208

liabiiity of the Path Ana

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-2, NO. 3, SEPTEMRER 1976

lysis Testing Strategy

WILLIAM E. HOWDEN

Abstract—A set of fest data T for a program P is refiohle if it reveals
that P contains an emror whenever P is incorrect. If a set of tests T is
reliable and P produces the correct output for each element of T then
P is a comrect program. Test data generation straicgies are procedures
for generating sets of test data. A testing strategy is reliable for a pro-
geara P if it produces a reliable set of {est data for P. It is proved that
an effective testing strategy which is reliable for all programs cannot
be constructed. A description of the path amalysis testing sizategy is
presented. In the path analysis strategy data are generated which cause
different paths in a2 program to be execnted. A method for analyzing
the reliability of path testing i: intzcduced. The method is used to
characterize certain classes of programs and program errors for which
the path anaiysis strategy is reliable. Examples of published incorrect
programs aze included.

Index Terms—Path analysis, program comectness, progzam testing,
symbolic evaluation.

I. INTRODUCTION

UR INTUITION tempts us into believing that when we
test a program on a set of tests T we know more about
the reliability of the program than its reliability over
this set. When a program works correctly for a set of “well-
chosen” tests we have the feeling that unless we have forgotten
to test for some possible class of mistakes that the program is

correct. This paper studies this phenomenon for a particular
class of testing strategies.

II. ProviNG CORRECTNESS BY TESTING

Suppose that P is a program which is meant to compute a
function F with domain D. Then the correctness of P can be
determined by testing it on each clement of D. ¥ D is effcc-
tively infinite this approach is infeasibie. In order to deter-
mine correctness by testing it is necessary to be able to gener-
ate a finite set T C D which has the following two properties:

1) for each x€ T there is a computable procedure for de-
termining whether or noi P terminates for x; and

2) P(x) = F(x) for all x € T = P(x) = F(x) for all x € D. The
first condition is necessary so that a programmer will know
when to stop a program which is caught in an infinite loop.

In practice, it is often possible to predict in advance an
upper bound b(x) such that if P fails to terminate for x within
computation time b(x), then P will not terminate. The cor-
rectness of programs having this property can be determined
with test sets satisfying property 2) above. In this and the fol-
lowing sections we will assume that the programs P satisfy this

rod
K

e I I D N Y U Y A
u GISCIESSION UG 8130 06 Carnel Gut Witnout ine

assumption but at the cost of requiring that “reliable” test

Manuscript received December 30, 1975; revised March 1, 1976.
The author is with the Department of Applied Physics and Informa-
tion Science, University of California, San Diego, La Jolla, CA 92037.

data satisfy both conditions 1) and 2) above, rather than just
condition 2).

It is easy to prove that a test set T satisfying condition 2) ex-
ists for all programs P and functions F.

Thecrem 1: Suppose that P is a program for computing a
function F with domain D. There exists a finite subset T of
D which can be used to determine the correctness of P, ie.,
there exists a finite set T C D such that

P&y =Fx) fordli xET=Px)=F(x) forall x&D.

Proof: Either P is correct or it is not. If P is correct
chocse T = {x]} for any x €D. If P is not coireci there exisis
some x such that P(x) # F(x). Choose T = {x}. The set T sat-
isfies the required conditions.

The proof of the above theorem is disappointing. If we
knew whether or not P was correct it would not be necessary
to test it. What is really required is a computable procedure,
or test strategy, which can be used to generate a test set T for
any program P. It can be proved that no such procedure
exists,

Theorem 2: There exists no computable procedure H which,
given an arbitrary program P and function F with domain D,
can be used to generate a nonempty finite set T C D such that:

P(x)=F(x) forall x€ET=P(x)=F(x) forall x&D.

Proof: 1f such a procedure existed, it would be possible to
use it to deiermine the equivalence of arbitrary primitive re-
cursive functions. It is known that no such procedure exists
{3]. The argument runs as follows. Let P, and P, be any two
programs in a language for constructing programs which com-
pute primitive recursive functions. Let F be the function com-
puted by P,. Since P, and P, are primitive recursive they ter-
minate and H can be used for determining the correctness of
P, for calculating F. This is equivalent to determining the
equivalence of P, and P,.

Theorem 2 tells us that the best that can be hoped for are
test strategies which work for particular classes of programs 9.
In the following sections we will examine the systematic test-
ing strategy which is currently receiving the most attention.
Classes of programs ? are characterized for which the straiegy
is reliable. First the notion of reliability is considered.

ITIl. RELIABLE TEST DATA
Any subset of a program’s input domain can be considered a
sei of tesi data. A testing strategy is a procedure for choosing
a set of test data.
Definition: Suppose P is a program for computing a func-
tion F whose domain is the set D. Let T CD. Tis areliahle
test set for P if:

HOWDEN: PATH ANALYSIS TESTING STRATEGY

PY=F(x) forall x€T= Pxy=F

Another way of staiing this is that T is reliable for P if T re-
veals that P is incorrect whenever P contains an error (ie.,
P(x) # F(x) for some x €).

The testing strategies we will consider are actually proce-
dures for choosing a sequenee {T,}0
domain of a program. Each of the sets T; is chosen to test
some aspect of the program. in path analysis approaches w
testing, each set T; consists of the subset of the input domain
which causes a path P; in the program 1o be executed. We as-
sume that the programmer constructs a test sei T from the
sequence {T;};_, by choosing one eleinent from each T:.
This approach to testing strategies makes it possivie to con-
sider different levels of reliability.

