
Log-linear models
and conditional random fields

Charles Elkan
elkan@cs.ucsd.edu

February 6, 2014

The general log-linear model is a far-reaching extension of logistic regression.
Conditional random fields (CRFs) are a special case of log-linear models. Sec-
tion 1 below explains what a log-linear model is, and then Section 2 gives more
explanation of a crucial representational idea, the generalization from features to
feature functions.

1 The general log-linear model
Let x be an example, and let y be a possible label for it. The examples can be
drawn from any set X and the labels can be drawn from any finite set Y . In
general an example x is not a real-valued vector, unlike before. The set Y can
have very large cardinality, but it must be finite, so that sums, maximizations, and
other aggregate operations over it are well-defined. A log-linear model posits that
the probability of any particular label y, given the example x, is

p(y|x;w) =
exp

∑J
j=1wjFj(x, y)

Z(x,w)
. (1)

Each expression Fj(x, y) is called a feature function. Intuitively, Fj(x, y) is a
specific measure of the compatibility of the example x and the label y. Intuitively,
each of the J feature functions measures a different type of compatibility. The
corresponding parameter wj , also called a weight, describes the influence of this
feature function. If wj > 0 then a positive value for the feature function makes
y more likely as the true label of x, holding everything else fixed. Conversely, if

1

wj < 0 then Fj(x, y) > 0 makes y less likely as the true label of x. If wj = 0 then
Fj is irrelevant as a predictor of y. Feature functions are defined in advance by a
human, while weights are learned by a training algorithm. Feature functions are
real-valued in general, but an important special case is when Fj(x, y) ∈ {0, 1} for
all x and y.

The denominator in Equation 1 is a normalizing factor that is often called a
partition function; it is constant given x and w. Concretely,

Z(x,w) =
∑
y′∈Y

exp
J∑

j=1

wjFj(x, y
′).

Here, we wrote y′ to emphasize that it is not the same as y above. In the terminol-
ogy of mathematical logic or of programming languages, y′ is a local variable, so
its name could be changed to any other name. The outer sum is over all members
of the set Y . For the purpose of predicting the most likely label ŷ of a test example
x, the partition function and the exponential operator can be ignored. Therefore,
given a test example x, the label predicted by the model is

ŷ = argmaxy p(y|x;w) = argmaxy

J∑
j=1

wjFj(x, y).

Note that if all weights are multiplied by the same nonzero constant, then the
highest-probability label ŷ is unchanged. However, the actual probabilities of
different labels do depend on the absolute magnitudes of the weights, not just on
their relative magnitudes.

Mathematically, log-linear models are simple: there is one real-valued weight
for each feature function, no more and no fewer. The justification for the form of
the righthand side of Equation 1 is similar to the justification for logistic regres-
sion. A linear combination

∑J
j=1 wjFj(x, y) can take any positive or negative real

value; the exponential makes it positive, like a valid probability, and the division
makes the results between 0 and 1, i.e. makes them be valid probabilities. Note
that the ranking of the probabilities is the same as the ranking of the linear values.

In general, a function of the form

b(y) =
exp a(y)∑
y′ exp a(y′)

is called a softmax function because it is a differentiable analog of the maximum
function, which is not smooth. In a softmax function, the exponentials enlarge

2

the bigger a(y) values compared to the smaller a(y) values. Other functions also
have the property of being similar to the maximum function, but differentiable.
Softmax is widely used now, perhaps because its derivative is especially simple;
see Section 5 below.

2 Feature functions
As mentioned, in general a feature function can be any real-valued function of the
data space X to which examples x belong and of the label space Y . Formally, a
feature function is any mapping Fj : X × Y → R. As a special case, a feature
function can be Boolean, that is a mapping Fj : X × Y → {0, 1}.

Usually we do not define feature functions one at a time. Instead, we define
classes of feature functions using templates of some sort. The integer j is then
defined to range over all members of the classes. For example, suppose that x ∈
Rd = X and y ∈ {1, 2, . . . , C} = Y . Then we can define a class of cardinality
J = dC of feature functions indexed from j = 1 to j = J via the template

Fj(x, y) = xi · I(y = c).

Here xi is the ith component of the vector x and j = i + (c − 1)d, for i = 1 to
i = d and c = 1 to c = C. Each of these feature functions is zero except for one
candidate value c of the label y. For that value, the feature function equals xi. The
corresponding weight wj captures the degree to which xi is predictive of the label
being c. Notice that the mapping j = i+ (c− 1)d is arbitrary; we just need some
fixed concrete way of assigning a unique index j to each member of each class of
feature functions.

The previous paragraph is just one example of how feature functions can be
constructed. It corresponds to the multiclass version of logistic regression, which
is often called multinomial logistic regression. The example has an important
sparsity property that other sets of feature functions often have also: for any par-
ticular x and y the value of the great majority of feature functions is zero.

Often, a class of feature functions is defined as

Fj(x, y) = Aa(x)Bb(y) (2)

where the subscript a indexes a set of functions of x, and the subscript b indexes
a set of functions of y. The example above is a special case of this situation,
with d different Aa functions and C different Bb functions. Often, the functions

3

Aa and Bb are binary presence/absence indicators. In this situation, the product
Aa(x)Bb(y) is a logical conjunction.

