CSE250A Fall ’12: Discussion Week 9

Aditya Menon (akmenon@ucsd.edu)

December 4, 2012

1 Schedule for today

e Recap of Markov Decision Processes.
e Examples: slot machines and maze traversal.

e Planning and learning.

2 Recap of Markov Decision Processes

A Markov Decision Process (MDP) is defined by four elements:

e A state space S,

e An action space A,

e A transition probability function Pr[s’|s, a], where s, s’ € S,a € A,

e A reward function R(s', s,a) where s,8’ € S,a € A
An MDP represents models the behaviour of an environment over time. At each time step, the environment
possesses a state in S. From the environment’s point of view, the actions are the result of an external entity,

known as the agent. Each action affects the state of the environment, and endows the agent with a reward.
The aim of the agent is to perform actions that maximize the long-term reward.

Formally, the interaction between the agent and environment is as follows.

e Initially, the agent finds herself at state sg € S.
e fortimestepst =0...7T":

— The agent performs an action a; € A.

— The environment places the agent in the new state s;41 by performing a random draw from the
distribution Pr[s|s¢, at].

— The environment rewards the agent by an amount R(S;11, St, at)
The number of time steps 7" is called the horizon. It is mathematically convenient to assume an infinite
horizon!, T = co. The figure below shows an illustration of this interaction.

Above, we did not specify how the agent computes the action a; when she is in state s;. This is precisely the
problem we wish to solve: we want to figure out a policy w : S — A that tells us how to act given the state

UIf a finite horizon is genuinely needed, we can imagine the end-cell as having only self-transitions with zero reward.

Agent

State Action Reward

Environment

State transition

Figure 1: The interaction between agent and environment in an MDP.

we are in. To determine a policy, we need to have a goal in mind. One reasonable goal is to maximize the
discounted expected reward, where the expectation is over all possible future states.

ExpReward(7) = Es, s, ... [Z Y R(s141, 5¢,7(5¢))
t=0

Here, we assume sg ~ (s), some prior probability distribution over the initial state of the MDP, and + €
(0, 1) is the discount factor. Each s; # s¢ is drawn from Pr[s’|s;_1, 7(s;—1)]-

Let IT denote the set of all functions from S to A. Note that if S, A are finite, then |[IT| = |A|lSl. We define
the optimal policy to be
7" = argmax, .y ExpReward(r).

3 Examples of MDPs

3.1 Slot machines

Suppose we (the agent) are in a casino (the environment), and there are K slot machines. We are free to play
with any of the machines, in any order. Each play of a machine is independent from the previous ones from
any other machine (including the current one). Each machine ¢ gives us a payoff v; with probability p;. As a
Markov decision process:

e The state space S = {0}; there is no really relevant concept of state for the environment, because we
assume that playing one machine has no impact on playing any other machine in the future.

e The action space A = {1,2,..., K} denotes the slot machine we decide to play with.

e The transition function T'(s’, s, a) is trivially just 1 everywhere, as there is one state.

vq , probability p,

e The reward function R depends only on the action, and R(a) ~ {0 bability 1 .
, probability 1 — p,

Our goal is to learn a policy® 7 : S — A. As there is only one state, we are just trying to determine which
slot machine to play. We assume that our goal is to maximize the discounted expected return, which in this
case is

ExpReward () — ﬁ]E [R(x(0))].

That is, we want to pick the slot machine which gives maximum expected reward.

2This problem is also known as the K -armed bandit.

3.2 Traversing a maze

Suppose we have an N x N grid with designated start and end cells. The agent controls an entity that exists
on a single cell of the grid. The environment controls a destructive flood that also exists on a single cell. At
each time step, we assume that the agent takes an action wherein she can move in one of the four directions.
We assume that the environment also places a flood on a random cell. The agent wishes to go from the start
cell to the end cell, without encountering a flooded cell. The states of the system are:

e The state space S = {(x1,y1, ¥2,y2) € [N]*}, representing the (z,y) coordinates of the agent and the
flooded cell in the N dimensional game grid.

e The action space A = {U, D, L, R} denotes the direction that the agent decides to move.

e The transition function T'(s’, s, a) specifies the new position for the agent, as well as the new position
for the flooded cell. The former can be assumed to be largely deterministic based on the action that the
agent chosen, but with some probability goes in the opposite direction to what is desired: for example,
maybe the agent is disoriented, so travels in the wrong direction by mistake. The latter reflects the new
position of the flood. We’ll assume that flooding just arises from a force of nature, which has some
distribution over the cells.

e The reward function R is, say, —100 if the agent is on a flooded cell, and 100 if the agent is on the end
cell, and —1 otherwise.

