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Text mining means the application of learning algorithms to documents con-
sisting of words and sentences. Text mining tasks include

• classifier learning

• clustering, and

• theme identification.

Classifiers for documents are useful for many applications. Major uses for binary
classifiers include spam detection and personalization of streams of news articles.
Multiclass classifiers are useful for routing messages to recipients.

Most classifiers for documents are designed to categorize according to subject
matter. However, it is also possible to learn to categorize according to qualitative
criteria such as helpfulness for product reviews submitted by consumers.

In many applications of multiclass classification, a single document can be-
long to more than one category, so it is correct to predict more than one label.
This task is specifically called multilabel classification. In standard multiclass
classification, the classes are mutually exclusive, i.e. a special type of negative
correlation is fixed in advance. In multilabel classification, it is important to learn
the positive and negative correlations between classes.

1 The bag-of-words representation
In order to do text mining, the first question we must answer is how to represent
documents. For genuine understanding of natural language one must obviously
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preserve the order of the words in documents. However, for many large-scale data
mining tasks, including classifying and clustering documents, it is sufficient to use
a simple representation that loses all information about word order.

Given a collection of documents, the first task to perform is to identify the
set of all words used a least once in at least one document. This set is called the
vocabulary. Often, it is reduced in size by keeping only words that are used in at
least two documents. (Words that are found only once are often mis-spellings or
other mistakes.) Although the vocabulary is a set, we fix an arbitrary ordering for
it so we can refer to word 1 through wordmwherem is the size of the vocabulary.

Once the vocabulary has been fixed, each document is represented as a vector
with integer entries of length m. If this vector is x then its jth component xj is the
number of appearances of word j in the document. The length of the document is
n =

∑m
j=1 xj . For typical documents, n is much smaller than m and xj = 0 for

most words j.
Many applications of text mining also eliminate from the vocabulary so-called

“stop” words. These are words that are common in most documents and do not
correspond to any particular subject matter. In linguistics these words are some-
times called function words or closed-class words. They include pronouns (you,
he, it) connectives (and, because, however), prepositions (to, of, before), and aux-
iliaries (have, been, can, should). Stop words may also include generic nouns
(amount, part, nothing) and verbs (do, have). It is important to appreciate, how-
ever, that generic words carry a lot of information for many tasks, including iden-
tifying the author of a document or detecting its genre.

A collection of documents is represented as a two-dimensional matrix where
each row describes a document and each column corresponds to a word. Each
entry in this matrix is an integer count; most entries are zero. It makes sense to
view each column as a feature. It also makes sense to learn a low-rank approx-
imation of the whole matrix; doing this is called latent semantic analysis (LSA)
and is discussed elsewhere.

2 The multinomial distribution
Once we have a representation for individual documents, the natural next step is to
select a model for a set of documents. It is important to understand the difference
between a representation and a model. A representation is a way of encoding
an entity as a data structure. A model is an abstraction of a set of entities, for
example a probability distribution. Given a training set of documents, we will
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choose values for the parameters of a probabilistic model that make the training
documents have high probability. Then, given a test document, we can evaluate
its probability according to the model. The higher this probability is, the more
similar the test document is to the training set.

The probability distribution that we use is the multinomial. Mathematically,
this distribution is

p(x; θ) =
( n!∏m

j=1 xj!

)( m∏
j=1

θ
xj
j

)
. (1)

where the data x are a vector of non-negative integers and the parameters θ are a
real-valued vector. Both vectors have the same length m.

Intuitively, θj is the probability of word j while xj is the count of word j.
Each time word j appears in the document it contributes an amount θj to the total
probability, hence the term θ

xj
j . The components of θ are non-negative and have

unit sum:
∑m

j=1 θj = 1. A vector with these properties is called a unit vector.
Each vector x of word counts can be generated by any member of an equiva-

lence class of sequences of words. In Equation (1) the first factor in parentheses
is called a multinomial coefficient. It is the size of the equivalence class of x, that
is the number of different word sequences that yield the same counts. The second
factor in parentheses in Equation (1) is the probability of any individual member
of the equivalence class of x.

Like any discrete distribution, a multinomial has to sum to one, where the sum
is over all possible data points. Here, a data point is a document containing n
words. The number of such documents is exponential in their length n: it is mn.
The probability of any individual document will therefore be very small. What
is important is the relative probability of different documents. A document that
mostly uses words with high probability will have higher relative probability.

