
Learning meanings for sentences

Charles Elkan
elkan@cs.ucsd.edu

February 25, 2014

This chapter explains how to learn the parameters of recursively structured
functions, called neural networks, that can represent, to some degree, the semantic
content of sentences.

1 Recursive definition of meaning
Consider an English sentence of length n, say “Cats like to chase mice” with
n = 5. Suppose that we are given a binary tree representing the syntactic structure
of the sentence. Each word is a leaf node of the tree, and there are n− 1 internal
nodes. Each internal node covers a phrase of two or more consecutive words. We
will associate a column vector in Rd with each node, to represent the meaning of
the corresponding phrase. A typical value for the dimensionality d is 100.

The meaning of each word is initialized to be a random vector in Rd. This
means that we create a fixed lexicon containing a random vector for each word.
Each random vector is generated independently from a Gaussian of dimension d
with mean zero and diagonal covariance matrix σ2I . Each time the same word is
used in any sentence, the same vector is used as its meaning.

The meaning of a phrase is a function of the meanings of its two components.
This is called a compositional approach to semantics. Let the node k have children
i and j, whose meanings are xi and xj . The meaning of node k is

xk = h(W [xi;xj] + b)

where W and b are parameters to be learned.1 The notation [xi;xj] means the
vector xi concatenated vertically with xj , so W is a matrix in Rd×2d and b is a

1The node k is the parent of i and j in the undirected binary tree that represents the grammatical

1

vector in Rd. The function h() is a pointwise sigmoid-shaped function from Rd to
the interval [−1,+1]d.

We want to learn the parameters W and b. To do so in a supervised way, we
need target values for the meanings of training sentences. The predicted meaning
of a whole sentence is xr where r is the root node. (We say “predicted” because
that is standard terminology for what is computed by a model, but the word “out-
put” is more appropriate.) Suppose that a target value t is known for the meaning
of the root node, that is of the whole sentence. Then we can define a loss function
E, for example square loss E = (t − xr)2, and train the parameters W and b to
minimizeE. Specifically, we can compute the gradients ∂E/∂W and ∂E/∂b, and
use any gradient descent method to minimize E.

The error E is for a single sentence. Obviously many sentences are needed
in any useful training set. We can use stochastic gradient descent (SGD) and
optimize W and b based on one sentence at a time. Or, we can define the error
for a whole training set as the sum of the errors for each sentence in it. Then, the
gradient with respect to the whole set is the sum of the gradients with respect to
each sentence. We can use the LBFGS quasi-Newton method to optimize W and
b based on the whole training set. Of course, we can add a regularization term to
the error function regardless of what minimization method is used.

One difficulty with the approach above is that the same parametersW and b are
used at every node inside a tree. This implies that the predicted meaning xr of the
root node is specified by an expression that depends on the parameters in multiple
ways. This makes the derivatives ∂E/∂W and ∂E/∂b more complicated, but
the concept behind gradient descent is unchanged. Section 5 below shows how
to compute the derivatives numerically in an efficient and elegant way, without
making symbolic expressions for the derivatives explicit, as was done in other
chapters.

Another practical difficulty is that the gradient for a single example is not
sparse. This means that a lot of computation is needed even to do one small
update of the parameters.

2 Autoencoders
A major difficulty with the approach just suggested is that we do not know what
the target meaning t should be for a sentence. In the autoencoder approach, the

structure of the sentence. Viewed as a neural network, there are directed edges from i to k and
from j to k. From this perspective, leaf nodes are sources and k is a child, not parent, of i and j.

2

goal of supervised learning is different: it is to reconstruct the input. Remember
the definition

xk = h(W [xi;xj] + b).

Now, consider the additional definition

[zi; zj] = Uxk + c

where U is a matrix in R2d×d and c is a vector in R2d. We view zi and zj as
approximate reconstructions of the inputs xi and xj , while U and v are additional
parameters to be trained to maximize the accuracy of reconstructions. Specifically,
the square loss at the node k is

E = ||xi − zi||2 + ||xj − zj||2 = ||[xi;xj]− Uh(W [xi;xj] + b)− c||2.

The error for a whole tree is defined to be the sum of the errors at all the non-
leaf nodes of the tree. Note that at each such node, the definition of E implicitly
assumes that the meanings of its children are correct. With fixed meaning vectors
for the leaves of the tree, gradient methods can be used to learn W , b, U , and c,
with no training labels provided from the outside.