With log-linear models, anything and the kitchen sink can be used to define
a feature function. A single feature function can involve many candidate label
values y, and many attributes or components of x. Also, we can define feature
functions that pay attention to different attributes of examples for different candi-
date label values. Feature functions can overlap in arbitrary ways. For example,
if x is a word then different feature functions can use properties of x such as

A1(x) = I(x starts with a capital letter)
A2(x) = I(x starts with the letter G)

A3(x) = I(x is the exact string “Graham”)

A4(x) = I(x is six letters long)

and so on. Generally we can encode suffixes, prefixes, facts from a lexicon, pre-
ceding/following punctuation, and more, in feature functions.

3 Conditional random fields
Now that we understand log-linear models, we can look at conditional random
fields (CRFs), specifically so-called linear-chain CRFs. First, we present linear-
chain CRFs through an example application. Next, Section 4 explains the special
algorithm that makes inference tractable for linear-chain CRFs. Section 5 gives a
general derivation of the gradient of a log-linear model; this is the foundation of
all log-linear training algorithms.

To begin, consider an example of a learning task for which a CRF is useful.
Given a sentence, the task is to tag each word as noun, verb, adjective, preposition,
etc. There is a fixed known set of these part-of-speech (POS) tags. Each sentence
is a separate training or test example. The label of a sentence is a sequence of
tags. We represent a sentence by feature functions based on its words. Feature
functions can be quite varied:

• Some feature functions can be position-specific, e.g. to the beginning or
to the end of a sentence, while others can be sums over all positions in a
sentence.

• Some feature functions can look just at one word, e.g. at its prefixes or
suffixes.

4

• Some feature functions can also use the words one to the left, one to the
right, two to the left etc., up to the whole sentence.

The POS taggers with highest accuracy currently use over 100,000 feature func-
tions. Of course, these feature functions are defined via templates, not one at a
time. An important restriction (that will be explained and justified below) is that
a feature function cannot depend on the entire label. Instead, it can depend on at
most two tags, which must be neighboring.

POS tagging is an example of what is called a structured prediction task. The
goal is to predict a complex label (a sequence of POS tags) for a complex input
(an entire sentence). The word “structured” refers to the fact that labels have
internal structure, in this case being sequences. POS tagging is a difficult task that
is significantly different from a standard classifier learning task. There are at least
three important sources of difficulty. First, too much information would be lost by
learning just a per-word classifier. Influences between neighboring tags must be
taken into account. Second, different sentences have different lengths, so it is not
obvious how to represent all sentences by vectors of the same fixed length. Third,
the set of all possible sequences of tags constitutes an exponentially large set of
labels.

A linear conditional random field is a way to apply a log-linear model to this
type of task. Use the bar notation for sequences, so x̄means a sequence of variable
length. Specifically, let x̄ be a sequence of words and let ȳ be a corresponding
sequence of tags. It is vital to understand the terminology we are using: x̄ is an
example, ȳ is a label, and a component yi of ȳ is a tag. Tags and labels should
never be confused.

The standard log-linear model is

p(y|x;w) =
1

Z(x,w)
exp

J∑
j=1

wjFj(x, y).

In order to specialize this model for the task of predicting the label ȳ of an input
sentence x̄, assume that each feature function Fj is actually a sum along the output
label ȳ, whose length is n:

Fj(x̄, ȳ) =
n+1∑
i=1

fj(yi−1, yi, x̄, i).

Summing each fj over all positions i means that we can have a fixed set of feature
functions Fj , even though the training examples are not of fixed length. The

5

notation above indicates that each low-level feature function fj can depend on
the whole sentence x̄, on the current tag yi and the previous tag yi−1, and on the
current position i within the sentence.1

A low-level feature function fj may depend on only a subset of its four allowed
arguments. Examples of legal low-level feature functions are “the current tag is
NOUN and the current input word is capitalized,” “the first input word is Mr. and
the second tag is PROPER NOUN,” and “the previous tag is SALUTATION and the
current tag is PROPER NOUN.”

Training a CRF means finding the parameter vector w that gives the best pos-
sible prediction

ŷ = argmaxȳ p(ȳ|x̄;w) (3)

for each training example x̄. However, before we can talk about training there is
a major inference problem to solve. How can we do the argmax computation in
Equation 3 efficiently, for any x̄ and any parameter vector w? This computation
is difficult since the number of alternative tag sequences ȳ is exponential. We
need a trick in order to consider all possible ȳ efficiently, without enumerating all
possible ȳ. The fact that feature functions can depend on at most two tags, which
must be adjacent, makes this trick exist. The next section explains how to solve
the inference problem just described, and then the following section explains to
do training via gradient following.

An issue that is the topic of considerable research is the question of which
objective function to maximize during training. Often, the objective function used
for training is not exactly the function that we really want to maximize on test data.
Traditionally we maximize log conditional likelihood (LCL), with regularization,
on the training data. However, instead of maximizing LCL we could maximize
yes/no accuracy of the entire predicted ŷ, or we could minimize mean-squared
error if tags are numerical, or we could optimize some other measure of distance
between true and predicted tags.

