
Information Visualization and

Semiotic Morphisms

Joseph A. Goguen and D. Fox Harrell

Dept. Computer Science & Engineering, Univ. California, San Diego

Abstract

Information visualization design is generally ad hoc, using trial and error, and per-

haps drawing on experience with prior visualization systems. This paper suggests a

di�erent approach: general design principles based on a combination of algebraic ab-

stract data type theory, semiotics, and social theory. Major concepts include semi-

otic spaces to describe systems of related signs, semiotic morphisms to describe

representations of signs, and preservation measures to describe the quality of rep-

resentations. Some examples are given, each with a critical discussion, illustrating

how semiotic morphisms can help with design.

1 Introduction and Motivation

Appropriate visualizations of complex data sets can be an enormous aid to

scientists in discovering, verifying, and predicting signi�cant patterns. Unfor-

tunately, it has proven diÆcult to �nd general principles for producing ap-

propriate visualizations. One reason is the lack of a precise de�nition for the

word \appropriate" in the previous two sentences. The present state of hci

research does not provide an adequate basis for the design of visualizations. A

few precise laws are known, but they have very limited scope (e.g., Fitt's law);

there are many case studies, but their generality is unknown; and there are

many methods, but reliability is uncertain (e.g., protocol analysis, usability

studies, interviews { see [13] for a survey). Meanwhile, both user communi-

ties and technology bases are expanding very rapidly, while the commercial

sector continues to produce exaggerated claims and mediocre products, and

faith in experimental psychology and ergonomics as foundations is eroded by

developments in cscw (Computer Supported Cooperative Work) and related

areas which demonstrate that many diÆculties arise from taking inadequate

account of the social context in which interfaces are actually used, and of the

meaning behind the interfaces. In this sad situation, we badly need to explore

new directions for the construction of general theories.

Slightly revised version of published article



Many fundamental issues in information visualization can be understood in

terms of representation: a visualization is a representation of some aspects

of the underlying information, and major questions are what to represent,

and how to represent it. An adequate theory of information visualization must

take account not just of current display technology capabilities, but also of the

structure of complex information such as scienti�c data, the capabilities and

limitations of human perception and cognition, and the social context of work.

For scienti�c visualization, the social context should include current scienti�c

theories, conventional meanings of the signs and symbols used, the unequal

importance of di�erent patterns in the data, and the collaborative nature of

scienti�c work. While it would be diÆcult to deny the importance of these

factors for the design of visualizations and tools to support them, it would be

foolish to believe that they are easy, and in particular, it would be foolish to

believe that it is easy to get the designs of visualization or visualization tools

right the �rst time, or that design can be fully automated. For this reason,

both theories and tools need to be broad and 
exible, supporting relatively

painless recon�guration and evolution.

Although it seems natural to try to use semiotics as the basis for a theory

of representation, classical semiotics has unfortunately not developed in a

suÆciently rigorous way for our needs, nor has it explicitly addressed the rep-

resentation of complex signs; also, its approach to meaning has been naive in

some crucial respects, especially in neglecting (though not entirely ignoring)

the social basis and contextualization of meaning. So it is not surprising that

semiotics has mainly been used in the humanities, where scholars can com-

pensate for these weaknesses, rather than in engineering, where descriptions

need to be much more explicit. Another de�ciency of classical semiotics is its

inability to address dynamic signs and their representations, as is necessary

for interfaces that involve change, instead of presenting a �xed static struc-

ture, e.g., for standard interactive features like buttons and �ll-in forms, as

well as for more complex situations like animations and virtual worlds. We

will suggest approaches to overcoming all these limitations.

Because we consider information visualization in particular, and user interface

design in general, as problems in constructing appropriate representations, we

need to know what representations are, and what makes them appropriate.

For the �rst question, we consider a representation to be a mapping from

one structured domain of signs, called a semiotic space or a sign system, to

another such space. For the second question, we can measure the quality of

a representation by how well it preserves what is most important to users,

subject to any constraints imposed. These ideas might seem simple, but it is

not so obvious how to make them precise. Here we use some algebraic methods

developed for the theory of abstract data types [16]. More speci�cally, the

structure of a sign system is given by an algebraic theory (consisting of a

syntax declaration, similar to a context free grammar, and a set of equations)

2



plus some speci�cally semiotic features, including hierarchical levels for signs,

and priorities on constructors; more details are given in the next section, and

full details appear in [9]. Dynamic interfaces can be handled by generalizing

from classical algebra to a variant called hidden algebra [15], as discussed

further in Section 2.4 below.