To work in practice, the autoencoder approach needs two refinements. The
purpose of the first refinement is to avoid ending up with all meanings equal to
zero. That would give zero error at all nodes whose children are not leaf nodes,
but not be useful. A simple way to achieve this is to enforce that all meaning
vectors have unit length. This is done by defining

xk =
h(W [xi;xj] + b)

||h(W [xi;xj] + b)||
.

This definition does make derivatives more complicated. It may be not needed
when the tree structure is determined endogenously, as in the next section.

The second refinement is based on the insight that it is more important, or more
difficult, to reconstruct accurately the meanings of longer phrases. Therefore, the
definition of loss for node k is changed to be weighted:

E1(k) =
ni

ni + nj

||xi − zi||2 +
nj

ni + nj

||xj − zj||2 (1)

where zi and zj are the reconstructions defined above, and ni and nj are how many
words are covered by nodes i and j.

3

3 Selecting a tree structure
The previous section eliminated the need for target values for the meanings of sen-
tences. This section eliminates the need to know the tree structure of a sentence.

Equation 1 defines the reconstruction error of a single non-leaf node. For a
given sentence, let T be the set of non-leaf nodes of its binary tree. The error of
the whole tree is ∑

k∈T

E1(k).

For a sentence of length n, there is an exponential number of possible trees.2

Define the optimal tree to be the one that minimizes this total error. Although
one could find the optimal tree by exhaustive enumeration, we will use a greedy
algorithm to find a tree that is good but not necessarily optimal.

The greedy algorithm is simple. First, consider all n − 1 pairs of consecutive
words. Evaluate the reconstruction error for each pair. Select the pair with small-
est error. Now, either one or two of the original pairs can no longer be combined.
Consider the remaining feasible pairs, plus the one or two new possible pairs on
top of the first selected pair. Select the pair with smallest error among these n− 2
possible pairs. Continue until there is only one possible choice to create the root
node.

The parameters of the recursive autoencoder model are W , b, U , and c. For
a given sentence and current values for these parameters, consider the tree found
by the greedy algorithm using these parameter values. A small change in the
parameter values either causes no change in this tree, or a jump to a different tree.
In principle, gradient descent could cause cycling between two or more different
trees, without convergence. However, LBFGS using a large training set converges
smoothly in practice. At first, because the parameters are initialized randomly, the
tree constructed for each sentence is arbitrary. However, as training progresses,
the tree becomes more sensible.

2The precise number is Cn−1, where Cn is the nth Catalan number,

Cn =

(
2n

n

)
−
(

2n

n+ 1

)
.

For details, see Wikipedia.

4

4 Using meanings to predict labels
Suppose that there is a target value (not a target meaning) to be predicted for each
sentence. For example, the target value might be a measure of the positivity or
negativity of the sentence. The target value for “Selena Gomez is the raddest”
might be +1, while the target value for “She makes Britney Spears sound good”
might be −1.

Each node k of a tree has a certain meaning vector xk. We can add a linear
model on top of these vectors to predict the target values. If the values are binary,
then the linear model is a standard logistic regression classifier. If there are three
or more discrete values, the model is called multinomial or multiclass logistic re-
gression, which is a special case of log-linear modeling as described in a previous
chapter.

Let xk be the meaning of node k, and suppose that there are r alternative
discrete labels. Using multiclass logistic regression, the vector of predicted prob-
abilities of the label values can be written as

p̄ = softmax(V xk)

where the parameter matrix V is in Rr×d. Note that p̄ is the value of an additional
node in the neural network. Let t̄ be the binary vector of length r indicating the
true label value of node k. The squared error of the predictions can be written
||t̄− p̄||2. Or, the log loss of the predictions can be written

E2(k) = −
r∑

i=1

ti log pi.

Suppose that a target value is known for a whole sentence. We could predict
this value just as a function of the meaning xr of the root node of the sentence. Or,
we could predict it as a function of any subset of the nodes of the sentence. We
choose to predict it for all the internal nodes, but not for the leaf nodes. Intuitively,
we assume that the label for the sentence applies to all the phrases of the sentence,
but not necessarily to each word of the sentence.

Specifically, the objective function to be minimized during learning, given a
collection S of m labeled training sentences, is

J =
1

m

∑
〈s,t〉∈S

E(s, t, θ) +
λ

2
||θ||2

5

where θ = 〈W, b, U, c, V 〉 is all the parameters of the model, λ is the strength of
L2 regularization, and E(s, t, θ) is the total error for one sentence s with label t.
This total error is

E(s, t, θ) =
∑

k∈T (s)

αE1(k) + (1− α)E2(k)

where T (s) is the set of non-leaf nodes of the tree that is constructed greedily
for s. Remember that this tree depends on θ. The hyperparameter α defines the
relative importance of the reconstruction and label errors. Both E1 and E2 are
per-node losses, while E is the per-sentence loss.