At first sight, computing the probability of a document requires O(m) time
because of the product over j. However, if xj = 0 then θxjj = 1 so the jth factor
can be omitted from the product. Similarly, 0! = 1 so the jth factor can be omitted
from

∏m
j=1 xj!. Hence, computing the probability of a document needs only O(n)

time.
Because the probabilities of individual documents decline exponentially with

length n, it is necessary to do numerical computations with log probabilities:

log p(x; θ) = log n!− [
m∑
j=1

log xj!] + [
m∑
j=1

xj · log θj]
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Given a set of training documents, the maximum-likelihood estimate of the jth
parameter is

θj =
1

T

∑
x

xj

where the sum is over all documents x belonging to the training set. The nor-
malizing constant is T =

∑
x

∑
j xj which is the sum of the sizes of all training

documents.
If a multinomial has θj = 0 for some j, then every document with xj > 0

for this j has zero probability, regardless of any other words in the document.
Probabilities that are perfectly zero are undesirable, so we want θj > 0 for all j.
Smoothing with a constant c is the way to achieve this. We set

θj =
1

T ′
(c+

∑
x

xj).

The constant c is called a pseudocount. Intuitively, it is a notional number of
appearances of word j that are assumed to exist, regardless of the true number of
appearances. Typically c is chosen in the range 0 < c ≤ 1. Because the equality∑

j θj = 1 must be preserved, the normalizing constant must be T ′ = mc + T .
In order to avoid big changes in the estimated probabilities θj , one should have
c < T/m.

Technically, one multinomial is a distribution over all documents of a fixed
size n. Therefore, what is learned by the maximum-likelihood process just de-
scribed is in fact a different distribution for each size n. These distributions, al-
though separate, have the same parameter values. Parameters are said to be “tied”
if they are required to be the same for different distributions.

3 Generative processes
Suppose that we have a collection of documents, and we want to find an organi-
zation for these, i.e. we want to do unsupervised learning.

A common way to do unsupervised learning is to assume that the data were
generated by some probabilistic process, and then to infer the parameters of this
process. The generative process is a specification of a parametrized family of
distributions. Learning is based on the principle of maximum likelihood, or some
refinement of this principle such as maximum a posteriori (MAP) probability.

A generative process for a single document is as follows:
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A: fix a multinomial distribution with parameter vector φ of length V
B: for each word in the document

draw a word w according to φ

Above, step A sets up the probability distributions that are then used in step B to
produce the observed training data.

A single multinomial distribution can only represent a category of closely re-
lated documents. For a collection of documents of multiple categories, a simple
generative process is

A: fix a multinomial α over categories 1 to K
for category number 1 to category number K

fix a multinomial with parameter vector φk
B: for document number 1 to document number M

draw a category z according to α
for each word in the document

draw a word w according to φz
Note that z is an integer between 1 and K. For each document, the value of z
is hidden, meaning that it exists conceptually, but it is never known, not even for
training data. The generative process above gives the following global probability
distribution:

f(x) =
K∑
k=1

αkf(x;φk).

where x is a document and φk is the parameter vector of the kth multinomial.
In general, x could be a data point of any type and φk could be the parame-

ters of any appropriate distribution. K is called the number of components in the
mixture model. For each k, f(x; θk) is the distribution of component number k.
The scalar αk is the proportion of component number k. A distribution like this
is called a mixture distribution. In general, the components can be probability
density functions (pdfs), for example Gaussians, or probability mass functions
(pmfs), for example multinomials. We will see later how to do maximum like-
lihood estimation for mixture distributions, using a technique called expectation-
maximization.

4 Latent Dirichlet allocation
The specific topic model we consider is called latent Dirichlet allocation (LDA).
(The same abbreviation is also used for linear discriminant analysis, which is un-
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related.) LDA is based on the intuition that each document contains words from
multiple topics; the proportion of each topic in each document is different, but the
topics themselves are the same for all documents.