Definition: Suppose P is a program and H is a testing strat-
egy. iet {T;}., be the subsets of the input domain of P gen-
erated by H. Suppose that any set T which can be constructed
by choosing one element from each T; is a reliable test set.
Then H is a reliable test strategy for P.

Theorem 3: Suppose that P is a program for computing a
function F and H is a testing strategy for P. Let {Ti}i., be
the sequence of input domain subsets generated by H. Then H
is a reliable test strategy for P <= P is correct or there exists a
set T; such that P(x) # F(x) forall x € T;.

In order to simplify our discussion we will assume in the fol-
lowing sections that input domain sets can be infinite and that
variables are represented to arbitrarily precise accuracy. Some
of the definitions, theorems, and examples are correct inde-
pendently of this assumption. The others require occasionally
awkward modifications.

In some cases a testing strategy H is “almost reliable” for a
program P. Consider the program P in Example 1. The pro-
gram is correct except for the missing initialization assignment
SUM = X which should occur before the DO-lcop. One pos-
sibie strategy for testing P is to choose data which test all
paths which cause less than n iterations of the loop in P.
Suppose that the strategy H involves the generation of a se-
quence {T;}{_, consisting of the subsets of the input domain
which cause the loop in P to be executed i times, 1 <i<n,
and the selection of a set T containing cne clement chosen at
random from each nenempty T;. P gives incorrect answers for
each element (X, E) of each T, except for the pairs (Y, E)
where Y is the default setting of the uninitialized variable
SUM. Decompose each T; into two sets T; and T} where T:
contains all (X, E) where X # Y and T{ contains all (X, E)
where X =Y. T, Tj, and Ty are all two-dimensional subsets
of Euclidean 2-space. Since the two-dimensional area of T;
is nonzero and the two-dimensionai area of T, is zero, the
chance of choosing an element at random from T; which lies
in T{ is negligible. It is almost certain that all of the elements

of T will belong to the subsets T!

S D S

of euhasts oof the innnd
O subsats of the innut

be ievealed when P is iested on
reliable.”

Note that the phrase “almost refiable” is only meaningful for
the strategy H in which elements of T; are chosen at random.

In practice, elements of T; may not be chosen at random and

249

it will not be meaningful to describe the associzted strategy
as being almost reliable.

Example 1: The following program P is supposed to com-
pute sine(x), using the Maclaurin series, for any real number x.
It is missing an initialization assignment.

LS
C THIS DECLARATION COMPUTES SIN(X) TO ACCURACY E

DOUBLE PRECISION E, TERM, SUM

REAL X

TERM = X

DO201=3,100,2

TERM = TERM * X =22/{A*{I-1))

SUM = SUM + (1) ==(1/2)) * TERM

IF (DABS (TERM) .LT. E) GO TO 30

it

s

LAY X RN

30 SIN = SUM
RETURN
END

Definition: Suppose that P is a program for computing a
function F whose domain D is a subset of Euclidean n-space
and H is a testing strategy for P. Let {T;}{., be the sequence
of input domain subsets generated by H. Suppose the T; have
subsets T; such that any set T' containing one element from
each T is a reliable test set for P. If T{ = T, whenever the vol-
ume of T; is zero, and T{ contains all of T; except a subset of
zero volume whenever the volume of T; is nonzero, then His
an almost reliable test strategy for P.

Theorem 4: Suppose that P is a program for coemputing a
function F whose domain D is a subset of Euclidean n-space
and that H is a testing strategy for P. Let {Ti}L, be the se-
quence of input domain subsets generated by H. Then H is an
almost reliable test strategy for P <= P is correct or there ex-
ists a set 1 such that:

1) the n-dimensional volume of T; is zero and P(x) # F(x)
forall x €T; or

2) the n-dimensional volume of T; is nonzero and P(x) #
F(x) for all but a zero volume subset of T;.

Theorems 3 and 4 indicate that we should attempt to choose
test sets Tj so that if P(x) #F(x) forsome x € Ti then P(x) #
F(x) for {(almost) ail x € T;.

IV. CLASSES OF PROGRAMS AND PROGRAM ERRORS

The classes of programs $ for which we will characierize the
reliability of the path analysis testing strategy are associated
with different kinds of errors in programs. We will be con-
cerned with programs which are either correct or can be con-
sidered deviations from a hypothetical correct program P¥,
The “differences” between P and P* define the errors in P.
Each class of programs ? will consist of correct programs P*
togather with incorrest arnorams itk 3

PLURIQIED

some iype of erfor.

A path through a program corsusponds 1o some possible flow
of control. A path may be infeasible in the sense that there is
no input data which will cause the path to be executed. Flows
of control involving different numbers of iterations of loops

210

are considered to be dif¥refit paths. In general, a program
containing loops will have an infinite number of paths. The er-
rorIs in a program can be categorized in terms of their effects
on the paths through the program.

Associated with each path through a program is the subset
of the input domain which causes the path to be followad and
a sequence of computations which is carried out by the path.

Definition: Suppose P; is a path through a program P. Then
the path domain D; = D(P)) for P, is the subset of the input do-
main which causes P; to be executed. The parh computation
C; = C(P)) for P; is the function which is computed by the se-
quence of computations in P;.

