
CSE250A Fall ’12: Discussion Week 6

Aditya Menon (akmenon@ucsd.edu)

November 8, 2012

1 Schedule for today

• Recap of EM algorithm.

• Example: flipping two coins.

• Mixture models.

2 Recap of EM

We have applied the principle of maximum likelihood to learn the CPT parameters θ of a Bayesian network
over nodes X = (X1, . . . , XN). The principle was to choose

θ̂ = argmaxθ L(θ)

where L(θ) = log Pr[X; θ]. In particular, this procedure may be employed given some set of random samples
{x(t)}Tt=1 from the network.

The principle of maximum likelihood applies regardless of the nature of L(θ). But sometimes, it may be the
case that L(θ) is a “complicated” function in the sense of being not convex, or not differentiable. In such
cases, solving the maximization to find θ̂ may be computationally difficult.

Fortunately, we can sometimes estimate θ̂ if Pr[X; θ] breaks into several simpler components. In particular,
we can often introduce a hidden variable Z, and use the fact that

Pr[X; θ] =
∑
Z

Pr[X,Z; θ] =
∑
Z

Pr[X|Z; θ] Pr[Z; θ].

Now suppose that we could get samples from both X and Z. Then, if Pr[X|Z] and Pr[Z] are “simple”
functions, estimating θ by argmaxθ Pr[X,Z; θ] is in principle feasible.

However, we generally only have samples available from X . So, the above seems like it may be a fruitless
exercise. Fortunately, there is a solution: the EM algorithm. The basic idea can be illustrated as follows:

1. Pick a random initial value for θ, call it θ0. Remember that this means we generate random values for
the CPT entries. This likely gives a terrible value of L, so we’d like to refine it.

2. If we knewZ, we claimed that estimating θ would be simple. But we only knowX . So we just generate
an instance of Z from Pr[Z|X; θ0]. That is, based on the current guess for the CPT parameters, and the
data that we observed, we take a guess as to what the corresponding hidden variable might look like.
Call the resulting sample z.

1

3. Now apply the principle of maximum likelihood to

L̃(θ) := log Pr[X, z; θ]

We use L̃ to denote that this is not really the true likelihood of the observed data X , but rather a crude
approximation to it based on our sample z. We hope that the resulting solution θ1 improves the true
likelihood L.

4. Repeat steps (2)-(3) until convergence.

The EM algorithm is a refinement of the above. Instead of taking a sample z from Pr[Z|X; θ0] and opti-
mizing log Pr[X, z; θ], we consider optimizing the expected value of log Pr[X,Z; θ] under the distribution
Pr[Z|X; θ0]. It is a remarkable fact that the resulting solution necessarily improves the true likelihood,
log Pr[X; θ].

3 Example: flipping two coins

We previously considered a setting where we have a biased coin that lands heads with probability p. We
represented this as a trivial Bayesian network with a single nodeX . We showed that the maximum likelihood
estimate of p given samples (or coin flips) {x(t)}Tt=1 is p̂ = (1/T)

∑T
t=1 xt.

Now suppose that we have two biased coins, with biases p0 and p1. If we separately flipped the coins a
number of times, we could apply the above estimate to compute both biases. Now suppose that these are the
only two coins available for a toss to decide which team gets first play in a sports match. So, the coin toss for
a game occurs as follows: the umpire picks one of the two coins, flips it, and the result is used to determine
who plays first. There are two questions we are interested in: how often does each coin get flipped, and what
are the biases of each coin?

Formally, as a Bayesian network, we have a binary node X representing the outcome of the umpire’s flip.
This node has as parent a binary node Z which reflects the coin that the umpire chooses to flip. That is,

Pr[X = 1|Z = z] = pz

Pr[Z = z] := πz.

Clearly π0 + π1 = 1. Our goal is thus to estimate θ = (p0, p1, π0). Note that

Pr[X = x; θ] =
∑
z

Pr[X = x|z; θ] · Pr[z; θ] =
∑
z

pxz (1− pz)(1−x) · πz.

We will consider different settings in terms of the data available, and explain how to estimate θ in each.

Setting (a). Suppose the umpire tells us which coin he is going to flip. That is, we have samples {(x(t), z(t))}
at our disposal. We can then just apply standard maximum likelihood on L(θ),

L(θ) =
T∑
t=1

log Pr[x(t), z(t); θ] =

T∑
t=1

(x(t) log pz(t) + (1− x(t)) log(1− pz(t))) + log πz(t) .

