
Probabilistic learning

Charles Elkan

November 8, 2012

Important: These lecture notes are based closely on notes written by Lawrence
Saul. Text may be copied directly from his notes, or paraphrased. Also, these type-
set notes lack illustrations. See the classroom lectures for figures and diagrams.

1 Learning in a Bayesian network
A Bayesian network is a directed graph with a CPT (conditional probability table)
for each node. This section explains how to learn the CPTs from training data. As
explained before, the training data are a matrix where each row is an instance and
each column is a feature. Instances are also called examples, while features are
also called nodes, random variables, and attributes. One entry in the matrix is one
value of one feature, that is one outcome of one random variable.

We consider first the scenario where each instance is complete, that is the
outcome of every node is observed for every instance. In this scenario, nothing is
unknown, or in other words, there is no missing data. This scenario is also called
fully visible, or no hidden nodes, or no latent variables.

We also assume that the graph of the Bayesian network is known, that its
nodes X1 to Xn constitute a finite set, and that each node is random variable with
a discrete finite set of alternative values. In this scenario, what we need to learn
is the CPT of each node. A single entry in one CPT is p(Xi = x|pa(Xi) = π)
where x is a specific outcome ofXi and π is a specific set of outcomes, also called
a configuration, of the parent nodes of Xi.

The training data are T instances xt, each of which is a complete configuration
of X1 to Xn. We write xt = (xt1, . . . , xtn). Remember the convention that the
first subscript refers to rows while the second subscript refers to columns. To
make learning feasible, we need a basic assumption about the training data.

1

Assumption. Each example is an independent and identically distributed (IID)
random sample from the joint distribution defined by the Bayesian network.

This assumption has two parts. First, each xt is identically distributed means
that each sample is generated using the same CPTs. Second, being independent
means that probabilities can be multiplied: p(xs, xt) = p(xs)p(xt). With the IID
assumption, we are ready to begin to derive a learning procedure. The probability
of the training data is

P =
T∏
t=1

p(X1 = xt1, . . . , Xn = xtn).

The probability of example t is

p(X1 = xt1, . . . , Xn = xtn) =
n∏
i=1

p(Xi = xti|X1 = xt1, . . . , Xi−1 = xt,i−1)

=
n∏
i=1

p(Xi = xti|pa(Xi) = pati)

The first equation above follows from the chain rule of probabilities, while the
second follows from conditional independence in the Bayesian network.

Learning means choosing values, based on the available data, for the aspects
of the model that are unknown. Here, the model is the probability distribution
specified by the Bayesian network. Its graph is known but the parameters inside
its CPTs are unknown. The principle of maximum likelihood says that we should
choose values for unknown parameters in such a way that the overall probability
of the training data is maximized. This principle is not a theorem that can be
proved. It is simply a sensible guideline. One way to argue that the principle is
sensible is to notice that, essentially, it says that we should assume that the training
data are the most typical possible, that is, that the observed data are the mode of
the distribution to be learned.

The principle of maximum likelihood says that we should choose values for
the parameters of the CPTs that make P as large as possible. Let these parameters
be called w. The principle says that we should choose w∗ = argmaxwP . Because
the logarithm function is monotone strictly increasing, this is equivalent to choos-
ing w∗ = argmaxw logP . It is convenient to maximize the log because the log of

2

a product is a sum, and dealing with sums is easier. So, the goal is to maximize

L = log
T∏
t=1

n∏
i=1

p(Xi = xti|pa(Xi) = pati)

=
T∑
t=1

n∑
i=1

log p(Xi = xti|pa(Xi) = pati)

Swapping the order of the summations gives

L =
n∑
i=1

T∑
t=1

log p(Xi = xti|pa(Xi) = pati). (1)

Now, notice that each inner sum over t involves a different CPT. These CPTs have
parameters whose values can be chosen completely separately. Therefore, L can
be maximized by maximizing each inner sum separately. We can decompose the
task of maximizing L into n separate subtasks to maximize

Mi =
T∑
t=1

log p(Xi = xti|pa(Xi) = pati)

for i = 1 to i = n. Consider one of these subtasks. The sum over t treats each
training example separately. To make progress, we group the training examples
into equivalence classes. Each class consists of all examples among the T that
have the same outcome for Xi and the same outcome for the parents of Xi. Let x
range over the outcomes of Xi and let π range over the outcomes of the parents
of Xi. Let count(x, π) be how many of the T examples have the value x and the
configuration π. Note that

T =
∑
x

∑
π

count(x, π).