The domain of the functions C; is considered to be the do-
main D of P. During execution of the program P, each compu-
tation C(P;) is only carried out over the path domain D(P,), In
general C; may not be defined over all of D or, since P may
contain errors, even over all of D;. In comparing two compu-
tations C; and C;, we say that C; and C; are equivalent (C; = Cy)
it C; and C; are defined for the same subset B’ of D and
CW=Ci(x)forallxED'.

Symbolic evaluation of a path can be used to construct a sys-
tem of predicates which describes the path domain of any fi-
nite path in terms of the path’s input variables [2], [12], [14].
Symbolic evaluation can also be used to construct a set of ex-
pressions describing the path computation for any finite path
in terms of input variables. In the symbelic evaluation process,
symbols are used to stand for symbolic input values and vari-
ables in expressions are bound by substitution of the symbolic
expiessions iepreseniing theéir cument symbolic values. Sx-
ample 2 contains the path domains and path computations for
two of the paths in the program in Example 1.

Example 2:

a) Path which exits from loop during first iteration. Path
domain: All (x, E) such that |x*/(3*2)|<E. Path computa-
ton: SUM -x3/(3*2).

b) Path which exits from loop during second iteration.
Path domain: All (x,E) such that |x3/(3*2)| > E and |x°/
(5%4*3%2)| < E. Path computation: SUM - x3/(3*2) +
x5 J(5%4%3%2),

The effects of program errors on the paths through a pro-
gram can be described in terms of their effecis on the path
domains and path computations of the paths. Three simple
classes of errors will be siudied. If there is an isomorphism
(one-to-one correspondence) between the paths P; of P and
the paths P of the correct version P* of P such that D) =
D(P{") and C(P;) = C(P{) for all paths, then P = P* and P is
correct. If P is not coireci, no isomorphism having those prop-
erties can be constructed. Either the domains or the compu-
tations, or both, of P and P* will be different.

Definition: Suppose P is an incorrect program for comput-
ing a function F and P* is a correct program. Suppose there
is an isomorphism between the paths P; of P and the paths
P¥ of P* such that for all pairs of paths (P;, P{%), D(P;) = D(P})
but that for some pair (P, Pi), C(Py) # C(PF). Then P con-
tains a path computation or computation error.

Definition: Suppose P is an incorrect program for comput-
ing a function F and P* is a correct program. Suppose there is
an isomorphism between the paths P; of P and the paths P¥ of

P* such that for all pairs of paths (P;, P}, C(P;) = C(P}), but

that for some pairs {Py, P¥), D(Py) # D{(PL). Then P contains
a path domain or domain error.

Definition: Suppose P is an incorrect program for comput-
ing a function F and P* is 2 correct program. Suppose there is
an isomorphism between the paths P; of P and a subset of the
paths P of P* such that CPF) = C@,) and DFF) C D)) for
ali paths F; in P. Then ¥ contains a subcase error.

Definition: C(P) is the set of all path computations for all
paths in the program P. D(P) is the set of all path domains for
all paths in P.

When a program contains a computation error we assume
that the paths in P and P* have been indexed so that D(P;) =
D(P{) for all paths. When it coniains a domain or a subcase
error we assume they have been indexed so that C(®;) = CP)
for all paths P; in P,

Different relationships can be proved between classes of
statement type errots and errors which are defined in terms
of the domains and computations for a program.

Theorem 5: Suppose that P is an incorrect program and that
the only difference between P and P* is in some statement
which does not affect the flow of control in P. Then P hasa
computation error.

Theorem 6: Suppose that P is an incorrect program and that
the only difference between P and a correct program P* is in
some statement which affects the flow of controlin P. Then P
may have a computation, domain, or subcase error.

V. PATH ANALYSIS TESTING STRATEGY

in e pailt analysis approach: o iesiing 4 progiam, T is
tested by gencrating test data which cause selected paths in P
to be executed. Much of the current work in test data genera-
tion involves systems which automate parts of the path anal-
ysis testing strategy. In some of the systems the user selects
program paths and the computer generates descrintions of the
data which cause the paths to be followed. In other systems
the program is automatically decomposed into classes of paihs
and one path is selected from each class. All of the systems
result in the generation of a sequence of sets {T;}{., which
correspond to path domains or to unions of path domains.

In practice, a program P may have an infinite number of
paths. Any practical path analysis strategy will have to in-
volve a procedure for selecting a subset of the total set of
paths. In the analysis carried out in this section the potential
reliability of path analysis strategies is examined by consider-
ing the degree of reliability that couid be obtained if it were
possible to test every path in a program. In this idealized situ-
ation the path analysis testing strategy results in the generation
of a sequence of sets {T;}", which corresponds to the com-
plete set of path domains for a program. A (possibly infinite)
set of test data T is constructed by choosing one element at
random from each nonempty set T;. This testing strategy will
be referred to as P-testing.

Definition: Suppose Pi is a path in a program P. Then
Py(x) is computed by carrying out the sequence of nontransfer
statement computations in Py, ie., Pi(x)=Ci(x) where C; =
C(P,).

Theorem 7: Suppose that 9 is a set of programs containing a
correct program P* for computing some function F. Then
P-testing is reliable for testing the programs P in P < each

HOWDEN: PATH ANALYSIS TESTING STRATEGY

P e P

© & Jis cither correct or has a feasible path P; such that
P;(x) # P*(x) for all x € D(P)).
In the following subsections the reliability of P-testing is

characterized for different classes of programs 7.