A fundamental question is whether we want to maximize an objective that
depends only on a single predicted ŷ. Instead, we might want to maximize an
objective that depends on multiple predictions. For a long sequence, we may have
a vanishing chance of predicting the entire tag sequence correctly. The single

1Notice that when i = 1 a low-level feature function can refer to the tag y0. We assume that
y0 = START where START is a special fixed tag value. Similarly, we assume that yn+1 = STOP.
Each low-level feature function must be well-defined and finite for all tag values, including START
and STOP, in all positions 0 to n + 1. The sum in the definition of Fj is from i = 1 to i = n + 1
in order to include all positions.

6

sequence with highest probability may be very different from the most probable
tag at each position.

4 Inference algorithms for linear-chain CRFs
Let us solve the argmax problem efficiently. First remember that we can ignore the
denominator, and also the exponential inside the numerator. We want to compute

ŷ = argmaxȳ p(ȳ|x̄;w) = argmaxȳ

J∑
j=1

wjFj(x̄, ȳ).

Use the definition of Fj as a sum over the sequence to get

ŷ = argmaxȳ

J∑
j=1

wj

n+1∑
i=1

fj(yi−1, yi, x̄, i)

= argmaxȳ

n+1∑
i=1

gi(yi−1, yi) (4)

where we define

gi(yi−1, yi) =
J∑

j=1

wjfj(yi−1, yi, x̄, i)

for i = 1 to i = n + 1. Note that the x̄ argument of fj has been dropped in the
definition of gi, since we are considering only a single fixed input x̄. The argument
i of fj is written as a subscript on g. For each i, gi is a different function. The
arguments of each gi are just two tag values, because everything else is fixed.

Given x̄, w, and i the function gi can be represented as an m by m matrix
where m is the cardinality of the set of tags. Computing this matrix requires
O(m2J) time, assuming that each low-level feature function can be evaluated in
constant time.

Let v range over the set of tags. Define U(k, v) to be the score of the best
sequence of tags from position 1 to position k, where tag number k is required to
equal v. Here, score means the sum in Equation 4 taken from i = 1 to i = k. This
is a maximization over k − 1 tags because tag number k is fixed to have value v.
Formally,

U(k, v) = max
y1,...,yk−1

k−1∑
i=1

gi(yi−1, yi) + gk(yk−1, v).

7

Expanding the equation above gives

U(k, v) = max
yk−1

max
y1,...,yk−2

k−2∑
i=1

gi(yi−1, yi) + gk−1(yk−2, yk−1) + gk(yk−1, v).

Writing u instead of yk−1 gives a recursive relationship that lets us compute
U(k, v) efficiently:

U(k, v) = max
u

[U(k − 1, u) + gk(u, v)].

With this recurrence we can compute U(k, v) for a single v in O(m) time, given
knowledge of the matrix gk and of U(k−1, u) for every u, where m is the number
of possible tags. Therefore, we can compute U(k, v) for every v in O(m2) time.

After the U matrix has been filled in for all k and v, the final entry in the
optimal output sequence ŷ can be computed as ŷn = argmaxv U(n, v). Each
previous entry can then be computed as

ŷk−1 = argmaxu [U(k − 1, u) + gk(u, ŷk)].

Note that ŷ must be computed from right to left, and this can be done only after
the whole U matrix has been filled in from left to right.

The algorithm just explained is a variation of the Viterbi algorithm for com-
puting the highest-probability path through a hidden Markov model. The base
case of the recurrence is an exercise for the reader. In total, we can compute the
optimal ŷ for any x̄ in O(m2nJ +m2n) time, where n is the length of ȳ. Because
most feature functions are usually zero, in practice the factor J can be made much
smaller.

Notice that it is the length of ȳ, not the length of x̄, that is important. The
input x̄ in fact does not even need to be a sequence, because it is treated as a
unit. It could be two-dimensional, like an image for example. It could also be
an unordered collection of items. In general, what is fundamental for making a
log-linear model tractable is that the set of possible labels {ȳ} should either be
small, or have some structure. In order to have structure, each ȳ should be made
up of parts (e.g. tags) such that only small subsets of parts interact directly with
each other. Here, every interacting subset of tags is a pair. Often, the real-world
reason interacting subsets are small is that parts of a label only interact if they are
close together according to some real-world notion of distance.

8

5 Gradients for log-linear models
The learning task for a log-linear model is to choose values for the weights (also
called parameters). Given a set of training examples, we assume now that the
goal is to choose parameter values wj that maximize the conditional probability
of the training examples. In other words, the objective function for training is
the logarithm of the conditional likelihood (LCL) of the set of training examples.
Since we want to maximize LCL, we do gradient ascent as opposed to descent.