We can write

Mi =
∑
x

∑
π

count(x, π) log p(Xi = x|pa(Xi) = π).

We want to choose parameter values for the CPT for node i to maximize this
expression. These parameter values are the probabilities p(Xi = x|pa(Xi) = π).
These values are constrained by the fact that for each π∑

x

log p(Xi = x|pa(Xi) = π) = 1.

3

However, there is no constraint connecting the values for different π. Therefore,
we can swap the order of the summations inside the expression for Mi and obtain
a separate subtask for each π. Write wx = p(Xi = x|pa(Xi) = π) and cx =
count(x, π). The problem to solve is

maximize
∑
x

cx logwx subject to wx ≥ 0 and
∑
x

wx = 1.

This problem can be solved using Lagrange multipliers. The solution is

wx =
cx∑
x cx

.

In words, the maximum likelihood estimate of the probability that Xi = x, given
that the parents of Xi are observed to be π, is

p(Xi = x|pa(Xi) = π) =
count(Xi = x, pa(Xi) = π)∑
x′ count(Xi = x′, pa(Xi) = π)

=
count(Xi = x, pa(Xi) = π)

count(pa(Xi) = π)

=

∑
t I(x = xti, π = pati)∑

t I(π = pati)

where the counts are with respect to the training data.
These estimates make sense intuitively. Each estimated probability is propor-

tional to the corresponding frequency observed in the training data. If the value
x is never observed for some combination π, then its conditional probability is
estimated to be zero.

Although the estimates are intuitively sensible, only a formal derivation like
the one above can show that they are correct (and unique). The derivation uses
several mathematical manipulations that are common in similar arguments. These
manipulations include changing products into sums, swapping the order of sum-
mations, and arguing that maximization subtasks are separate.

End of the lecture on Thursday October 25.

2 Markov models of language
Many applications involving natural language need a model that assigns probabil-
ities to sentences. For example, the most successful translation systems nowadays

4

for natural language are based on probabilistic models. Let F be a random vari-
able whose values are sentences written in French, and let E be a similar random
variable ranging over English sentences. Given a specific French sentence f , the
machine translation task is to find e∗ = argmaxe p(E = e|F = f). One way to
decompose the task into subtasks is to use Bayes’ rule and write

e∗ = argmaxe
p(F = f |E = e)p(E = e)

p(F = f)
= argmaxe p(F = f |E = e)p(E = e).

The denominator p(F = f) can be ignored because it is the same for all e. Al-
though creating a model of p(F = f |E = e) is presumably just as difficult as cre-
ating a model directly of p(E = e|F = f), the model of p(E = e) can overcome
some errors in p(F = f |E = e). For example, regardless of the original sentence
in the foreign language, the English sentence “Colorless green ideas sleep furi-
ously” should not be a high-probability translation. This section explains how to
learn basic models of p(E = e).

Clearly the probability of a sentence depends on the words in it, and also on
the order of the words. Consider a sentence that consists of the words w1 to wL in
order. Let these words be the outcomes of random variables W1 to WL. The chain
rule of probabilities says that

p(W1,W2, . . . ,WL) = p(W1)p(W2|W1) · · · p(WL|WL−1, . . .W1).

Words that occur a long way before wl in the sentence presumably influence the
probability ofwl less, so to simplify this expression it is reasonable to fix a number
n of previous words and write

L∏
l=1

p(Wl|Wl−n, . . . ,Wl−2,Wl−1)

with each word depending only on the previous nwords. In the special case where
n = 0, each word is independent of the previous words. A model of this type is
called a Markov model of order n. A unigram model has order n = 0, a bigram
model has order n = 1, and a trigram model has order n = 2.