The success of this approach can be judged by the analyses and suggestions for

improvement it provides for concrete examples, as in Section 3 below. While

sensitive designers might reach similar conclusions, algebraic semiotics does

so in a systematic way, based on general principles (in any case, the original

designers of the examples in Section 3 did not reach these conclusions). The

mathematical formulation of the theory also raises hope for partial automation

of the design process. Finally, since all communication is mediated by signs,

there is promise for applications well beyond information visualization.

2 Algebraic Semiotics

We approach questions of representation and of the quality of representation

through precise notions of semiotic space and semiotic morphism, the latter

being a systematic translation between semiotic spaces. Though transforma-

tions are fundamental in many areas of mathematics and its applications (e.g.,

linear transformations, i.e., matrices), they have not been considered in clas-

sical semiotics. This section gives an intuitive introduction to some basic con-

cepts. The main reference for algebraic semiotics is [9]; an informal exposition

of some main ideas and their motivation is given in the webnote [6], and an

(intendedly) amusing introduction is given in the UC San Diego Semiotic Zoo

[7]. Further applications have been developed for a course on user interface

design, some of which can be browsed at the class website [5].

2.1 Semiotic Spaces

Signs need not be the simple things that we usually call \signs," such as the

letters of an alphabet, or traÆc signs. In written natural language, sentences

are composed from words, and words are composed from letters; also, user

interfaces are often very complex systems that are usefully considered single

complex signs. Semiotic systems 1 capture the systematic structure of signs.

This subsection introduces some elements of this notion informally; see [9] for

more formal details.

1 This paper uses the terms \sign system," \semiotic system," and \semiotic space"

interchangeably.

3



An important insight due to Ferdinand de Saussure [24] is that signs always

come in systems. A typical example considered by Saussure is the tense system

for the verbs of a language. For example, in English, adding \ed" to the end of

a present tense (regular) verb makes it past tense, and adding \will" in front

makes it future tense, as in \walk", \walked", and \will walk". Saussure's em-

phasis on the structure of systems of signs rather than isolated signs has been

very in
uential, for example, in French structuralism and post-structuralism.

A basic strategy for making complex combinations of signs easier to under-

stand is to divide their potential parts into sorts, and then discover rules for

the ways that each sort can be used. For example, newspapers are composed

from articles, ads, cartoons, etc., while articles are composed from headlines,

paragraphs, photos, diagrams, etc., and paragraphs are composed from sen-

tences. The so-called parts of speech in traditional grammars are also sorts in

this sense. Sorts may have a hierarchical structure under a subsort partial

ordering. For example, the sort noun is a subsort of the sort noun-phrase.

The rules for composing signs into more complex signs are of two kinds, called

constructors and axioms. Constructors are functions that build new signs

from others signs of given sorts, plus perhaps additional parameters. For ex-

ample, a computer graphics image of a cat may be given as a constructor with

parameters that determine its size, color, and location on the screen. There

may also be functions and predicates de�ned on signs; for example, a loca-

tion function for graphical objects, and a highlighted predicate for text.

Axioms are logical formulae built from constructors, functions and predicates;

they constrain the set of possible signs.

In many examples, some constructors for signs of a given sort are more impor-

tant than others. For example, a warning popup window is more important

than a virtual pet cat. This gives rise to a priority partial ordering on the

constructors for each sort. For a di�erent example, the pollutants in a lake

may be prioritized by their toxicity, to aid in the design of an appropriate

visualization.

Another fundamental strategy for managing complexity is to have a hierarchy

of levels, with signs that are not atomic being constructed from other signs

that are at lower (or possibly the same) levels. Thus linguistics has levels for

phonology, morphology, lexicography, syntax, and discourse (i.e., multisenten-

tial units, such as stories). Similarly, standard GUI displays have windows,

which may contain other windows.