A, Computation Errors

In this subsection we will assume that ? is a set of programs
for computing a function F and that the programs in 7 are
either correct or contain computation errors. Recall that the
type of error an incorrect program contains is defined with
respect to a particular correct program. Each of the incorrect
programs P in 7 are assumed to have computation errors rela-
tive to a particular correct program P* which is also in #. The
paths in the incorrect programs P and the correct program P*
are indexed sc that D(P;) = D(P}) for all paths.

Theorem 8: P-testing is reliable for testing the programs in
$< every program P in 9 is either correct or has a feasible
path P, such that Py(x} # PJ{(x) for all x € D{F)).

All of the examples in this section are taken from the “Com-
mon Blunders” section in The Elements of Programming Style
{13]. Incorrect statements in the programs are italicized.
Corrections are also italicized and are enclosed in angle
brackets. The original incorrect programs are the programs
without the statements in angle brackets. The corrected
programs are the programs which contain the italicized state-
ments in angle brackets but not the other italicized statements.

Example 3: The following program P is supposed to com-
pute the number of class marks which f21! within certain
ranges. It contains an incorrect assignment statement which
causes a computation error.

DO 40I=1, N
C TEST IF DATA IS IN RANGE

IF (MARKS(I) .LT. 1 .OR. MARKS{D .GT. 100) GO TO 34
C TRANSFORMATION TO DIRECTLY DETERMINE CLASS
C INTERVAL MEMBERSHIP

J=MARKS(I) - 1/10+ 1
<J=(MARKS(I)—-1)/10+ 1 >
NCLASS(3) = NCLASS(J) + 1
GO TO 40
30 WRITE (3, 102) MARKS(I)
102 FORMAT (‘ ***MKS001 - DATA OUT OF RANGE ’, 112)
40 CONTINUE

P-esting is reliable for testing P. (Let P, be the path in P
which causes the DCoop to be traversed exactly once and
which causes the incorrect statement to be executed during
that iteration.)

Twelve of the eighteen errors in Kernighan and Plauger [13]
are computation errors. P-testing is reliable or almost reliable
for discovering nine of these errors. For one erior it was not
immediately obvious whether or not P-testing is reliable. In
general, the P-testing reliability question is undecidabie.

B. Domain Errors

In this subsection we will assume that 9 is a set of programs
which are either correct or contain domain errors. The paths
in the incorrect programs P and in the corresponding correct

211

programs P* are indexed so that C(P;) = C(P¥) for all paths
in ¥,

The conditions for the reliability of P-testing for domain er-
rors are simplified when a program’s paths are “distinct.”

Definition: Suppose P, and P, are two paths in a program P
with domain D. P; and P, are distinct if P, (5) # P, (x) for ail
x € D. The paths in a program are distinct if any pair of paths
in the program is distinct.

Theorem 9: Suppose that the paths in each correct program
P* in ? are distinct. Then P-testing is reliable for testing the
programs in ? <= every program P in ? is either correct or has
a feasible path P; such that D(P;) N\ D(PY) = ¢.

Proof:

1) Suppose P-testing is reliable for each PE 7. Let PE 9
and suppose P is not correct. Theorem 7 implies there exists a
feasible path P; such that for all x € D(P}), Py(x) # P¥(x).
Suppose D(P;) N D(P{’) # ¢. Choose x € D(P;) N D(PF).
C(P)) = C(PF) = Py(x) = P¥(x). x € D(P) = P¥(x) = Pi(x) >
P;(x) = P*(x) which is contradictory.

2) Suppose P € P has a feasible path P, such that DEPEHY N
D) = ¢. LetxED(P;). DP)NDPH=¢p=>xe D(PY) for
some j # i. C(Pj) = C(P{") and paths distinct = P,(x) # PF(x).
P¥(x) = P{(x) = P;(x) # P*(x). = P-testing is reliable for P.

The necessary conditions for reliability in the above theorem
do not depend on path distinctness. The following theorem is
a special case of Theorem 9.

Theorem 10: If P-testing is reliable for testing the programs
in P then every program P € @ is either correct or it has a fea-
sible path P; such that D(P;) N D(P}) = ¢.

Theorem 10 can be used to prove that P-testing is not re-
liable for the program P in the following example. For all
paths P; in P, D(P;) N D(P}) # ¢.

Example 4: The following program P is supposed to com-
pute sine{x) using the Mactaurin series. It contains an incor-
rect transfer statement which causes a domain error.

DOUBLE PRECISION FUNCTION SIN (X, E)
C THIS DECLARATION COMPUTES SIN(X) TO ACCURACY E
DOUBLE PRECISION E, TERM, SUM
REAL X
TERM = X
SUM = X
DO 201 = 3, 100, 2
TERM = TERM * X **2/(I1*(I-1))
SUM = SUM + ((-1)**(1/2))* TERM
IF (TERM .LT. E) GO TO 30
<IF (DABS (TERM} .LT. £} GO TO 30 >
20 CONTINUE
30 SIN=SUM
RETURN

arTs

NS

The paths iin the above program are noi distinci. They are
“almost distinct” in the sense that for any pair of paths P
and P{" in P*, P¥(x) = Pf(x) for at most a zero area subset of
the two-dimensional domain of P*., A theorem similar to
Theorem 9 can be proved which characterizes the conditions
under which P-testing is almost reliable for programs contain-
ing almost distinct paths. P-testing is neither reliable nor al-
most reliable for this example.