The generative process assumed by the LDA model is as follows:

Given: Dirichlet distribution with parameter vector α of length K
Given: Dirichlet distribution with parameter vector β of length V
for topic number 1 to topic number K

draw a multinomial with parameter vector φk according to β
for document number 1 to document number M

draw a topic distribution, i.e. a multinomial θ according to α
for each word in the document

draw a topic z according to θ
draw a word w according to φz

Note that z is an integer between 1 and K for each word.
Before we go into the LDA model in mathematical detail, we need to review

the Dirichlet distribution. The Dirichlet is useful because it is a valid prior dis-
tribution for the multinomial distribution. Concretely, a Dirichlet distribution is
a probability density function over the set of all multinomial parameter vectors.
This set is all vectors γ of length m such that γs ≥ 0 for all s and

∑m
s=1 γs = 1.

The Dirichlet distribution itself has parameter vector α of length m. There
is no constraint on

∑m
s=1 αs, but αs > 0 is required for all s. Concretely, the

equation for the Dirichlet distribution is

p(γ|α) =
1

D(α)

m∏
s=1

γαs−1
s .

The function D is a normalizing constant, so by definition

D(α) =

∫
γ

m∏
s=1

γαs−1
s

where the integral is over the set of all unit vectors γ. Explicitly, the D function is

D(α) =

∏m
s=1 Γ(αs)

Γ(
∑m

s=1 αs)

where the Γ function is the standard continuous generalization of the factorial such
that Γ(k) = (k − 1)! if k is an integer. The D function is similar to the reciprocal
of a multinomial coefficient.
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Maximum likelihood fitting of the LDA distribution would find the optimal
α and β parameter vectors. Typically, this is not done and instead α and β are
treated as fixed. The goal of learning is typically to find likely values for the
hidden variables, that is the multinomial parameter vectors and which topic z
each word of each document belongs to.

5 Training via Gibbs sampling
For learning, the training data are the words in all documents. The prior distribu-
tions α and β are assumed to be fixed and known, as are the number K of topics,
the numberM of documents, the lengthNm of each document, and the cardinality
V of the vocabulary (i.e. the dictionary of all words). Learning has two goals: (i)
to infer the document-specific multinomial θ for each document, and (ii) to infer
the topic distribution φk for each topic.

The algorithm that we use for learning is called collapsed Gibbs sampling. It
does not infer the θ and φk distributions directly. Instead, it infers the hidden value
z for each word occurrence in each document. For an alternative exposition of this
algorithm, see [?].

Although documents are represented as vectors of counts, Gibbs sampling is
based on occurrences of words. Different appearances of the same word, in the
same or different documents, may have be assigned to different topics; that is,
each appearance of every word has its own z value.

Suppose that we know the value of z for every word occurrence in the corpus
except occurrence number i. The idea of Gibbs sampling is to draw a z value
for i randomly according to its distribution, then assume that we know this value,
then draw a z value for another word, and so on. It can be proved that eventually
this process converges to a correct distribution of z values for all words in the
corpus. Note that Gibbs sampling never converges to a fixed z for each w; instead
it converges to a distribution of z values for each w.

Let w̄ be the sequence of words making up the entire corpus, and let z̄ be a
corresponding sequence of z values. Note that w̄ is not a vector of word counts.
As mentioned above, Gibbs sampling is based on viewing each document as a
sequence of words. However, the particular sequence used can be arbitrary. The
equations we finally obtain below will depend only on counts of words in docu-
ments, and not on any particular sequencing of words.

Use the notation w̄′ to mean w̄ with word number i removed, so w̄ = {wi, w̄′}.
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Similarly, write z̄ = {zi, z̄′}. In order to do Gibbs sampling, we need to compute

p(zi|z̄′, w̄) =
p(z̄, w̄)

p(z̄′, w̄)
=

p(w̄|z̄)p(z̄)

p(wi|z̄′)p(w̄′|z̄′)p(z̄′)

for zi = 1 to zi = K. In principle the entire denominator can be ignored, because
it is a constant that does not depend on zi. However, we will pay attention to the
second and third factors in the denominator, because they lead to cancellations
with the numerator. So we will evaluate

p(zi|z̄′, w̄) ∝ p(w̄|z̄)p(z̄)

p(w̄′|z̄′)p(z̄′)
. (2)

We will work out the four factors of (2) one by one. Consider p(z̄) first, and
let z̄ refer temporarily to just document number m. For this document,

p(z̄|θ) =
Nm∏
i=1

p(zi) =
K∏
k=1

θnmk
k

where nmk is the number of times zi = k within document m, and θ is the multi-
nomial parameter vector for document m. What we really want is p(z̄|α), which
requires averaging over all possible θ. This is

p(z̄|α) =

∫
θ

p(θ|α)p(z̄|θ).

