
CSE250A Fall ’12: Discussion Week 4

Aditya Menon (akmenon@ucsd.edu)

October 26, 2012

1 Schedule for today

• Maximum likelihood.

• Unigram and bigram models.

2 Maximum likelihood

We begin with a simple example. Suppose we have a Bayesian network with only one node, call it X . Say
X ∈ {0, 1}, and Pr[X = 1] = p is unknown. So, X represents the outcome from flipping a biased coin.
How could we go about estimating p, or equivalently, the bias of the coin?

Maximum likelihood estimation is a particular procedure for doing so. We assume that we can collect inde-
pendent samples {x(1), . . . , x(T)} from the network. These are just coin flips, of course. We now want to
estimate p. The maximum likelihood solution is

p̂ = argmaxp Pr[x(1), . . . x(T); p]

= argmaxp log Pr[x(1), . . . x(T); p]

= argmaxp log

T∏
t=1

Pr[X = x(t); p]

= argmaxp

T∑
t=1

log Pr[X = x(t); p]

= argmaxp

T∑
t=1

x(t) log p+ (1− x(t)) log(1− p).

It turns out that this is p̂ =
∑T
t=1 x

(t)/T , that is, the fraction of times the coin landed hands. This is what we
expect intuitively!

The same idea holds for a general Bayesian network involving some random variables X1, . . . , XN . We
assume that we know the structure of the network, but don’t know the values to put into the CPTs. Remember
that these are weights

Pr[Xi = xi|Pa(Xi) = π]

where Pa(X) denotes the parents of X , xi all possible values of Xi, π all possible values of the parents of
Xi. Let Θ refer to all such parameters in all CPTs in the network. To slightly abuse notation, let Θ(i, xi, π) =
Pr[Xi = xi|Pa(Xi) = π].

1

Suppose we are given some independent random samples from the network, call them {x(1), . . . , x(T)}. Each
x(t) = {x(t)1 , . . . , x

(t)
N }. Note that

Pr[(X1, . . . , XN) = x(t); Θ] =

N∏
i=1

Pr[Xi = x
(t)
i |Pa(Xi) = π

(t)
i ; Θ]

=

N∏
i=1

Θ(i, x
(t)
i , π

(t)
i)

This is from the canonical decomposition of a Bayesian network.

The principle of maximum likelihood says that we should choose

Θ̂ = argmaxθ Pr[x(1), . . . , x(T)|Θ].

Since the samples from the network are independent, this is equivalent to maximizing

L(Θ) = log Pr[x(1), . . . , x(T)|Θ]

= log

T∏
t=1

Pr[x(t)|Θ]

=

T∑
t=1

log Pr[x(t)|Θ]

=

T∑
t=1

N∑
i=1

log Pr[Xi = x
(t)
i |Pa(Xi) = π

(t)
i]

=

T∑
t=1

N∑
i=1

log Θ(i, x
(t)
i , π

(t)
i).

The function L(Θ) is called the likelihood function. Sometimes, this optimization can be done in closed
form, like the coin flips example. But often it can’t. Then, we resort to numerical optimization techniques
like gradient descent.

3 Unigram models

Let’s consider the problem of learning a probabilistic model for sentences through maximum likelihood.
Such a model will let us generate random sentences that, depending on how good the model is, may seem
remarkably coherent!

We’ll represent a sentence of length N by W1,W2, . . . ,WN . We will think of each Wi as being a ran-
dom variable. This is because we want to think of a word’s inclusion in a sentence as being governed by
some probability. The possible values for the random variable Wi are the strings in some vocabulary V , for
example, all words in the English language.

For every sentence of length N , the unigram model of text posits that

• There are no relationships between the random variables Wi and Wj for i 6= j. That is, the Bayesian
network is completely disconnected.

• The CPT for every node i, specifying Pr[Wi], is identical.

This is not a very sensible model: it says that a sentence is just a random collection of words, and that the
words don’t have to flow together. In particular, note that

Pr[W1 = w1,W2 = w2] = Pr[W1 = w2,W2 = w1].

2

This is known as the bag of words assumption: a sentence is formed by just tossing together some words
into a “bag”, where they all get jumbled up. (This property is also known as exchangeability of the random
variables.)