A bigram model corresponds to a Bayesian network with nodes W1 to WL

and an edge from each node Wl to Wl+1. Importantly, the same CPT p(Wl+1 =
j|Wl = i) is used at each nodeWl+1. Fixing the entries in different CPTs to be the
same is called tying. Notice that technically we have a different Bayesian network
for each different length L, but tying CPTs lets us treat all these networks as the
same.

5

How can we learn the shared CPT? Each node Wl is a discrete random vari-
able, but one with a very large set of values. The cardinality of this set is the
size of the vocabulary, typically between 104 and 105 in applications. Since most
words never follow each other, a document collection of size smaller than (105)2

words can be adequate for training. Fortunately, nowadays it is easy to assemble
and process collections of 108 and more words.

The maximum likelihood estimate of the CPT parameters is

p(Wl = j|Wl−1 = i) =
cij
ci

where ci is the number of times that word i occurs followed by any other word,
and cij is the number of times that word i occurs followed by word j. A note on
notation: it is convenient to assume that each word is an integer between 1 and the
vocabulary size. Notation such as wi instead of i for the ith word causes two diffi-
culties: it leads to double subscripts, and it suggests that strings are mathematical
objects.

Some issues occur with n-gram models. The first issue is that they do not
handle novel words in an intelligent way. Typically we convert each word not in
the predefined vocabulary into a special fixed token such as 〈UNK〉, and then
treat this as an ordinary word. The second issue is that all sequences of words
not seen in the training collection are assigned zero probability. For example, the
bigram “pink flies” may be so uncommon that it occurs zero times in the training
collection, but that does not mean it is impossible. Its probability should be small,
but above zero. The higher the order of the n-gram model is, the more this second
issue is important.

3 Linear regression
Linear regression is perhaps the most widely used method of modeling data in
classical statistics. Here we see how it fits into the paradigm of learning the pa-
rameters of a Bayesian network via the principle of maximum likelihood.

We have independent nodes X1 to Xd and a dependent node Y , with an edge
Xi → Y for each i. Intuitively, the value of Y is a linear function of the values of
X1 to Xd, plus some random noise. Assuming that the noise has mean zero, we
can write

E[Y] =
d∑
i=1

wixi = w̄ · x̄

6

where w1 to wd are parameters describing the linear dependence. The standard
choice to model the random noise is a Gaussian distribution with mean zero and
variance σ2. The probability density function of this distribution is

p(z) =
1√

2πσ2
exp− z2

2σ2
.

Combining this with the expression for E[y] gives

p(Y = y|X̄ = x̄) =
1√

2πσ2
exp− 1

2σ2
(y − w̄ · x̄)2.

End of the lecture on Tuesday October 30.

To learn the parameters w1 to wd we have training examples (x̄t, yt) for t = 1
to t = T . Assume that each x̄t is a column vector. Given that these examples are
IID, the log likelihood is

L =
T∑
t=1

log p(yt|x̄t) = −
T∑
t=1

1

2
log(2πσ2) +

1

2σ2
(y − w̄ · x̄t)2.

We can maximize this expression in two stages: first find the optimal wi values,
and then find the optimal σ2 value. The first subproblem is to minimize (not
maximize)

S =
T∑
t=1

(yt − w̄ · x̄t)2.

We can solve this by setting the partial derivatives of S to zero. We get the equa-
tions

∂

∂wi
S =

T∑
t=1

2(yt − w̄ · x̄t)xit = 0

for i = 1 to i = d, where we write xit because x̄t is a column vector. These yield
the system of d linear equations

T∑
t=1

ytxit =
T∑
t=1

(w̄ · x̄t)xit.

Note that each of the d equations involves all of the unknowns w1 to wd. In matrix
notation, the system of equations is b̄ = Aw̄. Here, b̄ is the column vector of

7

length d whose ith entry is bi =
∑

t ytxit, that is b̄ =
∑

t ytx̄t. The right side is∑T
t=1 xit(x̄

T
t w̄) where the superscript T means transpose and the dot product has

been written as a matrix product. This yields

b̄ =
T∑
t=1

x̄t(x̄
T
t w̄) = (

T∑
t=1

x̄tx̄
T
t)w̄ = Aw̄

where the d × d square matrix A =
∑

t x̄tx̄
T
t . The row i column j entry of A is

Aij =
∑

t xitxjt.
Mathematically, the solution to the system Aw̄ = b̄ is w̄ = A−1b̄. Compu-

tationally, evaluating the inverse A−1 of A is more expensive than just solving
the system of equations once for a specific vector b̄. In practice, in Matlab one
uses the backslash operator, and other programming environments have a similar
feature.