212 IEEE
Thrck e in “erninhgn anﬂ i}igunnz- {13}
are comain 211015, P-testing is reliable or almost reliable for
discovering ~nly one of these three errors.
C. Subcase Errors
In thiz subscction we will assume that 7 is a set of programs

) i
which are eiiiier correci or contain THE pailis
in the programs P and in the corresponding programs P* are
indexed so that C(P;) = C(P}") for all paths in P.

The domain error theorems in Section V-B depend only on
the equivalence of path computations in P and P*. The same
theorems can also be proved for subcase errors.

Theorem 11: Suppose that the paths in each correct pro-
gram P* in @ are distinct. Then P-testin is reliahle for testing
the » programs in P e every program Pk
has a feasible path P, such that D(Pl) N D(P{") = ¢.

Theorem 12: If P-testing is reliable for testing the programs
in P then every program P € ? is either correct or it has a fea-
sible path P; such that D(P;) N D@} =

The paths in the correct version of the following program
are distinct. Theorem 11 or Theorem 12 can be used to
prove that P-testing is not reliable for P. For all paths P; in P,
D®;) N D) # ¢.

Example 5: The following program P is supposed to com-
pute and print out a table of monthly mortgage payments.
The program is missing a transfer statement. The omission
causes a subcase error.

bUUbde [STHLVUEN

be descnbed a8 mvolvmg several errors, ‘-;,'»W 1] y de
fine an error E in a2 program P to be a set of “differences” be-
tween P and a correct program P*,

Two of the programs in the above examples are partially

a3 B T L P N A Do
VUAL\:UL\JU VOisiois O il yl\.’E‘(&lllD ui snunxuaﬁtwl ailu A iauiEvi

[13]. The original versions of these programs contained more
than one error. In general, a program may contain several er-
rors and it is important to consider the combinatorial effects
of the errors on the reliabilitv of the testing strategv. In thic
section we will characterize a set of conditions under which
the reliability of P-testing for single errors is preserved when
errors occur in combination.

 Suppoee E= {E, | E |
ina program P. Let Pg, be the program whzch contains only
the error E; and not the other errors (i.e., E; is the difference
between P and a given correct program P¥). Let P =P. An
error E; in E is independent in E if for all x in the domain of P,

Pg (%) # P*(x) = Pg(x) # P¥(x).

An error E; in a program is independent relative to a set of
errors E if the introduction of the other errors into the pro-
gram does not “correct” any of the incorrect ouiput caused by
the error E;.

Theoremi 13: 1et E = {E;,E,, - ,E,} be a set of compu-
tation errors in a program P (ie., Pg, has a computation error

i)

1 R cot QF arrorg

DECLARE (A R M B,C,P) FIXED DECIMAL (13,4};
L10: GET LIST (A, R, M);
PUT SKIP EDIT (‘THE AMOUNT IS’, A) (A(13), F(10,2))
{‘THE INTEREST RATE IS’, R) (A(23), F(5,2))
(‘THE MONTHLY PAYMENT IS’, M) (A(25), F(8,2));
IFM <= A*R/1200 THEN GO TO L30;
PUT SKIP(3) EDIT
{(* MONTH BALANCE CHARGE PAID ON PRINCIPLE’) (A);
PUT SKIP;
B=A;
DO 1 =1 TO 60;
C = B*R/1200;
IF B+C < M THEN GO TO L20;
P=V-C;B=B-P;
PUT SKIP EDIT (i, B,C,P) (F(13), 3 F(13,2));
END;
C = B*R/1200;
<L20: IF B+C <.005 THEN GO TO L10 >
L20: PUT SKIP(2) EDIT (‘THERE WiIiLL BE A LAST PAYMENT
OF: | B+C) (A(35), F(8,2));
GO TOL10;
L30: PUT SKIP (2) EDIT (‘UNACCEPTABLE MONTHLY PAYMENT’) (A);

GO TO L190;

Only one of the eighteen errors in Kernighan and Plauger
[13] is a subcase error.

D. Combinations of Errors

Each of the programs in the above examples contains a single
error. In each case the error is caused by a single incorrect
statement. In some cases it is intuitively meaningful to de-

for each E;). Suppose some error E; is independent in E.
Then if P-testing is reliable for Ph it is also reliable for Pg.
Proof: 1f P-esting is reliable for Pg. then there exists a
nonempty path domain Dj in 9 (P) such that Pg,(x) #P¥(x)
for all x€D;. Since E cortains ccmputation errors, D(Pg) =
D(Pg,) whlch implies that D; € D(Pg).
The conditions for the preservation of P-testing reliability

are more complicated when other than computation eirors are
involved.

FTheorem 14: Let E = {E,, E,
in 2 program P. Supposs B o«
E; and that P-testing is reliab

"o

G
<
e

o
o
oy
[}
=g

liability of

Ptesting for Pg, implies the existence of z don 2 Dyin
D{Pgy such ihat Pp{x) +# P¥x) for 4ii x € Dy, If D e
D(Pg) or D; D D for some D € D(Pg) then P-testing is reliable

for Pg.