4 Planning and learning

Now we consider how the agent might learn an optimal policy. This depends on how much information is
available about the environment.

4.1 Case I: Full Information

Consider for concreteness the maze traversal problem. Suppose that the agent knows both the transition and
reward function. The latter is reasonable: the agent knows that it incurs a penalty if it collides with a flooded
cell, but is otherwise free to roam. The former is questionable: it is not clear that the agent knows a-priori
the rules that govern how floods arise. At any rate, in this setting, the agent can learn an optimal policy by
policy iteration, as follows.

1. Pick a random initial policy 7(?). Note that a policy has N* entries, one for each possible combination
of agent and flood position, telling the agent how to move given these positions. For example, the agent
may decide on a (not very good!) policy that says to always go down.

2. Compute the expected reward for the agent under this policy. This averages over all possible sequences
of positions of the agent and flooded cell, and for each computes the discounted reward that the agent
receives. Note that the policy (%) affects how likely different states are, and hence the value of this
expected reward: if the agent always decides to go down, for example, then they may never reach the
end cell, so that state will have zero probability.

3. Compute a refined policy 7(1) as follows: for each state, pick the action a which maximizes the ex-
pected reward if we follow a for our next action, and then follow 70 for all future actions. Essentially,
we evaluate which direction is the best for each possible state, based on the expected return, and use
this as our new policy.

4. Repeat steps (2)-(3) until convergence.

Note that the agent does all of this without actually making a physical action: it basically simulates the
mechanics of a path traversal, because it already knows everything about the underlying MDP. Once it does
this calculation, it can interact with the environment optimally.

Step 2 is called policy evaluation and Step 3 policy improvement. Step 4 involves testing convergence. We
elaborate on the steps in turn.

4.1.1 Step 2: Policy evaluation

Assuming an infinite horizon, and a reward function that depends only on the current state,
oo
ExpReward(7) = Eg, 4, . [Z ’th(St)‘ﬂ"|
t=0

= ZPT[SO =s]-Eq ... lz VtR(St)lso = s;w]

t=0

= ZPr[SO =s]-V(s;m).

The function V' computes the expected reward from following policy 7, given that we start in state s. It is
called the state value function. How do we compute it? For each initial state s, observe that

V(S, 77) =]ESl,SLm lz ’YtR(St)‘SO = S; Tl']
t=0

> 7' R(si)]s0 = S;W]

t=1

= R(S) + Esl,SQ,...

- R(s) + ’Y]E:Sl7521,,, [Z 'ytilR(St”So = S;7T‘|

t=1

= R(s) + WZPT[SH =5'|So = 5,m(5)] - Es, s5.... [Z YTIR(sy)|s1 = §'; w}

t=1

= R(S) + ’YZPT[Sl = SI|S() =S, W(S)] .]E§1,§2,... [Z ’}/tR(gt)|§1 = SI;W] where §t = St—1

G, t=0
=: R(s) +~ Z Pr[s|s, m(s)] - V(s';7).

This evaluates the expected utility if we begin from state s and keep following the policy w. The set of
equations are known as the Bellman equations, and it admits a simple closed form solution:

V =R+~PV
— (I-yP)V =R
— V=(-~+P)"'R,

where P is the matrix with entries Pr[s’|s, 7(s)]. Note that we can compute this solution because we have
full knowledge about the system, i.e. because we know the matrix P and the reward R. In practice we don’t
actually have to do the inverse, and can instead solve the system of linear equations implied by (I —yP)V =
R. Further, the inverse of I — P exists because P is a stochastic matrix, and so has eigenvalues of maximum
magnitude 1 by the Perron-Frobenius theorem, which are further scaled down by v < 1.

4.1.2 Step 3: Policy improvement

If we write our current policy as 7(*), policy improvement involves simply finding the action a that yields
maximum reward if we perform it on state s now, and then follow the current policy:

7+ (5) = argmax, |R(s,a) + 72Pr[5'|5,a] V(s'smh)

:= argmax, Q(s, a; 7).