The inverse of A is not well-defined when A does not have full rank. Since A
is the sum of T matrices of rank one, this happens when T < d, and can happen
when the input vectors x̄t are not linearly independent. One way of overcoming
this issue is to choose the solution w̄ with minimum norm such that Aw̄ = b̄.
Such a w̄ always exists and is unique. Concretely, this solution is w̄∗ = A+b̄
where A+ is the Moore-Penrose pseudo inverse of A, which always exists, and
can be computed via the singular value decomposition (SVD) of A.

We said above that we can maximize the log likelihood in two stages, first
finding the best wi values, and then finding the best σ2 value. The second stage is
left as an exercise for the reader.

4 The general EM algorithm
Suppose that, in the data available for training, the outcomes of some random
variables are unknown for some examples. These outcomes are called hidden or
latent, and the examples are called incomplete or partial. Conceptually, it is not
the case that the hidden outcomes do not exist. Rather, they do exist, but they have
been concealed from the observer.

Let X be the set of all nodes of the Bayesian network. As before, suppose that
there are T training examples, which are independent and identically distributed.
For the tth training example, let Vt be the set of visible nodes and let Ht be the set
of hidden nodes, soX = Vt∪Ht. Note that different examples may have different
hidden nodes.

8

As before, we want to maximize the log likelihood of the observed data:

L =
∑
t

log p(Vt = vt)

=
∑
t

log
∑
ht

p(Vt = vt, Ht = ht)

=
∑
t

log
∑
ht

n∏
i=1

p(Xi = xi|pa(Xi) = pai).

In the last expression above, each Xi belongs to either Vt or Ht. Because of the
sum over ht, we cannot move the logarithm inside the product and we do not get
a separate optimization subproblem for each node Xi. Expectation-maximization
(EM) is the name for an approach to solving the combined optimization problem.

To simplify notation, assume initially that there is just one training example,
with one observed random variable X = x and one hidden random variable Z.
Let θ be all the parameters of the joint model p(X = x, Z = z; θ). Following
the principle of maximum likelihood, the goal is to choose θ to maximize the log
likelihood function, which is L(θ;x) = log p(x; θ).

As noted before, p(x; θ) =
∑

z p(x, z; θ). Suppose we have a current estimate
θt for the parameters. Multiplying inside this sum by p(z|x; θt)/p(z|x; θt) gives
that the log likelihood is

D = log p(x; θ) = log
∑
z

p(x, z; θ)
p(z|x; θt)

p(z|x; θt)
.

Note that
∑

z p(z|x; θt) = 1 and p(z|x; θt) ≥ 0 for all z. Therefore D is the
logarithm of a weighted sum, so we can apply Jensen’s inequality,1 which says

1 The mathematical fact on which the EM algorithm is based is known as Jensen’s inequality.
It is the following lemma.
Lemma: Suppose the weights wj are nonnegative and sum to one, and let each xj be any real
number for j = 1 to j = n. Let f : R→ R be any concave function. Then

f(

n∑
j=1

wjxj) ≥
n∑

j=1

wjf(xj).

Proof: The proof is by induction on n. For the base case n = 2, the definition of being concave
says that f(wa + (1 − w)b) ≥ wf(a) + (1 − w)f(b). The logarithm function is concave, so
Jensen’s inequality applies to it.

9

log
∑

j wjvj ≥
∑

j wj log vj , given
∑

j wj = 1 and each wj ≥ 0. Here, we let the
sum range over the values z of Z, with the weight wj being p(z|x; θt). We get

D ≥ E =
∑
z

p(z|x; θt) log
p(x, z; θ)

p(z|x; θt)
.

Separating the fraction inside the logarithm to obtain two sums gives

E =
(∑

z

p(z|x; θt) log p(x, z; θ)
)
−
(∑

z

p(z|x; θt) log p(z|x; θt)
)
.

