ahead advice. Schemes where
advice is built directly into the agent’s Q-value approx-
imator have been proposed in Bertsekas and Tsitsiklis
(1996); Maclin and Shavlik (1996).

Acknowledgements

We would like to acknowledge support for this research
from Matsushita Electric Industrial Co., Ltd. and
helpful comments from GURU.

References

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-
dynamic programming. Athena Scientific.

Hailu, G., & Sommer, G. (1999). On amount and
quality of bias in reinforcement learning. IFEE In-
ternational Conference on Systems, Man and Cy-
bernetics.

Maclin, R., & Shavlik, J. W. (1996). Creating advice-
taking reinforcement learners. Machine Learning,

22, 251-281.

Malak, R. J., & Kholsa, P. K. (2001). A framework for
the adaptive transfer of robot skill knowledge among
reinforcement learning agents. Robotic Automation,
IEEFE International Conference.

Mataric, M. J. (1994). Reward functions for acceler-
ated learning. Machine Learning, Proceedings of the
Ninth International Conference. Morgan Kaufmann.

Ng, A. Y., Harada, D., & Russell, S. (1999). Policy in-
variance under reward transformations: theory and
application to reward shaping. Machine Learning,
Proceedings of the Sizteenth International Confer-
ence. Bled, Slovenia: Morgan Kaufmann.

Perkins, T., & Barto, A. (2001). Lyapunov design for
safe reinforcement learning control. Machine Learn-
ing, Proceedings of the Sixteenth International Con-
ference. Morgan Kaufmann.

Price, B., & Boutilier, C. (1999). Implicit imitation in
multiagent reinforcement learning. Machine Learn-
ing, Proceedings of the Sixteenth International Con-
ference. Bled, Slovenia: Morgan Kaufmann.

Randlgv, J., & Alsrgm, P. (1998). Learning to ride
a bicycle using reinforcement learning and shaping.
Machine Learning, Proceedings of the Fifteenth In-
ternational Conference. Morgan Kaufmann.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
learning: An introduction. The MIT Press.