By the definition of the Dirichlet distribution,

p(θ|α) =

∏K
k=1 θ

αk−1
k

D(α)
.

Therefore,

p(z̄|α) =
1

D(α)

∫
θ

( K∏
k=1

θαk−1
k

K∏
k=1

θnmk
k

)
=

1

D(α)

∫
θ

K∏
k=1

θnmk+αk−1
k .

The integral above is an unnormalized Dirichlet distribution, so we get

p(z̄|α) =
D(n̄m + α)

D(α)
.
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Here, n̄m is the vector of topic counts 〈nm1, . . . , nmK〉 for document number m.
Similarly,

p(z̄′|α) =
D(n̄′m + α)

D(α)

where n̄′m is n̄m with one subtracted from the count for topic number zi. For the
corpus of all M documents,

p(z̄|α) =
M∏
m=1

D(n̄m + α)

D(α)
(3)

and

p(z̄′|α) =
M∏
m=1

D(n̄′m + α)

D(α)
. (4)

Note that all factors are identical in (3) and (4), except for the document m that
position i is part of.

Referring back to (2), consider p(w̄|z̄), which means p(w̄|z̄, β). This is∫
Φ

p(Φ|β)p(w̄|z̄,Φ)

where Φ is a collection of K different topic distributions φk. Again by the defini-
tion of the Dirichlet distribution,

p(Φ|β) =
K∏
k=1

1

D(β)

V∏
t=1

φβt−1
kt .

Now consider p(w̄|z̄,Φ). To evaluate this, group the words wi together according
to which topic zi they come from:

p(w̄|z̄,Φ) =
K∏
k=1

∏
i:zi=k

p(wi|zi,Φ) =
K∏
k=1

V∏
t=1

φqktkt

where qkt is the number of times that word t occurs with topic k in the whole
corpus. We get that

p(w̄|z̄, β) =

∫
Φ

( K∏
k=1

1

D(β)

V∏
t=1

φβt−1
kt

)( K∏
k=1

V∏
t=1

φqktkt

)
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=

∫
Φ

( K∏
k=1

1

D(β)

V∏
t=1

φβt−1+qkt
kt

)
=

K∏
k=1

∫
φk

1

D(β)

V∏
t=1

φβt−1+qkt
kt

=
K∏
k=1

1

D(β)
D(q̄k + β)

where q̄k is the vector of counts over the whole corpus of words belonging to topic
k. This equation is similar to (3), with the corpus divided into K topics instead of
into M documents.

Referring back again to (2), we get that p(zi|z̄′, w̄) is proportional to

K∏
k=1

D(q̄k + β)

D(β)

K∏
k=1

D(β)

D(q̄′k + β)

M∏
m=1

D(n̄m + α)

D(α)

M∏
m=1

D(α)

D(n̄′m + α)
.

The D(β) and D(α) factors obviously cancel above. The products can be elimi-
nated also because q̄k + β = q̄′k + β except when the topic k = zi, and n̄m + α =
n̄′m + α except for the document m that word i belongs to. So,

p(zi|z̄′, w̄) ∝ D(q̄zi + β)
1

D(q̄′zi + β)
D(n̄m + α)

1

D(n̄′m + α)

For any vector γ, the definition of the D function is

D(γ) =

∏
s Γ(γs)

Γ(
∑

s γs)

where s indexes the components of γ. Using this definition, p(zi = j|z̄′, w̄) is
proportional to∏

t Γ(qjt + βt)

Γ(
∑

t qjt + βt)

Γ(
∑

t q
′
jt + βt)∏

t Γ(q′jt + βt)

∏
k Γ(nmk + αk)

Γ(
∑

k nmk + αk)

Γ(
∑

k n
′
mk + αk)∏

k Γ(n′mk + αk)
.