It is clear that context, including the physical setting of a given sign, can be

at least as important for meaning as the sign itself. In an extreme example,

the sentence \Yes" can mean almost anything, given the right context. This

corresponds to an important insight of Peirce [21], that meaning is relational,

4



not just denotational (i.e., functional); this is part of the point of his famous

semiotic triangle. Using the ideas of this paper, we can consider constructors

that place signs in context, by making them parts of larger signs. For example,

the familiar 12 hour clock tells the correct 24 hour time in the context of

external illumination, which can be considered an argument of a higher level

constructor for clocks-in-context.

It is worth noting that neither semiotic theories nor semiotic morphisms de-

scribe relationships between signs and the realities (if any) that they represent;

rather, it is the signs determined by the theories that can be taken to describe

real situations. For example, a database schema might have �elds for the age,

condition, type, height, etc. of roses, but only a particular database can con-

tain actual data about roses. Thus a semiotic theory determines a class of

signs, which can potentially describe things in the world.

This paragraph contains some technical remarks for those who have the back-

ground and interest. A semiotic system S is a tuple (�; A; P; L), where �

is a signature (or grammar) with a set N of sorts (or non-terminals) par-

tially ordered by a subsort relation, A is a set of axioms, P is a priority

ordering on constructors (which are in �), and L is a level ordering on

sorts. Then the signs of S are the elements of an \initial" (i.e., standard, or

\intended") model of S, which is known to exist for many reasonable choices

of a logic to use for � and A (for example, equational logics and Horn clause

logics have initial models, as do all \liberal institutions" in the sense of [12]).

More mathematical details can be found in [14].

2.2 Semiotic Morphisms and Design

Crafting a helpful explanation or a good \icon" (in the informal sense of

computer graphics rather than in Peirce's technical sense), choosing a good

�le name, or using a mixture of media to present given content in a satisfactory

way, are all problems of translating signs in one system to signs in another

system. In such cases, we know the source system, and we seek a suitable target

system and an appropriate transformation that presents the information of

interest in an appropriate way; often we even know the target system. This is

the problem of design. Conversely, we may know the target sign system, and

seek to infer properties of signs in the source system from their images in the

target system; this happens, for example, when we try to understand a poem,

an equation, a drawing, or indeed, anything at all. Let's call this the inverse

problem, as opposed to the direct problem of design.

Information visualization is an especially good source of illustrations for al-

gebraic semiotics, due to two advantages that information visualizations have

5



over arbitrary design problems. These are that the source space is concrete

and given in advance, and that the target space consists of visual signs. The

designer must be sensitive to features of the data to create a useful visualiza-

tion, but certain structural features may not be obvious, and it may be even

less obvious which of them are the most important. The process of considering

a visualization as a semiotic morphism can focus the designer on such basic

structural issues, and thus help in creating a good graphical representation.

Because semiotic systems are theories rather than models, semiotic morphisms

must be translations from one theory to another, rather than translations from

one concrete sign to another. This may seem indirect, but it has important

advantages. First, these are theories of systems of signs, rather than of partic-

ular signs. In the case of information visualization, each model of the source

theory is a possible dataset to be visualized, and each model of the target

theory is a possible graphic representation. Dealing with theories forces the

designer to more carefully consider the space of possibilities, instead of being

seduced by idiosyncratic features of some particular data sets that happen to

be available. Second, taking theories as our basis allows new structure to be

added later, by expanding the theory in a consistent way.

In general there are many di�erent semiotic morphisms between two given

semiotic spaces, each determining a di�erent way to represent signs. For ex-

ample, in scienti�c visualization, a database may be presented as a text �le, or

displayed graphically in many di�erent ways. Semiotic morphisms take struc-

ture in the source space to structure in the target space, mapping sorts to

sorts, subsorts to subsorts, constructors to constructors, etc. But in many real

world applications, not everything can be preserved, so these maps must be

partial. Axioms should also be preserved { but again in practice, not all ax-

ioms are preserved. Design is the problem of massaging a source space, a target

space, and a morphism, to achieve acceptable quality, subject to constraints.

The extent to which di�erent kinds of structure are in fact preserved gives a

way to compare the quality of semiotic morphisms, as discussed further in the

next subsection. Semiotic morphisms should of course also preserve content,

but there are many examples where this too is partial; for example, relatively

little content is preserved in representing a book by its table of contents; and

in scienti�c visualization, a major issue is what aspects of a dataset should

not be displayed.