Until now, we have assumed that the meanings of individual words, that is
the vectors assigned to leaf nodes, are fixed. In fact, these can be adjusted. Let
xn be the meaning of a word. We can compute the derivative of the loss with
respect to xn and use it to change xn. In practice, the gradient of label errors E2

is used to modify word meanings, but not the gradient of reconstruction errors
E1. This makes changes in the meanings of words more focused on the ultimate
task, which is to predict labels. Because the meaning of each word is the same
across all sentences, the loss that drives changes in meanings must be a sum over
all training sentences. Specifically, the derivative used is

∂

∂xn

∑
〈s,t〉∈S

∑
k∈T (s)

E2(k).

Note that the lossE2 is defined at non-leaf nodes, but the derivative is with respect
to leaf node values. For each word, the derivative is a sum over all leaf nodes that
involve that word, in all sentences.

5 Backpropagation
The critical question not answered above is how to evaluate all the derivatives that
are needed for training. Backpropagation (backprop for short) is the name of a
method to compute these derivatives efficiently.

This section uses notation that is slightly different from above. Here, each
node is designated by an index such as j, and has a single real value. This value is
the scalar computed at the node, which is designated zj . Each node above corre-
sponds to d nodes in this section. The explanations here apply to any feedforward
network; recursive autoencoders are just a special case.

6

Let j be any non-leaf node, and let i be the nodes that feed into it. There is
a directed edge i → j from each i to j, and each i is a parent of j. The value
computed at node j is

zj = h(
∑
i

wijzi) = h(aj)

where h is a scalar function R → R and aj is called the total activation coming
into node j. Note that wij is the weight from node i to node j. Let J be the loss
for one training example. We want to know the partial derivative of J with respect
to wij . This can be written as

∂J

∂wij

=
∂J

∂aj

∂aj
∂wij

using the chain rule for derivatives.3 This rewriting is useful because the second
factor is easy to evaluate:

∂aj
∂wij

= zi.

Now, make the definition
∂J

∂aj
= δj.

For every node j, δj is the derivative of the overall loss with respect to the total
activation aj coming into j. This derivative must take into account any nonlinear-
ity that is part of the operation performed inside node j. The delta notation δj is
traditional in explanations of backpropagation.

An output node is one that does not feed into any other node, on which part
of the total loss is defined directly. From a graph perspective, an output node is a
sink, while a leaf node is a source. For each output node k, a target value tk, i.e. a
training label, is known. The total loss J is the sum over all output nodes of the
loss Jk at each one; different output nodes may have different loss functions. For
example, some output nodes may use log loss while others use square loss.

3The chain rule is not as straightforward as it may appear. The rule looks quite different in
different notations. Using the notation of function composition, it is (f ◦ g)′ = (f ′ ◦ g)g′, which
means [f(g(x))]′ = f ′(g(x)) · g′(x). Using the notation of Leibniz and writing y = f(g(x)), the
chain rule is

dy

dx
=

dy

dg

dg

dx
.

The two forms of the rule are equivalent, of course. The second form seems more intuitive, because
it looks like the dg expressions cancel each other, but the first form shows more explicitly what is
really meant.

7

For an output node k with local loss function Jk = L(zk, tk),

δk =
∂J

∂ak
=
∂Jk
∂ak

=
∂L(zk, tk)

∂zk

∂zk
∂ak

=
∂L(zk, tk)

∂zk
h′(ak).

If the node k is linear, then h′(ak) = 1. If the nonlinear function is h(a) =
tanh(a) = (ea− e−a)/(ea + e−a), then the derivative h′(a) = dh/da = 1−h(a)2.

As a special case, suppose that the output node is linear and has square loss
Jk = 1

2
(zk − tk)2. Then zk = ak and δk = zk − tk. As a different special

case, suppose the output node is linear and has log loss Jk = −tk log zk − (1 −
tk) log(1− zk). Then δk = −tk/zk + (1− tk)/(1− zk).

In many applications, it is beneficial for output nodes to be linear, for the
following reason. Consider the equation δk = (∂L/dzk)h′(ak) and suppose that
the output value zk = h(ak) is large when the target value is small, or vice versa.
In this case we want δk to be large, in order to cause major changes in wjk for
nodes j feeding into k. However, when ak is large positive or large negative, then
h′(ak) is near zero, for any sigmoid-shaped function h. So if an output node uses
a sigmoid, then its delta value may be small even though its value is very wrong.
Hence it is preferable to have linear output nodes.