In practice, we will want each error E; in a set E o satisfy
the conditions of the sbove thecrem selative to each subsei B
of E containing E;. This will ensure that P-testing reliability is
preserved as the errors in E are discovered and removed from

the program.

The only simple example of error indopondence and testing
reliability in Kemnighan and Plauger [13] involves errors which
are “almost independent” and for which P-testing is almost
reliable. Suppose E; is an error in a set of errors E and that P
is a program whose domain is a subset of Euclidean n-space.
Let X be the subset of the domain D of P for which PEi(x) #*
F(x). Then E; is almost independent in E if Pg(x) # F(x) for
all x € X if X has zero n-dimensional volume or for all but a
zero volume subset of the elements of X if X has nonzero vol-
ume. Both Theorems 13 and 14 can be rewritten as theorems
involving errors which are almost independent and strategies
which are almost reliable.

Example 6: The program P in this example is another ver-
sion of the sine program in Example 4. In its original form in
f(nrnighan and Dl"“ger 121

oS ¥4 NesANA M4 s []

rors, including the three in this example.

4ham amenm oo o AR o
[5$1¥

DOUBLE PRECISION FUNCTION SIN(X, E)
C THIS DECLARATION COMPUTES SIN(X) TO ACCURACY E

DOUBLE PRECISION E, TERM, SUM

REAL X

TERM = X

<SUM=X>

DO 201=E, 100, 2

TOCRM = TERM X5 2/@#(1~1))

SUM = SUM + (-1#%(I/2)}x TERM

< SUM = SUM + ({—1)#={I}2)}+TERM >

IF (TERM .LT. E) GO TO 30

<IF (DABS(TERM) .LT. E) GO TO 30>
20 CONTINUE
30 SIN=SUM

RETURN

END

Pg, is the program containing the missing assignment
SUM =X. Pg, contains the transfer statement with the miss-
ing DABS function and Pg, the assignment with the missing
parentheses. Pg, is the program P in Example 4.

P-testing is almost reliahle for Py | and Py, but net for Py .
E, and E, are almost independent relative to any subset of
E = {E,, E;, E3}. P(Pg,) and D(Pg,) both contain domains
D; which satisfy the special conditions of Theorem 14. This
implies that P-testing is almost reliable for Pg where E is any
subset of E containing either E; or E3. Once E; and E; have
been discovered and removed from Py, P-testing will no longer
be reliable for the remaining program P, .

213

Vi. RELATED WORK
§ diffsfent progiam testing toois have been de-
help automate the testing of pro-
. Earlier work in the area concenirated on the testing of
program statements and branches rather than on program
paths. The Algol W compiler | 18] has an option which will
cause a users program to be instrumented so that when the
program is executed a table of statement execution counts is
generated. The Fortran preprocessor PET [19] can be used to
generate similar types of information for the statements and
program branches in Fortran programs.

Several research groups have been involved in the design and
construction of testing tools which concentrate on the testing
of program paths. King [14] has built an interactive system in
which the user directs the system to carry out a symbolic eval-
uation of selected paths. The system automatically constructs
representations of the domains and computations for the
paths. In the SELECT sysiem {2} the user can either select a
path or cause the system to select all paths which do not iter-
ate a loop more than some given number of times. The system
automatically constructs representations of the domains and
computations for the paths. For simple cases it automatically
generates test data. The basic elements of the path analysis
testing strategy are described in [12]. A system implementing
some of the features of the complete system plan outlined in
[12] is described in [11]. The system automatically decom-
poses a program into a finite set of classes of paths and then
generates descriptions of the computations and domains for
each class. A logical notation in which groups of predicates
can be asserted over the range of an expression is used to rep-
resent the domains for an infinite class of paths. The system
was developed as part of the McDonnell Douglas Astronautics
program in sofiware reliability. The Program Validation Proj-
ect at the Ceneral Ressarch Corporation has constructed s
commercially available system [15]. The sysiem keeps track
of untested program segments in a program and prints out

descriptions of test data that will cause paths containing the
modules to be executed. The TRW System [9]

LAR I 8L Ak

oonaratos An.
DVC.V&M&VQ e T

scriptions of a minimal set of paths through a program which
tests all of the program’s branches. Clarke [5] has con-
stiucted a path analysis testing system which interfaces with
the DAVE Data Flow Analysis System [16]. The system is
capable of generating temporary assertions which cause the
generation of test data that test for common errors such as
out of bounds array references and division by zero.

The path analysis testing strategy has features in common
with and to some extent is derived from research on proofs of
program correctness. Deutsch’s interactive program verifier [6]
uses a symbolic evaluation process to generate verification con-
ditions. In [4] Burstall uses symbolic evaluation to construct
inductive proofs of program correctness. The relationship be-
tween the use of symbolic evaiuaiion in generating verifica-
tion conditions to prove correctness and in generating a set
of predicates for constructing test data is described in [10].

A number of papers have recently appeared in which the an.
thors describe research into the classification and analysis of .
errors. Reference [7] contains a classification of the errors
occurring in a release of an operating system and a discussion

of the programming methods and constructs that would have

214
&85

2
i

the errors from occurring. Shooman and Bolsky

ribe the errors which were reported during the de-
velopment of a 4K real time program. In their analysis of
these errors, ihe suthors discuss the nature of the changes re-
quired to correct the errors. The results of an analysis of a
large system are reported in [1]. The authors describe a sys-
wem for detecting classes of errors during the design phase of a
software project. Their data are derived from a study reported
in [20]. The study contains a comprehensive categorization
of errors into both general and mors specific categories. The
frequency of the occurrence of the errors in several large proj-
ecis is listed.