Now qjt+βt = q′jt+βt except when t = wi, in which case qjt+βt = q′jt+βt+1,
so ∏

t Γ(qjt + βt)∏
t Γ(q′jt + βt)

=
Γ(q′jwi

+ βwi
+ 1)

Γ(q′jwi
+ βwi

)
.
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Applying the fact that Γ(x+ 1)/Γ(x) = x yields

Γ(q′jwi
+ βwi

+ 1)

Γ(q′jwi
+ βwi

)
= q′jwi

+ βwi
.

Similarly, ∏
k Γ(nmk + αk)∏
k Γ(n′mk + αk)

= n′mj + αj

where j = zi is the candidate topic assignment of word i.
Summing over all words t in the vocabulary gives

V∑
t=1

qjt + βt = 1 +
V∑
t=1

q′jt + βt.

so
Γ(
∑

t q
′
jt + βt)

Γ(
∑

t qjt + βt)
=

1∑
t q
′
jt + βt

and similarly
Γ(
∑

k n
′
mk + αk)

Γ(
∑

k nmk + αk)
=

1∑
k n
′
mk + αk

.

Putting the simplifications above yields

p(zi = j|z̄′, w̄) ∝
q′jwi

+ βwi∑
t q
′
jt + βt

n′mj + αj∑
k n
′
mk + αk

. (5)

This result says that occurrence number i is more likely to belong to topic j if q′jwi

is large, or if n′mj is large; in other words, if the same word occurs often with topic
j elsewhere in the corpus, or if topic j occurs often elsewhere inside document m.

6 Implementation notes
The inner loop of the Gibbs sampling algorithm is to select a new topic label for
position i. This is done by drawing a random number uniformly between 0 and
1, and using it to index into the unit interval which is divided into subintervals
of length p(zi = j|z̄′, w̄). In Equation (5) the vectors α and β are fixed and
known. Each value q′jwi

depends on the current assignment of topics to each ap-
pearance of the word wi throughout the corpus, not including the appearance as

11



word number i. These assignments can be initialized in any desired way, and are
then updated one at a time by the Gibbs sampling process. Each value n′mj is the
count of how many words within document m are assigned to topic j, not includ-
ing word number i. These counts can be computed easily after the initial topic
assignments are chosen, and then they can be updated in constant time whenever
the topic assigned to a word changes.

The LDA generative model treats each word in each document individually.
However, the specific order in which words are generated does not influence the
probability of a document according to the generative model. Similarly, the Gibbs
sampling algorithm works with a specific ordering of the words in the corpus.
However, any ordering will do. Hence, the sequence of words inside each train-
ing document does not need to be known. The only training information needed
for each document is how many times each word appears in it. Therefore, the
LDA model can be learned from the standard bag-of-words representation of doc-
uments.

The standard approach to implementing Gibbs sampling iterates over every
position of every document, taking the positions in some arbitrary order. For
each position, Equation (5) is evaluated for each alternative topic j. For each j,
evaluating (5) requires constant time, so the time to perform one epoch of Gibbs
sampling is O(NK) where N is the total number of words in all documents and
K is the number of topics.

7 Optimizations
Note: This section is preliminary and not required for CSE 250B. Intuitively,
evaluating (4) K times for each word, when just one value k ∈ {1, . . . , K} will
be chosen, is too much work. Let us consider how to do less than O(K) work for
each word.

The starting point is Equation (5),

p(zi = j|z̄′, w̄) ∝
q′jwi

+ βwi∑
t q
′
jt + βt

n′mj + αj∑
k n
′
mk + αk

.

The factor
∑

k n
′
mk + αk depends on i but not on j for a given i, so it need not be

evaluated and we can write

p(zi = j|z̄′, w̄) =
1

Z

q′jwi
+ βwi

Q′j + β
(n′mj + αj) (6)
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where Q′j =
∑

t q
′
jt and β =

∑
t βt. The normalization constant Z, which is also

called the partition function, is the sum

Z =
K∑
j=1

q′jwi
+ βwi

Q′j + β
(n′mj + αj).

As explained above, the new topic label of word i is found by using a random
number between 0 and 1 to index into the unit interval, which is divided into
subintervals of length p(zi = j|z̄′, w̄).