Now consider a node j that is not an output node, that feeds into nodes indexed
by k. The node j influences the overall loss through all of these, so

δj =
∂J

∂aj
=
∑
k

∂J

∂ak

∂ak
∂aj

=
∑
k

δk
∂ak
∂aj

.

Each node k can have many input nodes in addition to j. Let i index these nodes,
including j, so the incoming activation of node k is

ak =
∑
i

wikzi =
∑
i

wikh(ai).

The needed partial derivative is

∂ak
∂aj

= wjkh
′(aj)

and the delta value of node j is

δj = h′(aj)
∑
k

δkwjk. (2)

8

Usually, a leaf node j is considered to be an input value xj that is fixed. How-
ever, it is possible to compute derivatives with respect to input values. Suppose
that the input node j feeds into nodes k. Then

∂J

∂xj
=
∑
k

∂J

∂ak

∂ak
∂xj

=
∑
k

δkwjk.

This derivative can be interpreted as the importance of the jth input for the overall
loss J . If inputs are adjustable, as at the end of the previous section, this derivative
can be used for that purpose.

There is another way to work out the derivative with respect to xj . Imagine
that the node j has no nonlinearity and a single incoming node i with fixed value
zi = 1. Let wij = xj be the weight on the edge i→ j. Then

∂J

∂xj
=

∂J

∂wij

= δjzi = δj = h′(aj)
∑
k

δkwjk =
∑
k

δkwjk

using Equation 2.
Concretely, the backpropagation algorithm is as follows:

• Step 1: Compute δk for all output nodes k.

• Step 2: Working backwards, for other nodes j compute δj using Equation 2.

• Step 3: In any order, for each weight compute ∂J/∂wij = δjzi.

Remember that wij is the weight of the edge i → j. The partial derivative with
respect to this weight is the feedforward value of node i times the delta value of
node j.

If the same weight is shared by more than one edge i→ j, then the derivatives
computed in Step 3 are added, because any change in the weight influences the
total loss J along each of the edges.

The backpropagation algorithm as just stated is valid for any configuration of
nodes that is a directed acyclic graph (DAG). There can be any number of output
nodes (sinks), any number of internal nodes in any arrangement as long as cycles
are never directed, and any number of input nodes (sources).

In the previous sections, the neural network structure for each sentence is
found by a greedy algorithm. The same weights are used for many edges, so
derivatives are summed over these edges. Another unusual aspect of the networks
above is that they have numerous output nodes. Backpropagation as described
here is still valid. Equation 2 essentially says that the deltas from output nodes k
are simply added as necessary.

9

6 Numerical differentiation
One way to verify that derivatives calculated by backpropagation are correct is to
compare them to those computed by finite differencing. In general,

∂J

∂wij

=
J(wij + ε)− J(wij)

ε
+O(ε)

if ε is small. Interestingly, numerical derivatives are more accurate if central dif-
ferences are used:

∂J

∂wij

=
J(wij + ε)− J(wij − ε)

2ε
+O(ε2).

Suppose that the network contains m weights in total. Then the feedforward eval-
uation of J for a single training example (a single set of input values at the leaf
nodes) requires O(m) time. Hence, computing the derivative for every weight
numerically requires O(m2) time. In contrast, computing every derivative using
backpropagation needs only O(m) time.

7 Backpropagation for vector-valued nodes
Suppose that each node consists of d scalar subnodes, so the feedforward value
of every node is a column vector in Rd. Let r be the value of a node, and let q1

to qm be the values of the nodes feeding into r. This situation is equivalent to
md scalar nodes feeding into d scalar nodes. For the recursive autoencoders in
previous sections, the number m of incoming nodes is at most two.4

Let the feedforward column vector value r of a node be given by the equation

r = h(a) = h(W [q1; . . . ; qm] + b)

where W ∈ Rd×md and b ∈ Rd is a bias vector. One element Wij of the matrix
W is the weight from one subnode of one incoming node to subnode i of the out-
going node. Hence, the meaning of the subscripts ij is the reverse of the meaning
of the subscripts of a scalar weight wij in Section 5. The bias vector b can be

4This section mostly does not use names such as i for nodes, in order to make notation as
lightweight as possible, so the value of a node is written just as r, not ri. In the notation qk, the
superscript is an index that ranges from k = 1 to k = m.

10

incorporated by writing r = h([W, b][q1; . . . ; qm; 1]) where [W, b] is an extended
weight matrix.

Let J be the total loss for one training example. We need to compute the partial
derivative ∂J/∂Wij for every element Wij of every extended weight matrix used
in the network. Note that these partial derivatives together form a matrix ∂J/∂W
that has the same shape as W .