In general, the classifications and analysis of errors which
have been carried out desc:.be errors in terms of program con-
structs (e.g., incorrect loop condition, structural error, incor-
rect indexing, bit manipulation error, ctc.). These classes of
errors can be related to their effects on the computations and
domains in a program but are not directly useful for character-
izing the reliability of P-testing.

To the author’s knowledge, the only other work which at-
tempts to provide an underlying formal basis for the study of
testing is described in a recent paper by Goodenough and
Gerhart [8]. The use of the term “reliable” is derived from
the work described in this paper.

The work described in this paper was influenced by the pa-
per by Goodenough and Gerhart, and draws from the work on
testing tools.

prevented
I171 deser

VIi. ConcrLusions aNp FuTure WORK

The path domain/path computation approach results in a
relatively simple classification of commonly occurring errors.
Sixteen of the eighteen errors in the Common Blunders section
of [13] are either computation, domain, or subcase errors.
The error classification can be refined to distinguish between
other types of less commonly occurring errors.

The domainfcomputation approach provides a framework
for the analysis and characterization of the reliability of path
analysis testing strategies. The reliability of P-testing was ana-
lyzed for several classes of common errors.

P-testing was found to be reliable or almost reliable for
about 65 percent of the program errors in the small survey
of 11 programs in Kemnighan and Plauger [13]. This means
that if data for testing those programs are selected using the
P-testing strategy, we will be “almost certain” of detecting
65 percent of the errors. This does not mean that the other
errors would not be detecied, only thai we could not be cer-
tain of their detection.

The research described in this paper is only an introductory
analysis of testing reliability. A complete analysis of reliability
would involve a more extensive classification of errors. In our
analysis we studied the potential reliability of path analysis
testing strategies by assuming that we could test every path in
a program. In any practical strategy the paths will have to be
grouped into a finite set of classes of paths and one path from
each class tested. The effects of different methods for group-
ing paths on the reliabiiity of P-testing needs to be character-
ized. The continued study of P-testing reliability will have to

deal with the problem of roundoff errors and data types. The
progrems in Kernighan and Plauger [13] contain two action

errors for which P-testing is not yeliable. The first involves the

= Y APG.
Us U5 I

oo ade aymrescinng nnd dtho oo 3 ooootes £
nixes mods EXPIESSiGNiS afiG th€ SecOona ISSuiis 1rom
A

roundoff of type REAL numbers.

The need for the development and analysis of testing strat-
egies which are more powerful than the path anaiysis siraiegy
is noted. How can the path testing method be supplemented
to get closer to 100 percent reliability? A programmer has
three sources of information for constructing test data: the
program to be tested, its specifications, and his knowledge of
commonly occurring programming errors. Path analysis test-
ing strategies use only cne of these sources. More complex
strategies will involve the integration of several sources of
information.

REFERENCES

{1] B.W.Boehm, R. K. McClean, and D. B. Urfrig, “Some experience
with automated aids to the design of large-scale reliable soft-
ware,” fEEE Trans. Software Eng., vol. SE-1, pp. 125-133, Mar.
197s.

{21 R. S. Boyer, B. Elspas, and K. N. Levitt, “SELECT-A formal
system for testing and debugging programs by symbolic execu-
tion,” in Proc. int. Conf. Reliable Software, Los Angeles, CA,
Apr. 1975.

{31 W. S. Brainerd and L. H. Landweber. Theory of Computation.
New York: Wiley, 1974.

{41 R. M. Burstall, “Proving correctness as hand simulation with a
little induction,” in Proc. JFIPS 1974. Amsterdam, The Nether-
lands: North-Holland, 1974.

{3} L. Clarke, “A system to generate iest duia and symbolically ex-
ecute programs,” Dep. Computer Sciences, Univ. of Colorado,
Boulder, CO, Rep. CU-CS-060-75, Feb. 1975,

[6] L. P. Deutsch, “An interactive program verifier,” Ph.D. disserta-
tion, Univ. of California, Berkeley, May 1973.

[7] A. Endres, “An analysis of errors and their causes in system pro-
grams,” in Proc. Int. Conf. Reliable Software, Los Angeles, CA,
Apr. 1975,

[8] 1. B. Goodenough and 8. L. Gerhart, “Toward a theory of test
data selection.” in Proc. Int. Conf. Reliable Software, Los An-
geles, CA, Apr. 1975.

{91 R. H. Heifman, “NASA/Johnson Space Center approach o auto-
mated test data generation,” in Proc. Computer Science and Sta-
tistics: Sth Annu. Symp. on the Interface, Los Angeles, CA,
Feb. 1975,

[10} W. E. Howden, “Automatic generation of program test data and
proofs of program correctness,” Workshop on the Attainment of
Reliable Sotftware, Univ. of Toronto, Apr. 1974.

W. E. Howden and J. Laub, “Automatic case analysis of pro-
grams,” in Proc. Computer Science and Siaiistics: 8th Annu.
Symp. on .he Interface, Los Angeles, CA, Feb. 1975.