The Q(s, a; 7) function encodes the expected reward if we start from state s, follow action a, and then follow
the policy 7. It is called the state-action value function. Observe that by definition, at any iteration ¢,

Vi(s;7®) = Q(s, 7 (s5); 7).

4.1.3 Step 4: Convergence of policy iteration

The condition for policy iteration to terminate is that we are unable to further improve the value of our policy.
That is, we have
V(s;mH)) = V(s;) 1= V*(s).

Note that there may be many policies 7 for which V' (s; 7) = V*(s). When we talk of an optimal policy, we
generally mean any policy for which the state value function is maximized.

We can derive an important property the optimal state value function by using the fact that 7(*+1) is greedily
derived from 7(*):

V*(s = V(s;ntY)

= R(s) +7 Zpr[3’|s77r(t+l)(s)] TV (s; ﬂ_(t-&-l))]

= R(s) +~

Z Prs’|s, 7TV (s)] - V(s; 77(1“))]

= R(s) + 7 max [Z Pr[s’|s, a] - V(s;ﬂ(t))l :

s/

This is similar, but distinct to the Bellman equation we derived earlier. This equation is only satisfied by the
optimal state value function. If we could solve this equation directly, we could compute an optimal policy’s
value; but the system is nonlinear due to the max operator. The above set of nonlinear equations are known as
the Bellman optimality equations. (This criterion may be used to compute the optimal policy with a different
strategy, value iteration, that we do not discuss here.)

4.2 Case II: Partial Information

Suppose now that the agent doesn’t know the transition or reward function. In this more realistic setting, we
have to either estimate the parameters of the MDP and use these to derive a policy, or somehow implicitly
build up knowledge of the environment to construct a policy. Options include TD-learning, Q-learning and
LSPI. LSPI builds upon a method called LSTD, which attempts approximate the state value function using a
linear representation. This is useful when the state space is large and/or continuous. Specifically, we assume
that

V(s) =wo(s) + A(s),

where ¢(s) is some vector representation of the state s, w is a set of weights, and A(s) is an error term. We’d
like to pick w so as to get a good approximation to V', or equivalently that the elements of A(s) are small in

some sense. Recall that V' was defined by the Bellman equation,
V =R+~PV.
Trivially, this can be thought of as the fixed point of the function
f(v) = R+~Pv,

where v is a vector. So, there are at least two possible criteria for picking a good w, each potentially yielding
a different solution:

e Find the fixed point of f. Then, pick w to yield the best approximation to this fixed point.

e Construct a function f that mimics f, but only yields outputs that are of the form ®w. Then, find the

fixed point of this f , and extract the corresponding weight w.

It turns out that the latter has better performance, so we will focus on that. We will consider the function
f(v) =R+ ~Pv

where v is constrained to be of the form ®w for some w. Does this equation have a fixed point? In general,
no, because we need
v=R+~vPv = ®w= R+ yPow,

and the latter linear system may be overdetermined in general. So, analyzing this particular function seems
futile. Intuitively, the problem is that the left hand side, ®w, necessarily returns a vector that is a linear
combination of the columns of ®, i.e. an element of the columnspace of ®. The RHS is not guaranteed
to lie in this space, and so an exact solution is impossible. What if we force the values of f to lie in this
columnspace? Then, we can guarantee that there exists a fixed point solution. In particular, consider

f(v) = ®(@7®) dT (R + ~Pv),

where as before v is constrained to be of the form v = ®w. Here, Xt denotes the pseudo-inverse of X. If the
columns of ® are linearly independent, it turns out that the pseudo-inverse of ®7 ® equals the inverse. We’ll
assume this is so from hereon in. It turns out that we can guarantee a solution to the new fixed point equation

v==>(@7®) T (R +vPv) = dw = &(dT®) 'dT (R + yPIw).

So, we need to solve
dw = ®(®TP) 10T (R + yPOw).

First, note that by left-multiplying both sides by ®7', we get
(@7 ®)w = T (R + yPdw).

Rearranging, we get
w = (®T(I —yP)®) '@ R.

Thus, we can just use the above as our weights, and use this to approximate the value function as

V =@ (1 —~P)d)'oTR.

Of course, this doesn’t really address the fact that we don’t know the transition function, and must estimate it
from data. The details of this are in the lecture notes.