For stochastic gradient ascent (also called online gradient ascent) we update
parameters based on single training examples. Therefore, we evaluate the partial
derivative of the LCL for a single training example, with respect to each wj . The
partial derivative of the LCL is

∂

∂wj

log p(y|x;w) = Fj(x, y)− ∂

∂wj

logZ(x,w)

= Fj(x, y)− 1

Z(x,w)

∂

∂wj

Z(x,w).

Above, y is the known true label of the training example x, and j is the index of
the parameter for which the partial derivative is being computed. The bar notation
for x and y is not used, because the derivations in this section are valid for all log-
linear models, not just for conditional random fields. Also note that the derivations
allow feature functions to be real-valued; they are not restricted to being binary.

Expanding the partition function Z(x,w) gives

∂

∂wj

Z(x,w) =
∂

∂wj

∑
y′

[exp
∑
j′

wj′Fj′(x, y
′)]

where the sum over y′ is a sum over all candidate labels, inside which there is a
sum over all feature functions Fj′ . Simplifying yields

∂

∂wj

Z(x,w) =
∑
y′

∂

∂wj

[exp
∑
j′

wj′Fj′(x, y
′)]

=
∑
y′

[exp
∑
j′

wj′Fj′(x, y
′)]

∂

∂wj

[
∑
j′

wj′Fj′(x, y
′)]

=
∑
y′

[exp
∑
j′

wj′Fj′(x, y
′)]Fj(x, y

′).

9

So, the partial derivative of the LCL is

∂

∂wj

log p(y|x;w) = Fj(x, y)− 1

Z(x,w)

∑
y′

Fj(x, y
′)[exp

∑
j′

wj′Fj′(x, y
′)]

= Fj(x, y)−
∑
y′

Fj(x, y
′)[

exp
∑

j′ wj′Fj′(x, y
′)

Z(x,w)
].

Now, note that
exp

∑
j′ wj′Fj′(x, y

′)

Z(x,w)
= p(y′|x;w)

so

∂

∂wj

log p(y|x;w) = Fj(x, y)−
∑
y′

Fj(x, y
′)p(y′|x;w)

= Fj(x, y)− Ey′∼p(y′|x;w)[Fj(x, y
′)]. (5)

In words, the partial derivative with respect to parameter number j for training
example 〈x, y〉 is the value of feature function j for x and y, minus the weighted
average value of the feature function for x and all possible labels y′, where the
weight inside the average of y′ is its conditional probability given x.

The gradient of the LCL given the entire training set T is the sum of the gra-
dients for each training example. At the global maximum this entire gradient is
zero, so we have ∑

〈x,y〉∈T

Fj(x, y) =
∑
〈x,·〉∈T

Ey∼p(y|x;w)[Fj(x, y)]. (6)

where T is the training set and the notation 〈x, ·〉 means that the true training
labels are not relevant on the righthand side of the equation. This equality is true
only for the whole training set, not for training examples individually.

The lefthand side of Equation 6 is the total value (mass) of feature function j
on the whole training set. The righthand side is the total value of feature function
j predicted by the model. For each feature function, the trained model will spread
out over all labels of all examples as much mass as the training data has for this
feature function.

For any particular application of log-linear modeling, we have to write code
to evaluate numerically the derivatives that are given symbolically by Equation 5.
Obviously the difficult aspect is to evaluate the expectations. Then we can invoke

10

an optimization routine to find the optimal parameter values. There are two ways
that we can verify correctness. First, before running the optimization algorithm,
check that each partial derivative is correct by comparing it numerically to the
value obtained by finite differencing of the LCL objective function. Second, af-
ter doing the optimization, check for each feature function Fj that both sides of
Equation 6 are numerically equal.

6 Forward and backward vectors and their uses
This section explains how to evaluate partial derivatives efficiently for linear-chain
CRFs. Consider the set containing all possible unfinished sequences of tags that
end at position k with tag v. The unnormalized probability of this set is called its
score α(k, v). For each k, α(k, v) is a vector of length m with a component for
each tag value v. This vector is called a forward vector.

The unnormalized probability of all complete sequences ȳ = 〈y0, y1, . . . , yn, yn+1〉
is the partition function

Z(x̄, w) =
∑
ȳ

exp
J∑

j=1

wjFj(x̄, ȳ) =
∑
ȳ

exp
J∑

j=1

wj

n+1∑
i=1

fj(yi−1, yi, x̄, i).

Remember the definition

gi(u, v) =
J∑

j=1

wjfj(u, v, x̄, i).

It follows that

Z(x̄, w) =
∑
ȳ

exp
n+1∑
i=1

gi(yi−1, yi).

Note that the right side does not contain an inner sum over yi−1 and yi. Instead,
these are components of the ȳ mentioned in the outer sum. Correspondingly,

α(k + 1, v) =
∑

y1,...,yk

exp[
k∑

i=1

gi(yi−1, yi) + gk+1(yk, v)].

Rewriting with u instead of yk yields

α(k + 1, v) =
∑
u

∑
y1,...,yk−1

exp[
k−1∑
i=1

gi(yi−1, yi)][exp gk(yk−1, u)][exp gk+1(u, v)].

11

For k = 1 to k = n, we have the recursive definition

α(k + 1, v) =
∑
u

α(k, u)[exp gk+1(u, v)].