W. E. Howden, “Methodology for the generation of program test
data,” IEEE Trans. Computers,vol. C-24,pp.554-560, May 1975,
B. W. Kernighan and P. J. Plauger, The Elements of Programming
Style. New York: McGraw-Hill, 1974,

I. C. King, “A new approach to program testing,” in Proc. Int.
Conf. Reliable Software, Los Angeles, CA, Apr. 1975.

E. F. Miller, “RXVP: An automated verification system for
FORTRAN,” in Proc. Computer Science and Statistics: 8th
Annu. Symp. on the Intcrface, Los Angeles, CA, Feb. 1975.

L. J. Osterweil and L. D. Fosdick, “Data flow analysis as an aid
in documentation, assertion generation, validation, and error de-
tection,” Dep. Computer Science, Univ. of Colorado, Boulder,
CQO, Rep. 15, Sept, 1975,

M. L. Shooman and M. I. Boisky, ““Types, disiribution, and iesi
and correction times for programming errors,” in Proc. Int. Conf.
Reliable Software, Los Angeles, CA, Apr. 1975.

R. L. Sites, ALGOL W Reference Manual, Stanford Univ., Stan-
ford, CA, STAN-CS-71-230, 1971.

[19] L. G. Stucki, “Automatic generation of self-metric software,” in

{11]

[12]
[13]
[14]
[15]

[16]

[18j

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-2, NO. 3, SEPTEMBER 1976

Proc. IEEE Symp. Computer Software Reliability, New York,
NY, 1973.

Tormvras nd CEQ s B ame oy PORALPS N+ Ewe
T. Al Tua_yéa et ., “Software FAE Iy

74-2260.1.9-29, June 1974,

wr

%, . JE
20] W Rep.

-e B 93 n
study.)” TR

William E. Hewden was born in Vancouver, Canada, on December 8,
1540. He received the B.A, degree in mathematics from the University
of California, Riverside, in 1963, the M.Sc. degree in mathematics from
Ruigers University, New Brunswick, NJ, in 1965, the M.Sc. degree in
computer science from Cambridge University, Cambridge, England, in
1970, and the Ph.D. degree in computer science from the University of
California, Irvine, in 1973.

215

in 1965 and 1966 he was with Atomic Energy
of Canada, Chalk River, Ont. From 1970 to
1574 he was a Lecturer in computer science at
the University of California, Irvine. Since 1973
he has been 2 consultant to McDonncll Douglas,
Huntington Beach, in software reliability. He is
currentlv Assistant Professor of Information
and Computer Science at the University of Cali-
fornia, San Diego. His research interests are in
software and system reliability and in interac-
tive problem solving.

Dr. Howden is 2 member of the Association for Computing Machinery
and the British Computing Society.

A System to Generate Test Data and ymbolically

Execute Pro

jrams

LORI A. CLARKE

Abstrace—This paper describes a system that attempts to generate fest
data for programs written in ANSI Fortran. Given a path, the system
symbolically executes the path and creates a set of constraints on the
program’s input variables. If the set of constraints is linear, linear pro-
grzmming techniques are employed o obtain a solution. A solution to
the set of constraints is test data that will drive execution down the
given path. If it can be determined that the set of constraints is incon-
sistent, then the given path is shown to be nonexecutable. To increase
the chance of detecting some of the more common programming eriors,
artificial constraints are temporarily created that simulate ezzny condi-
tions mnd then as stiempi i made o solve each augmented sef of
constraints. A symbolic representation of the program’s output vari-
ables in ierms of the program’s input variables is also created. The
symbolic represeniation is in a human readabie form that faciliiates
erfor detection as well as being a possible aid in assertion generation
and automatic program documentation.

fadex Terms—Progiam validation, software reliability, symbolic
executior, test data generation.

I. INTRODUCTION

YHERE is a growing awareness of the problems involved
in testing programs and of the need for automated sys-
tems to aid in this process. This paper describes an
implemented system that aids in the selection of test data and
the detection of program errors.

The usual approach to program testing relies solely on the
intuition of the programmer. The programmer generates

Manuscript received October 6, 1975; revised } '~ 14, 1976. This
work was supported in part by the National Scienc: -oundation under
Grant GJ 36461,

The author is with the Department of Computer and Information
Science, University of Massachusetts, Amberst, MA.

data to test the program until satisfied that the program is
correct. The success of this method depends on ihe expertise
of the programmer and the complexity of the program.
Experience has shown that this approach to testing programs
is inadequate and costly [1]. Consequently, several alternative
approaches have been proposed. These approaches can be
categorized into two areas, program corrections (also called
program verification or program proving) and program
validation.

In the program correctness method formal mathematical
proofs are used to demonstrate that a program terminates and
satisfies the program’s specifications. First, assertions about
the program’s variables are made at various points in the code
and then theorem proving techniques are employed to verify
the correctness of these assertions. In general, automated
theorem proving techniques are used, though human assistance
is still needed [2].

Progiam correciness has focused attention on the problems
of program reliability. However, the state of the art is such
that there are many drawbacks that prevent program cor-
rectness from being a practical tool, at least in the immedi-
ate future. Major difficulties are the creation of program
assertions and the considerable human interaction frequently
required in the theorem proving stages. Even after this rather
complex process ihe results may be questionable. If the
program cannoi be proved correct this may be due to an
error in the program but alsc may be due to a flaw in the
assertions or limitation in the theorem prover, human or
machine. Even if the program is proved correct, this process

still may be questionable. In addition, proving programs cor-