Since E ≤ D and we want to maximize D, consider maximizing E. The weights
p(z|x; θt) do not depend on θ, so we only need to maximize the first sum, which
is ∑

z

p(z|x; θt) log p(x, z; θ).

In general, the E step of an EM algorithm is to compute p(z|x; θt) for all z. The
M step is then to find θ to maximize

∑
z p(z|x; θt) log p(x, z; θ).

How do we know that maximizing E actually leads to an improvement in the
likelihood? With θ = θt,

E =
∑
z

p(z|x; θt) log
p(x, z; θt)

p(z|x; θt)
=
∑
z

p(z|x; θt) log p(x; θt) = log p(x; θt)

which is the log likelihood at θt. So any θ that maximizes E must lead to a
likelihood that is better than the likelihood at θt.

5 EM with independent training examples
The EM algorithm derived above can be extended to the case where we have a
training set {x1, . . . , xn} such that each xi is independent, and they all share the
same parameters θ. In this case the log likelihood is

D =
∑
i

log p(xi; θ).

Let the auxiliary random variables be a set {Z1, . . . , Zn} such that the distribution
of each Zi is a function only of the corresponding xi and θ. Note that Zi may be
different for each i. By an argument similar to above,

D =
∑
i

log
∑
zi

p(xi, zi; θ)
p(zi|xi; θt)
p(zi|xi; θt)

.

10

Using Jensen’s inequality separately for each i gives

D ≥ E =
∑
i

∑
zi

p(zi|xi; θt) log
p(xi, zi; θ)

p(zi|xi; θt)
.

As before, to maximize E we want to maximize the sum∑
i

∑
zi

p(zi|xi; θt) log p(xi, zi; θ).

The E step is to compute p(zi|xi; θt) for all zi for each i. The M step is then to
find

θt+1 = argmaxθ
∑
i

∑
zi

p(zi|xi; θt) log p(xi, zi; θ).

End of the lecture on Thursday November 1.

6 EM for Bayesian networks
Let θ0 be the current estimate of the parameters of a Bayesian network. For train-
ing example t, let vt be the observed values of the visible nodes. The M step of
EM is to choose new parameter values θ that maximize

F =
∑
t

∑
h

p(h|vt; θ0) log p(h, vt; θ)

where the inner sum is over all possible combinations h of outcomes of the nodes
that are hidden in the tth training example. We shall show that instead of summing
explicitly over all possible combinations h, we can have a separate summation for
each hidden node. The advantage of this is that separate summations are far more
efficient computationally.

By the definition of a Bayesian network,

F =
∑
t

∑
h

p(h|vt; θ0) log
∏
i

p(Xi = xi|pa(Xi) = pai; θ)

where each xi and each value in pai is part of either vt or h. Converting the log
product into a sum of logs, then moving this sum to the outside, gives

F =
∑
i

∑
t

∑
h

p(h|vt; θ0) log p(xi|pai; θ).

11

For each i, the sum over h can be replaced by a sum over the alternative values x
of Xi and π of the parents of Xi, yielding

F =
∑
i

∑
t

∑
x,π

p(Xi = x, pa(Xi) = π|vt; θ0) log p(x|π; θ).

Note that summing over alternative values forXi and its parents makes sense even
if some of these random variables are observed. If Xi happens to be observed for
training example t, let its observed value be x′. In this case,

p(Xi = x, pa(Xi) = π|vt; θ0) = 0 for all values x 6= x′.

A similar observation is true for parents of Xi that are observed.
Changing the order of the sums again gives

F =
∑
i

∑
x,π

[
∑
t

p(x, π|vt; θ0)] log p(x|π; θ).

For comparison, the log likelihood in Equation (1) on page 3 for the fully observed
case can be rewritten as∑

i

∑
x,π

[
∑
t

I(x = xti, π = pati)] log p(x|π; θ).

The argument following Equation (1) says that the solution that maximizes this
expression is

p(Xi = x|pa(Xi) = π) =

∑
t I(x = xti, π = pati)∑

t I(π = pati)
.

A similar argument similar can be applied here to give that the solution for the
new parameter values θ, in the partially observed case, is

p(x|π; θ) = p(Xi = x|pa(Xi) = π) =

∑
t p(Xi = x, pa(Xi) = π|vt; θ0)∑

t p(pa(Xi) = π|vt; θ0)
.