Unfortunately, the length of every subinterval depends on Z, and computing
Z requires O(K) time. So, we shall compute an upper bound for Z in constant
time. This upper bound will yield a lower bound for each length p(zi = j|z̄′, w̄).
We shall divide each subinterval into two parts, where the length of the first part
is the lower bound, and the second part is the remainder. If the random number
indexes into the first part of any subinterval, then all other lengths are irrelevant,
which means that the O(K) computation of Z is not needed.

To obtain the first part for any given j, we want a lower bound on p(zi =
j|z̄′, w̄). In general, a lower bound for a fraction is obtainable from a lower bound
for its numerator and an upper bound for its denominator. Below, we provide an
upper bound for Z. The rest of the expression for p(zi = j|z̄′, w̄) can be evaluated
in constant time, so there is no need to find an approximation for it.

However, we do want to evaluate the righthand side of (6) for as few j values
as possible. Therefore, we shall sort the j values into an ordering that makes the
largest values of p(zi = j|z̄′, w̄) likely to be evaluated first. In other words, we
shall attempt to order the subintervals in decreasing length. If the random number
drawn is small, then we will only need to evaluate a few subinterval lengths (ac-
tually, lower bounds) before finding the subinterval in which the random number
lies.

For each document m, the factors Q′j + β and n′mj + αj are almost constant
regardless of i. Therefore, we sort the topics j by descending order of

nmj + αj
Qj + β

.

Intuitively, this ordering tries first topics that are common in documentm and rare
in the whole corpus, that is with high nmj and low Qj .

Now we shall derive an upper bound that is computable in constant time for
the partition function. First, let us remove the dependence on the current topic
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assignment of i:

Z(i) =
K∑
j=1

(q′jwi
+ βwi

)(Q′j + β)−1(n′mj + αj)

≤
K∑
j=1

(qjwi
+ βwi

)(Qj − 1 + β)−1(nmj + αj).

Next, the generalized Hölder inequality gives

Z(i) ≤ ||qjwi
+ βwi

||p · ||nmj + αj||q · ||(Qj − 1 + β)−1||r

where 1/p + 1/q + 1/r = 1. Assuming that the three norms to be multiplied are
available, this upper bound for Z(i) can be computed in constant time for each i.
The norms can be kept updated as follows:

• Every time some instance of wi changes topic, ||qjwi
+ βwi

||p is updated in
constant time by adding to one entry and subtracting from one entry in the
sum of K vector components each raised to the power p.

• Every time any word in document m changes topic, ||nmj +αj||q is updated
in a similar way in constant time.

• Every time any word in any document changes topic, ||(Qj − 1 + β)−1||r is
also updated similarly in constant time.

Many choices are possible for p, q, and r. It may be advantageous to entertain
three choices simultaneously, namely

〈p, q, r〉 = 〈2, 2,∞〉
〈p, q, r〉 = 〈2,∞, 2〉
〈p, q, r〉 = 〈∞, 2, 2〉

and to choose for each i the smallest of the three corresponding upper bounds. For
the L∞ norm, note that

||xj||∞ = max
j
xj

and therefore
||x−1

j ||∞ = (min
j
xj)
−1.



CSE 250B Quiz 8, February 24, 2011
In the bag-of-words approach, a document is represented by a vector x of counts
that has V entries, where V is the size of the vocabulary. Let p(x; θ) be the prob-
ability of x according to a multinomial distribution with parameters θ. The above
is as seen in class.

Dr. Justin Bieber says “The total probability over all possible documents is
one:

∑
x∈X p(x; θ) = 1 where X is the set of all vectors of length V with entries

that are counts (i.e., non-negative integers).”

Explain why Dr. Bieber is wrong.



CSE 250B Quiz 10, March 10, 2011
The final equation that we obtained for Gibbs sampling for latent Dirichlet allo-
cation is

p(zi = j|z̄′, w̄) ∝
( q′jwi

+ βwi∑V
t=1 q

′
jt + βt

)( n′mj + αj∑K
k=1 n

′
mk + αk

)
.

The intuitive explanation of q′jwi
and n′mj is as follows: position number i in doc-

ument number m is more likely to belong to topic j if the same word wi occurs
often with topic j in all documents, and/or if topic j occurs often elsewhere inside
document m.

[3 points] Give a similar brief intuitive explanation of βwi
and of αj in the numer-

ators above.

Hint: The scalars βwi
and αj are pseudocounts. Consider the effect of them being

large.