The summation is over all possible tag values u in position k. In words, the
total (unnormalized) probability of all tag sequences ending with v is the sum
of the total probability of all shorter tag sequences ending with any u, times the
probability of v following u. The base case is

α(0, v) = I(v = START).

This means that the unnormalized probability of y0 = START is one, while the
unnormalized probability of y0 = v is zero for all other tag values v. The first use
of the forward vectors is to write

Z(x̄, w) = α(n+ 1, STOP)

which lets us evaluate the partition function in polynomial time.2

The backward vector for position k captures the unnormalized probabilities of
partial sequences starting at that position. For each tag value u and position k, the
backward vector is

β(u, k) =
∑
v

[exp gk+1(u, v)]β(v, k + 1)

with base case
β(u, n+ 1) = I(u = STOP).

2In any log-linear model, each feature function Fj(x, y) must be well-defined and finite for
every x and every candidate label y. Similarly, all weights wj must be finite. This implies that
every y has nonzero probability for every x, although of course some probabilities can be tiny.
For the special case of conditional random fields, each low-level feature function fj(yi−1, yi, x̄, i)
must be well-defined and finite for all values of its arguments.

Consider the definition gi(u, v) =
∑J

j=1 wjfj(u, v, x̄, i). Because the label ȳ is
〈y0, y1, . . . , yn, yn+1〉, gi is defined for i = 1 to i = n + 1. Any value gi(yi−1, yi) is the un-
normalized log probability of two specific tags. This value depends on the weights wj and on
low-level feature function values. It is is always finite. If a particular tag pair is never seen in the
training data, it does not follow that this pair is impossible. Training is expected to yield weights
that make the probability of this pair close to zero, but not zero exactly.

Since every label ȳ has nonzero probability for every input x̄, all sums involved in forward and
backward vectors that range over tags must include the tags START and STOP. Although these
tags never appear in positions 1 to n in training data, they are not impossible in these positions
according to the CRF model.

12

The difference in the order of arguments between α(k, v) and β(u, k) is a reminder
that in the former the partial sequence ends with v, while in the latter the partial
sequence starts with u. We can compute the partition function using the backward
vector also:

Z(x̄, w) = β(START, 0).

Verifying that Z(x̄, w) is numerically the same using the forward vectors and us-
ing the backward vectors is one way to check that they have been computed cor-
rectly.

The forward and backward vectors have many uses. For example, the proba-
bility of a particular tag u at position k, summing over all possibilities for all other
positions, is

p(Yk = u|x̄;w) =
α(k, u)β(u, k)

Z(x̄, w)
.

Note that for all positions k = 0 to k = n+ 1 it should be true that∑
u

α(k, u)β(u, k) = Z(x̄, w).

For the boundary cases k = 0 and k = n, this equation simplifies to the equations
given earlier for Z(x̄, w), using the base cases α(0, u) and β(u, n+ 1).

The probability of the specific tags u and v at positions k and k + 1 is

p(Yk = u, Yk+1 = v|x̄;w) =
α(k, u)[exp gk+1(u, v)]β(v, k + 1)

Z(x̄, w)
.

For training, we need to compute the expectation Eȳ[Fj(x̄, ȳ)] where ȳ ranges
over all labels, that is over all entire tag sequences. By definition, the expectation
is a weighted average where each ȳ has probability p(ȳ|x̄;w):

Eȳ[Fj(x̄, ȳ)] =
∑
ȳ

p(ȳ|x̄;w) · Fj(x̄, ȳ)].

Using the definition of Fj ,

Eȳ[Fj(x̄, ȳ)] = Eȳ[
n+1∑
i=1

fj(yi−1, yi, x̄, i)]

where on the right yi−1 and yi are tags within the label ȳ. Moving the sum outside
the expectation gives

Eȳ[Fj(x̄, ȳ)] =
n+1∑
i=1

Eȳ[fj(yi−1, yi, x̄, i)].

13

For each position i, we do not need to take the expectation over all ȳ. Instead, we
can compute the expectation just over all tags yi−1 and yi at positions i − 1 and i
within the label ȳ. That is,

Eȳ[Fj(x̄, ȳ)] =
n+1∑
i=1

Eyi−1,yi [fj(yi−1, yi, x̄, i)]

=
n+1∑
i=1

∑
yi−1

∑
yi

p(yi−1, yi|x̄;w)fj(yi−1, yi, x̄, i)

where the second equation arises from the definition of what an expectation is.
Using the forward and backward vectors yields

Eȳ[Fj(x̄, ȳ)] =
n+1∑
i=1

∑
yi−1

∑
yi

fj(yi−1, yi, x̄, i)
α(i− 1, yi−1)[exp gi(yi−1, yi)]β(yi, i)

Z(x̄, w)
.

This final equation gives an O(nm2) time method of computing the partial deriva-
tives needed for gradient following.