3.1 Learning unigram models

The CPT for a given i specifies
Pr[Wi = w] = θw

for every word w ∈ V . Therefore, the number of free parameters in a unigram model is |V| − 1.

Suppose we have a corpus of sentences, {s(1), . . . , s(T)}, possibly of varying lengths, and we would like to
model them with unigrams. We can ask: what is the “best” choice of CPT to explain the data? Equivalently,
we want to find a way to choose the weights Θ = {θw : w ∈ V}. Maximum likelihood says that we should
choose the weights that maximize the probability of the sentences under a unigram model:

Θ̂ = argmaxθ Pr[s(1), . . . , s(T); Θ].

The log-likelihood simplifies to

log Pr[s(1), . . . , s(T); Θ] = log

T∏
t=1

Pr[s(t); Θ]

= log

T∏
t=1

Ni∏
i=1

Pr[Wi = w
(t)
i ; Θ]

=

T∑
t=1

Ni∑
i=1

log Θ(w
(t)
i).

It turns out that, as expected, the optimal solution to the above is to just find the frequency of occurence of
each word.

3.2 An example

Let’s say that s(1) =“I want to know”, s(2) =“I and I”, s(3) =“I know what I want to”, s(4) =“You and I”.
The vocabulary is { I, want, to, know, and, what, You }. The counts of the words are:

Word Count
I 6

want 2
to 2

know 2
and 2
what 1
You 1

The CPT probabilities are derived by normalizing by the total number of words, namely, 16. What’s the
probability of the sentence “I want to” under this learned model?

Pr[“I want to”] = Pr[W1 = “I”,W2 = “want”,W3 = “to”]

= Pr[I] · Pr[want] · Pr[to]

= (6/16) · (2/16) · (2/16)

≈ 0.0058.

3

Note that the probability of the sentence “to want I” under this learned model is identical, i.e. shuffling the
words around doesn;t matter.

We see that the model penalizes long sentences at an exponential rate. To do better, we can try to exploit the
structure of the sentence. Bigram models are a way to do this.

4 Bigram models

In a bigram model, we assume that

• There is a Markovian relationship between the random variables, i.e. W1 →W2 → . . .→WN .

• The CPT for every node i, specifying Pr[Wi|Wi−1], is identical. (Generally we augment the network
with dummy start and end nodes W0,WN+1.)

This is a better model. Once we generate a particular word in the sentence, that influences what the next word
is going to be. (It does affect the word after too, but only implicitly.) Note that now, in general,

Pr[W1 = w1,W2 = w2] 6= Pr[W1 = w2,W2 = w1].

4.1 Learning bigram models

The CPT for a given i specifies
Pr[Wi = w|Wi−1 = w′] = θww′

for every pair of words w,w′ ∈ V . So, the total number of parameters to estimate in a bigram model is
|V|2 − 1.

We can apply the principle of maximum likelihood to learn these weights also. For a given corpus, the
log-likelihood is

log Pr[s(1), . . . , s(T); Θ] = log

T∏
t=1

Pr[s(t); Θ]

= log

T∏
t=1

Ni+1∏
i=1

Pr[Wi = w
(t)
i |Wi=1 = w

(t)
i−1; Θ]

=

T∑
t=1

Ni+1∑
i=1

log Θ(w
(t)
i , w

(t)
i−1).

It turns out that the optimal parameters involving counting the fraction of times that word w follows word w′.
For our example from before, the table of such counts looks like the following.

START I want to know and what You END
START 0 3 0 0 0 0 0 1 0

I 0 0 2 0 1 1 0 0 2
want 0 0 0 2 0 0 0 0 0

to 0 0 0 0 1 0 0 0 1
know 0 0 0 0 0 0 0 0 0
and 0 2 0 0 0 0 0 0 0
what 0 1 0 0 0 0 0 0 0
You 0 0 0 0 0 1 0 0 0
END 0 0 0 0 0 0 0 0 0

To get the CPT probabilities, we divide each row by the sum of its elements.

4

4.2 An example

What’s the probability of the sentence “I want to” under this learned model?

Pr[“I want to”] = Pr[START→ I] · Pr[I→ want] · Pr[want→ to] · Pr[to→ END]

= (3/4) · (2/6) · (2/2) · (1/2)

= 0.125.

Note that the probability of the sentence “to want I” under this learned model is 0, i.e. shuffling the words
around matters.

5