Intuitively, we would expect that

p̂z =

∑T
t=1 1[z = zt] · xt∑T
t=1 1[z = zt]

π̂z =
1

T

T∑
t=1

1[z = zt].

2

That is, to find the bias of each coin, restrict attention to cases where that coin was flipped. To find the
probability of choosing a coin, find the fraction of times it was picked.

Setting (b). Suppose that we just know the outcome of the umpire’s flip. That is, we have samples {x(t)}.
The likelihood is

L(θ) =
T∑
t=1

log Pr[x(t); θ]

=

T∑
t=1

log
∑
z

Pr[x(t), z; θ]

=

T∑
t=1

log

(∑
z

px
(t)

z (1− pz)(1−x
(t)) · πz

)
.

We must find the optimal values of (p0, p1, π0). This looks hard! Fortunately, we can look to apply EM here.
Let’s apply the templates for the E-step and M-step:

E-step. We need to compute Pr[Z|X; θ]. By Bayes’ rule, this is

Pr[Z = z|X = x] =
Pr[X = x|Z = z] Pr[Z = z]∑

z′ Pr[X|z′] Pr[z′]

=
pxz (1− pz)(1−x) · πz∑
z′ p

x
z′(1− pz′)(1−x) · πz′

.

Let’s call this quantity γ(z, x) for clarity. Given the outcome of a coin flip, this tells us how likely our
parameters think it is that the umpire chose each of the two coins.

M-step. We need to update all CPT parameters, that is, πz = Pr[Z = z] and pz = Pr[X = 1|Z = z]. The
updates are

πz =

∑T
t=1 Pr[Z = z|x(t)]∑T
t=1 Pr[∅|x(t)]

=

∑T
t=1 γ(z, x

(t))

T

pz =

∑T
t=1 Pr[X = 1, Z = z|x(t)]∑T

t=1 Pr[Z = z|x(t)]

=

∑T
t=1 Pr[X = 1|Z = z, x(t)] Pr[Z = z|x(t)]∑T

t=1 Pr[Z = z|x(t)]

=

∑T
t=1 γ(z, x

(t)) · x(t)∑T
t=1 γ(z, x

(t))

The updates are intuitive. For πz , we average all the posteriors Pr[Z|X]. This means that we look at how
likely each coin was for all the samples, and take the average score as being the probability of choosing that
particular coin. For pz , we count the number of heads as before, except that we now weight each such heads
with our uncertainty as to which coin it was that was responsible for that flip.

Contrast the updates to those in setting (a): instead of using a hard indicator function, we use soft weights γ
to denote our uncertainty in the true z values.

Setting (c). Suppose we know the outcome of the umpire’s flip, but not which coin was flipped. That is, we
have samples {x(t)}. However, the generous umpire tells us beforehand what the biases of each coin are.

3

That is, pz is known, but πz is not, and we must estimate it. We need to optimize the same likelihood as
setting (b) with respect to πz; remember that the pz’s are fixed constants. This can be done by setting the
gradient equal to 0 and with Lagrange multipliers. But we can also apply the EM updates from the previous
setting. Of course, we do not look to update pz in the M-step, because that is a fixed constant. Similarly,
when computing γ(z, x), we use the given value of pz , but for πz use our current estimate.

4 Mixture models

The above can be thought of as a special case of a mixture model. We say that X has a mixture distribution if

Pr[X = x; θ] =

K−1∑
z=0

πzfz(x; θz),

where 0 ≤ πz ≤ 1, 1Tπ = 1, and for each z, fz denotes some distinct probability distribution. In the above,
we had

Pr[X = x; θ] =
1∑
z=0

πzBernoulli(x; θz),

where θz = (pz). In general the πz’s are known as mixing weights and the fz’s as mixture components.

We can also think of a mixture distribution as being the result of the influence of a hidden variable Z on X .
Specifically, if we have

Pr[X = x|Z = z] = fz(x; θz)

Pr[Z = z] = πz,

then it should be clear that we recover the same distribution for Pr[X = x] above.

In general, when we wish to fit a mixture model, we need to estimate two things: the mixing weights,
and the parameters for each mixture component. EM is one approach to doing this, and the analysis of
the previous section may be largely borrowed to handle the general mixture model case. In particular, we
compute the γ(z, x)’s as before (called the responsibilities), and the M-step update for the mixing weights
stays the same. What changes is the M-step update for the parameters θz , because this depends on the nature
of the distribution fz .

4