Consider any node whose value is h(a) = h(W [q1; . . . ; qm; 1]) where W is an
extended weight matrix. The scalar Wij influences J only through the ith element
ai of a. Hence

∂J

∂Wij

=
∂J

∂ai

∂ai
∂Wij

= δi
∂ai
∂Wij

. (3)

The scalar δi is the derivative of the overall loss with respect to the total activa-
tion ai coming into the ith subnode. This derivative must take into account the
nonlinearity in h. For the whole node, δ is a column vector with dimension d.

For each j, the factor on the far right of Equation 3 is one of the elements of
one of the incoming vector values. Specifically, if j ≤ d then ∂ai/∂Wij = q1j and
if d < j ≤ 2d then ∂ai/∂Wij = q2j−d and so on. In vector notation,

∂ai
∂Wi:

= [q1; . . . ; qm; 1]T .

As a special case, ∂ai/∂bi = 1. Remember that ∂ai/∂bj = 0 when i 6= j.
For each output node with vector value r, assume that the contribution to J

from this node is a sum over the elements of r, where the contribution from ri is
Li for i = 1 to i = d. Then

δi =
∂J

∂ai
=
∂Li

∂ai
=
∂Li

∂ri

∂ri
∂ai

=
∂Li

∂ri
h′(ai).

As a special case, consider a linear output node with target vector value t. If the
node uses log loss −

∑d
i=1 ti log ri, then δi = −ti/ri, while if it uses square loss,

then δi = ri − ti.
Now consider a non-output node with current vector value h(a) that feeds into

one or more nodes indexed by k. This node influences the overall loss through all
subnodes p of all of those, so for it

δi =
∂J

∂ai
=
∑
k

d∑
p=1

∂J

∂akp

∂akp
∂ai

=
∑
k

d∑
p=1

δkp
∂akp
∂ai

11

where δk is the delta vector for node k. Each node k can have other input nodes
also, so the incoming activation of node k is the vector

ak = W [. . . ;h(a); . . . ; 1].

Let V k be the portion of the weight matrix W that multiplies h(a) in the equation
above, so akp = V k

p:h(a) + c where c depends on the other incoming nodes of node
k, but is constant with respect to a. Note that V k is a square matrix that in general
is different for different k, even ifW is shared, because for different k the position
of z in the list of incoming nodes of k varies. The needed partial derivative is

∂akp
∂ai

= h′(ai)V
k
pi.

Therefore

δi = h′(ai)
∑
k

d∑
p=1

δkpV
k
pi = h′(ai)

∑
k

δk · V k
:i = h′(ai)

∑
k

(δk)TV k
:i

where · signifies dot product and V k
:i means the ith column of V k. In matrix

notation, the whole delta vector is

δ = h′(a) ◦ [
∑
k

(δk)TV k]T (4)

where ◦ signifies pointwise multiplication, which is also called Hadamard multi-
plication.

When nodes are vector-valued, the backpropagation algorithm is as follows:

• Step 1: Compute the delta vector for each output node.

• Step 2: Working backwards, compute the delta vector of each non-output
node using Equation 4.

• Step 3: For every node, let δ be its delta vector and let q1 to qm be the values
of the nodes feeding into it, using the weight matrix W . If m = 0 then the
node is a leaf. Otherwise, the matrix of derivatives with respect to W is the
outer product

∂J

∂W
= δ[q1; . . . ; qm]T .

Whether m = 0 or not, ∂J/∂b = δ.

12

A leaf node, which is also called an input or source node, has no incoming nodes.
Instead, it has an input value x ∈ Rd. Usually, x is fixed, i.e. not adjustable. If x
is adjustable, it is equivalent to a bias vector b for the case m = 0. Precisely, the
input vector x = h(b).

As mentioned before, weights may be shared, meaning that the same weights
are used by more than one node. Like other weights, a bias vector may be shared.
In particular, the meaning of a word that appears more than once, in one or more
sentences, is one input vector that is tied to have the same value across all its
appearances.

Whenever a weight is shared, its derivative is a sum over all nodes that share
the weight. The bias vector b that is the meaning of a word may be adjusted using
the derivative

∂J

∂b
=
∑
k

δk

where k ranges over all input nodes that use this same word.
Additional explanations needed above: Using the total derivative to justify

adding derivatives from different nodes. The full Jacobian for tanh(a)/|| tanh(a).
Separate output nodes for reconstruction error. Extra derivative terms for leaf
nodes because they contribute to reconstruction error.

13