7 Stochastic gradient ascent
When maximizing the log conditional likelihood by online gradient ascent, the
update to weight wj is

wj := wj + λ(Fj(x, y)− Ey′∼p(y′|x;w)[Fj(x, y
′)]) (7)

where λ is a learning rate. If the log-linear model is a CRF, then the expectation in
Equation 7 is computed using forward and backward vectors as described in the
previous section.

Suppose that, as in Equation 2, every feature function Fj is the product of a
functionAa(x) of x only and a functionBb(y) of y only. Then ∂

∂wj
log p(y|x;w) =

0 if Aa(x) = 0, regardless of y. This implies that with stochastic gradient ascent,
for each example x parameters must be updated only for feature functions for
which Aa(x) 6= 0. Not updating other parameters can be a great saving of com-
putational effort.

A similar savings is possible when computing the gradient with respect to the
whole training set. Note that the gradient with respect to the whole training set is

14

a single vector that is the sum of one vector for each training example. Typically
these vectors being summed are sparse, but their sum is not.

It is instructive to work out the time complexity of stochastic gradient training.
In the update to each parameter, the expectation is computed using forward and
backward vectors. Computing the gi matrices for i = 1 to i = n for one training
example takes time O(Jm2n) time ignoring sparsity. Computing the forward and
backward vectors takes O(m2n) time. These and the gi matrices are the same for
all j, given x and the current parameter values. They do not depend on the training
label y. A different expectation must be computed for each j. Computing each
one of these requiresO(m2n) time. For each j, doing the actual update after com-
puting the expectation takes only constant time. Putting everything together, the
total time complexity of the updates for all j, for a single training x and its label y,
is O(Jm2n). Interestingly, this is the same as the order-of-magnitude complexity
of computing the highest-probability prediction ŷ. Therefore, stochastic gradient
training is not more expensive than the Collins perceptron described below.

8 Alternative log-linear training methods
The following sections explain three special training algorithms for log-linear
models. One is a variant of the perceptron method, the second uses Gibbs sam-
pling, and the third is a heuristic called contrastive divergence.

As explained above, the partial derivative for stochastic gradient training of a
log-linear model is

∂

∂wj

log p(y|x;w) = Fj(x, y)− Ey′∼p(y′|x;w)[Fj(x, y
′)].

The first term Fj(x, y) is fast to compute because x and its training label y are
fixed. However, if the set of alternative labels y′ is large, and no special trick is
available, then it is computationally expensive to evaluate the second term that is
the expectation E[Fj(x, y

′)|y′ ∼ p(y′|x;w)]. We can find approximations to this
expectation by finding approximations to the distribution p(y|x;w). Each section
below describes a method based on a different approximation.

15

9 The Collins perceptron
Suppose that we place all the probability mass on the most likely y value. This
means that we use the approximation

p̂(y|x;w) = I(y = ŷ) where ŷ = argmaxy p(y|x;w).

Then the stochastic gradient update rule (??) simplifies to the following rule:

wj := wj + λFj(x, y)− λFj(x, ŷ).

For a given training example 〈x, y〉, this rule is applied for every weight wj . Given
a training example x, the label ŷ can be thought of as an “impostor” compared to
the genuine label y.

The simplified update rule is called the Collins perceptron because it was first
investigated by Michael Collins, who pointed out that it is a version of the standard
perceptron method. The goal is to learn to classify vectors in RJ whose compo-
nents are feature function values 〈F1(x, y), . . . , FJ(x, y)〉. Vectors that correspond
to training examples 〈x, y〉 are positive examples for the perceptron. Vectors that
correspond to incorrect labels such as ŷ are negative examples. Hence, the two up-
dates above are perceptron updates: the first for a positive example and the second
for a negative example.

One update by the perceptron method causes a net increase in wj for features
Fj whose value is higher for y than for ŷ. It thus modifies the weights to directly
increase the probability of y compared to the probability of ŷ. In the special case
where ŷ is predicted correctly, that is ŷ = y, there is no change in the weight
vector.

As mentioned in Section 1, if all weights are multiplied by the same nonzero
constant, then which label ŷ has highest probability is unchanged. The Collins
perceptron method relies only on the identity of ŷ, and not on its probability, so
the method will give the same behavior regardless of the value of the learning rate
λ, assuming that it is constant. Therefore, we can fix λ = 1.

10 Gibbs sampling
Computing the most likely label ŷ does not require computing the partition func-
tion Z(x,w), or any derivatives. Nevertheless, sometimes identifying ŷ is still
too difficult. In this case one option for training is to estimate the expectations

16

Ey∼p(y|x;w)[Fj(x, y)] approximately by sampling y values from their distribution
p(y|x;w).

A method known as Gibbs sampling can be used to find the needed samples of
y. Gibbs sampling is the following algorithm. Suppose that the entire label y can
be written as a set of parts y = {y1, . . . , yn}. A linear-chain CRF is an obvious
special case of this situation. Suppose also that the conditional distribution

p(Yi = v|x, y1, yi−1, . . . , yi+1, yn;w)

can be evaluated numerically in an efficient way for every i. Then we can get a
stream of samples by the following process:

(1) Select an arbitrary initial guess {y1, . . . , yn}.