To appreciate the meaning of this result, remember that θ is shorthand for all the
parameters of the Bayesian network, that is all the CPTs of the network. A single
one of these parameters is one number in one CPT, written p(x|π; θ).

In the special case where Xi and its parents are fully observed, their values xti
and pati are part of vt, and

p(Xi = x, pa(Xi) = π|vt; θ0) = I(x = xti, π = pati).

The maximum likelihood estimation method for θ explained at the end of Sec-
tion 1 above is a special case of the expectation-maximization method described
here.

12

7 Applying EM to modeling language
Section 2 above described n-gram models of language. A major issue with these
models is that unigram models underfit the available data, while higher-order
models tend to overfit. This section shows how to use expectation-maximization
to fit a model with intermediate complexity, that can trade off between underfitting
and overfitting.

The central idea is to introduce a hidden random variable called Z between
the random variable W for a word and the variable W ′ for the following word.
Specifically, the Bayesian network has edges W → Z and Z → W ′. The alter-
native values of the variable Z can be any discrete set. Intuitively, each of these
values identifies a different possible linguistic context. Each context has a cer-
tain probability depending on the previous word, and each following word has a
certain probability depending on the context. We can say that the previous word
triggers each context with a word-specific probability, while each context suggests
following words with word-specific probabilities.

Let the number of alternative contexts be c. Marginalizing out the variable Z
gives

p(w′|w) =
c∑

z=1

p(w′|z)p(z|w).

This context model has m(c − 1) + c(m − 1) parameters where m is the size of
the vocabulary. If c = 1, the model reduces to the unigram model, while if c = m,
the model has a quadratic number of parameters, like the bigram model.

End of the lecture on Tuesday November 6. The following M step derivation is
the same as in the quiz.

The goal for training is to maximize the log likelihood of the training data,
which is

∑
t log p(wt, w

′
t). (We ignore the complication that training examples

are not independent, if they are taken from consecutive text.) Training the model
means estimating p(z|w) and p(w′|z). Consider the former task first. The M step
of EM is to perform the update

p(Z = z|W = w) :=

∑
t p(Z = z,W = w|W = wt,W

′ = w′t)∑
t p(W = w|W = wt,W ′ = w′t)

=

∑
t I(wt = w)p(Z = z|W = wt,W

′ = w′t)∑
t I(wt = w)

=

∑
t:wt=w

p(Z = z|W = wt,W
′ = w′t)

count(wt = w)
.

13

This M step is intuitively reasonable. First, the denominator says that the proba-
bility of context z given current word w depends only on training examples which
have this word. Second, the numerator says that this probability should be high if
z is compatible with the following word as well as with the current word.

The E step is to evaluate p(z|wt, w′t) for all z, for each pair of consecutive
words wt and w′t. By Bayes’ rule this is

p(z|w,w′) =
p(w′|z, w)p(z|w)∑
z′ p(w

′|z′, w)p(z′|w)

=
p(w′|z)p(z|w)∑
z′ p(w

′|z′)p(z′|w)
.

This result is also intuitively reasonable. It says that the weight of a context z is
proportional to its probability given w and to the probability of w′ given it.

Finally, consider estimating p(w′|z). The M step for this is to perform the
update

p(W ′ = w′|Z = z) :=

∑
t p(W

′ = w′, Z = z|W = wt,W
′ = w′t)∑

t p(Z = z|W = wt,W ′ = w′t)

=

∑
t I(w′ = w′t)p(Z = z|W = wt,W

′ = w′t)∑
t p(Z = z|W = wt,W ′ = w′t)

=

∑
t:w′

t=w
′ p(Z = z|W = wt,W

′ = w′t)∑
t p(Z = z|W = wt,W ′ = w′t)

.

The denominator here says that the update is based on all training examples, but
each one is weighted according to the probability of the context z. The numerator
selects, with the same weights, just those training examples for which the second
word is w′. The E step is actually the same as above: to evaluate p(z|wt, w′t) for
all z, for each pair of consecutive words wt and w′t.