(2) Draw a new value for y1 according to p(Y1|x, y2, . . . , yn;w);

• draw a new value for y2 according to p(Y2|x, y1, y3, . . . , yn;w);

• draw a new value for y3 according to p(Y3|x, y1, y2, y4, . . . , yn;w);

• and so on until a new value for yn has been drawn.

(3) Repeat from (2).

It can be proved that if Step (2) is repeated an infinite number of times, then
the distribution of y = {y1, . . . , yn} converges to the true distribution p(y|x;w)
regardless of the arbitrary initial guess. In practice, we do Step (2) some number
of times (say 1000) to reduce dependence on the starting point, and then take
several samples y. Between each sample we repeat Step (2) a smaller number of
times (say 100) to make the samples more or less independent of each other.

Using Gibbs sampling to estimate the expectationEy∼p(y|x;w)[Fj(x, y)] is com-
putationally intensive because the accuracy of the estimate only increases very
slowly as the number s of samples increases. Specifically, the variance decreases
proportional to 1/s. The next section describes a more efficient application for
Gibbs sampling, while the rest of this section explains how to do Gibbs sampling
efficiently, regardless of what the samples are used for.

Gibbs sampling relies on drawing random samples quickly from conditional
distributions. Let y−i be an abbreviation for the set y excluding yi, that is y−i =
{y1, . . . , yi−1, yi+1, . . . , yn}. We need to draw values according to the distribution
p(Yi = v|x, y−i;w). The straightforward way to do this is to evaluate the probabil-
ity numerically for each possible value v of Yi. In typical applications the number

17

of alternative values v is small, so this approach is feasible, if p(Yi = v|x, y−i;w)
can be computed explicitly.

We have

p(v|x, y−i;w) =
p(v, y−i|x;w)∑
v′ p(v

′, y−i|x;w)
.

Any value v for yi and y−i together are an entire label. Let y be v combined with
y−i and let y′ be v′ combined with y−i. For a log linear model we get

p(v|x, y−i;w) =
[exp

∑
j wjFj(x, y)]/Z(x,w)∑

v′ [exp
∑

j wjFj(x, y′)]/Z(x,w)
.

The partition function Z(x,w) can be canceled, giving

p(v|x, y−i;w) =

∏
j expwjFj(x, y)∑

v′
∏

j expwjFj(x, y′)
,

which can be evaluated directly since the sum in the denominator is over m alter-
natives only. A further simplification is also often possible. Typically, for most
j the feature function Fj(x, y) does not depend on yi, meaning that Fj(x, y) =
Fj(x, y

′). All such factors can be brought outside the sum in the denominator and
then canceled with the numerator also.

For linear chain CRFs, following Equation 4,

p(y|x;w) =
exp

∑n+1
i=1 gi(yi−1, yi)

Z(x,w)
.

The cancelations just explained give

p(v|x, y−i;w) =
[exp gi(yi−1, v)][exp gi+1(v, yi+1)]∑
v′ [exp gi(yi−1, v′)][exp gi+1(v′, yi+1)]

.

After the gi matrices have been computed and stored, the time cost of evaluating
the equation above for all v, for a single i, is justO(m). Doing one round of Gibbs
sampling, that is executing Step (2) once, requires O(mn) time.

11 Contrastive divergence
A third training option is to choose a single y∗ value that is somehow similar to the
training label y, but also has high probability according to p(y|x;w). Compared

18

to the impostor ŷ, the “evil twin” y∗ will have lower probability, but will be more
similar to y.

The idea of contrastive divergence is to obtain a single value y∗ = 〈y∗1, . . . , y∗n〉
by doing only a few rounds of Gibbs sampling (often only one), but starting at the
training label y instead of at a random guess. Given x, the y∗ found in this way
will be similar to the training label y but have high probabillity according to the
current parameter values w. Intuitively, updating w based on y and y∗ using the
stochastic gradient rule will efficiently reduce the probability of y∗ and increase
that of y.

12 Tutorials and selected papers
The following are four tutorials that are available on the web.

1. Hanna M. Wallach. Conditional Random Fields: An Introduction. Techni-
cal Report MS-CIS-04-21. Department of Computer and Information Sci-
ence, University of Pennsylvania, 2004.

2. Charles Sutton and Andrew McCallum. An Introduction to Conditional
Random Fields for Relational Learning. In Introduction to Statistical Rela-
tional Learning. Edited by Lise Getoor and Ben Taskar. MIT Press, 2006.

3. Rahul Gupta. Conditional Random Fields. Unpublished report, IIT Bom-
bay, 2006.

4. Roland Memisevic. An Introduction to Structured Discriminative Learning.
Technical Report, University of Toronto, 2006.

All four surveys above are very good. The report by Memisevic places CRFs in the
context of other methods for learning to predict complex outputs, especially SVM-
inspired large-margin methods. Sutton’s survey is a longer discussion, with many
helpful comments and explanations. The tutorial by Wallach is easy to follow
and provides high-level intuition. One difference between the two tutorials is that
Wallach represents CRFs as undirected graphical models, whereas Sutton uses
undirected factor graphs. Sutton also does parallel comparisons of naive Bayes
(NB) and logistic regression, and of hidden Markov models (HMMs) and linear-
chain CRFs. This gives readers a useful starting point if they have experience
with NB classifiers or HMMs. Gupta’s paper gives a detailed derivation of the
important equations for CRFs.

19

Bibliographies on CRFs have been compiled by Rahul Gupta and Hanna Wal-
lach. The following papers may be particularly interesting or useful. They are
listed in approximate chronological order. Note that several are on topics related
to CRFs, not on CRFs directly.

1. John D. Lafferty, Andrew McCallum, Fernando C. N. Pereira. Conditional
random fields: Probabilistic models for segmenting and labeling sequence
data, In Proceedings of the 18th International Conference on Machine Learn-
ing (ICML), 2001, pp. 282-289.

2. Michael Collins. Discriminative training methods for hidden Markov mod-
els: Theory and experiments with perceptron algorithms. Proceedings of
the ACL-02 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 1-8, 2002.

3. Sham Kakade, Yee Whye Teh, Sam T. Roweis. An alternate objective func-
tion for Markovian fields. In Proceedings of the 19th International Confer-
ence on Machine Learning (ICML), 2002.

4. Andrew McCallum. Efficiently inducing features of conditional random
fields. In Proceedings of the 19th Conference on Uncertainty in Artificial
Intelligence (UAI-2003), 2003.

5. Sanjiv Kumar and Martial Hebert. Discriminative random fields: A dis-
criminative framework for contextual interaction in classification. In Pro-
ceedings of the Ninth IEEE International Conference on Computer Vision,
2003.

6. Ben Taskar, Carlos Guestrin and Daphne Koller. Max-margin Markov net-
works. In Advances in Neural Information Processing Systems 16 (NIPS),
December 2003.

7. Thomas G. Dietterich, Adam Ashenfelter and Yaroslav Bulatov. Training
conditional random fields via gradient tree boosting. In Proceedings of the
21st International Conference on Machine Learning (ICML), 2004.

8. Vladimir Kolmogorov and Ramin Zabih. What energy functions can be
minimized via graph cuts? In IEEE Transactions on Pattern Analysis and
Machine Intelligence, February 2004.

20

9. Charles Sutton, Andrew McCallum. Collective segmentation and labeling
of distant entities in information extraction. ICML Workshop on Statistical
Relational Learning, 2004.

10. Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, Yasemin Al-
tun. Large margin methods for structured and interdependent output vari-
ables. Journal of Machine Learning Research, December 2005.

11. Hal Daumé III, John Langford, and Daniel Marcu. Search-based structured
prediction. Submitted for publication, 2006.

12. Samuel Gross, Olga Russakovsky, Chuong Do, and Serafim Batzoglou.
Training conditional random fields for maximum labelwise accuracy. In
Advances in Neural Processing Systems 19 (NIPS), December 2006.

CSE 250B Quiz 7, February 18, 2010
The basic equation for a log-linear model is

p(y|x;w) =
exp

∑J
j=1 wjFj(x, y)∑

y′ exp
∑J

j=1wjFj(x, y′)
.

We saw in class that it is sensible for a feature function Fj to depend on both the
example x and the candidate label y, or on just y.

[3 points] Explain briefly why it is not sensible for a feature function to depend on
just x. That is, explain why a feature function of the form Fj(x, y) = g(x) would
be useless.

CSE 250B Quiz 8, February 25, 2010
[3 points] What is the order-of-magnitude time complexity of the Collins percep-
tron algorithm for training a CRF model?

Use the following notation:

• J is the number of low-level feature functions,

• m is the number of alternative tags,

• n is the length of each training sequence (assume that all sequences have
the same length),

• S is the number of training examples,

• T is the number of epochs of training.

CSE 250B Quiz 6, February 10, 2011
The basic equation for a log-linear model is

p(y|x;w) =
exp

∑J
j=1 wjFj(x, y)∑

y′ exp
∑J

j=1wjFj(x, y′)
.

This model can be used for multilabel classification, where an example x is a
vector in Rd and a label y is a subset of the finite set A = {a1, a2, . . . , aK}.
Suppose that some feature functions are of the form

Fj(x, y) = xiI(ak ∈ y)

while other feature functions are of the form

Fj(x, y) = I(ak1 ∈ y)I(ak2 ∈ y).

How many feature functions are there of the second form? What is the purpose
and meaning of these feature functions?

CSE 250B Quiz 7, February 17, 2011
In today’s Financial Times, Richard Waters discusses the IBM system named Wat-
son that just won the quiz show called Jeopardy. He writes “Rather than just pick-
ing the highest-ranked result, it [Watson] ascribes a probability to whether a given
answer is correct – a potentially useful technique for real-world situations, where
things are seldom black and white.”

Explain the author’s technical misunderstanding when he contrasts “the highest-
ranked result” with “a probability.”

Here is an optional no-credit additional question for those who watched the
show. In fact, it is not exactly true that Watson “ascribes a probability to whether
a given answer is correct.” Explain how you can know that this is not exactly true
from watching the show.