8 Mixture models
Suppose that we have alternative models p(x; θj) for j = 1 to j = k that are
applicable to the same data points x. The linear combination

p(x) =
k∑
j=1

λjp(x; θj)

14

is a valid probability distribution if λj ≥ 0 and
∑k

j=1 λj = 1. The combined
model is interesting because it is more flexible than any individual model. It is
often called a mixture model with k components, but it can also be called an
interpolation model, or a cluster model with k clusters.

We can formulate the task of learning the coefficients from training examples
using a Bayesian network that has an observed node X , an unobserved node Z,
and one edge Z → X . The CPT for Z is simply p(Z = j) = λj , while the CPT
for X is p(x|z) = p(x; θz). The goal is to maximize the log likelihood of training
examples x1 to xT . Marginalizing over Z, then using the product rule, shows that

p(x) =
∑
z

p(x, z) =
∑
z

p(z)p(x|z) =
k∑
j=1

λjp(x; θj)

which is the same mixture model. The CPT of the node Z can be learned using
EM. The E step is to compute p(Z = j|xt) for all j, for each training example xt.
Using Bayes’ rule, this is

p(Z = j|xt) =
p(xt|Z = j)p(Z = j)

p(xt)
=

p(x; θj)λj∑k
i=1 λip(x; θi)

The general M step for Bayesian networks is

p(Xi = x|pai = π) :=

∑
t p(Xi = x, pai = π|vt)∑

x′
∑

t p(Xi = x′, pai = π|vt)
.

For the application here, Xi is Z and the parents of Xi are the empty set. We get
the update

p(Z = j) = λj :=

∑
t p(Z = j|xt)∑k

i=1

∑
t p(Z = i|xt)

=

∑
t p(Z = j|xt)

T

where T is the number of training examples.

End of the lecture on Thursday November 8.

9 Interpolating language models
As a special case of training a mixture model, consider a linear combination of
language models of different orders:

p(wl|wl−1, wl−2) = λ1p1(wl) + λ1p1(wl|wl−1) + λ3p3(wl|wl−1, wl−2)

15

where all three component models are trained on the same corpus A. What is a
principled way to estimate the interpolation weights λi? The first important point
is that the weights should be trained using a different corpus, say C. Specifically,
we can choose the weights to optimize the log likelihood of C. If the weights are
estimated on A, the result will always be λn = 1 and λi = 0 for i < n, where n
indicates the highest order model, because this model fits the A corpus the most
closely. When testing the final combined model, we must use a third corpus B,
since the weights will overfit C, at least slightly.

We can formulate the task of learning the λi weights using a Bayesian network.
The network has nodes Wl−2, Wl−1, Wl, and Z, with edges Wl−2 → Wl, Wl−1 →
Wl, and Z → Wl. The CPT for Z is simply p(Z = i) = λi, while the CPT for Wl

is

p(wl|wl−1, wl−2, z) =


p1(wl) if z = 1

p2(wl|wl−1) if z = 2

p3(wl|wl−1, wl−2) if z = 3

The goal is to maximize the log likelihood of the tuning corpus C. Marginalizing
over Z, then using the product rule and conditional independence, shows that

p(wl|wl−1, wl−2) = λ1p1(wl) + λ1p1(wl|wl−1) + λ3p3(wl|wl−1, wl−2)

as above. To learn values for the parameters λi = p(Z = i), the E step is to
compute the posterior probability p(Z = i|wl, wl−1, wl−2). Using Bayes’ rule,
this is

p(Z = i|wl, wl−1, wl−2) = . . .

The M step is to update λi values. The general M step for Bayesian networks is

p(Xi = x|pai = π) :=

∑
t p(Xi = x, pai = π|vt)∑

x′
∑

t p(Xi = x′, pai = π|vt)
.

For the application here, training example number t is the word triplet ending in
wl, Xi is Z, and the parents of Xi are the empty set. We get the update

p(Z = i) :=

∑
l p(Z = i|wl, wl−1, wl−2)∑3

j=1

∑
l p(Z = j|wl, wl−1, wl−2)

=

∑
l p(Z = i|wl, wl−1, wl−2)

L

where L is the number of words in the corpus.

16