This paragraph continues the technical remarks at the end of Section 2.1 for

those who have the background and interest. A semiotic morphism from

S to S 0 consists of a partial theory morphism from (�; A) to (�0; A0) that

partially preserves the priority and level orderings. Under certain reasonable

conditions (e.g., if the logic in which theories are expressed is liberal in the

sense of [12]), a semiotic morphism induces a (partial) homomorphism on

the initial models, which maps the signs of S to signs of S 0. There is always

6



a natural \forgetful" mapping in the reverse direction. More mathematical

details can be found [14].

2.3 Quality of Semiotic Morphisms

Each aspect of semiotic spaces that might be preserved gives rise of a di�erent

measure of quality, given as the degree to which this aspect is preserved. For

example, given semiotic morphismsM1 and M2 from one semiotic space S1 to

another S2, we may de�ne M1 vC M2 if M2 preserves every constructor that

M1 preserves, and M1 vA M2 if M2 preserves every axiom that M1 preserves.

Other preservation relations are de�ned similarly [9]. There are also more re-

�ned orderings, e.g., M1 vC;s M2 if M2 preserves every constructor of sort s

thatM1 preserves; and we can de�ne Boolean combinations of all these order-

ings, to get something appropriate for a particular application. For example,

[10] applies these ideas in justifying design decisions for the user interface to a

theorem proving system. Note that these quality measures are partial order-

ings, rather than linear numerical scales; this is appropriate because semiotic

spaces are qualitative, in that they are concerned with structure. However, we

can certainly de�ne numerical scales if we wish to; for example, the percentage

of constructors of sort s preserved corresponds to vC;s but conveys much less

information than vC;s does, since the latter can be used to determine exactly

which constructors are preserved (by comparing a given morphism with other

morphisms).

2.4 Some Further Topics

Harvey Sacks' notion of category system [22] from the branch of ethnomethod-

ology [3] called conversation analysis [23] is related to semiotic systems, but

is less formal. Our previous work on the nature of information [8] also uses

ideas from ethnomethodology, and can be seen as providing a philosophical

and methodological foundation for algebraic semiotics, that takes account of

the social nature of signs.

Lako�, Johnson and others have developed the 
ourishing �eld of cognitive

linguistics, building on previous careful studies of metaphor [19,18,20]. Fau-

connier and Turner introduced the notion of blending [2], and demonstrated

its importance for many aspects of cognition. See the blending website for

much more information [27]. Simple examples from natural language include

\house boat," \road kill," \arti�cial life," and \computer virus," each of which

is a blend of its two component words. It happens that \boat house" has a

di�erent meaning from \house boat" because a di�erent blend is computed.

This is not because the order of the words is di�erent, but because the same

7



two spaces can have many di�erent blends [9]. Semiotic spaces signi�cantly

generalize the conceptual spaces used in cognitive linguistics, because they

allow far more than just objects and binary relations. An appropriate general-

ization of blending is given in [9], covering many interesting examples in user

interface design and information visualization. In this setting, a blend is built

from two (or more) semiotic morphisms having a common source, called the

generic space, with targets called the input spaces, by providing two (or

more) semiotic morphisms from the input spaces to a blend space, subject

to certain "optimality" conditions that rule out the uninteresting cases [14].

Hidden algebra extends the algebraic theory of abstract data types to handle

states and dynamics, as well as concurrency and nondeterminism [15]. These

are exactly the features needed to move algebraic semiotics from static signs

to dynamic signs, for handling interactive interfaces, animated visualizations,

virtual worlds [11], etc. Our approach requires that the cognitive and social

dimensions of this extension should also be addressed. These can be explored

using Gibson's notion of a�ordance, which he de�ned as \a capability for a

speci�c kind of action, involving an animal and a part of its environment"

[4]. For example, a back button on a browser provides an a�ordance for

returning to the previously viewed page; Norman emphasizes that for design-

ers, these should be \perceived a�ordances." Werner Kuhn has used semiotic

morphisms, Gibsonian a�ordances, and blending to develop semantics for ge-

ographic information system interfaces [17].

3 Some Examples

Four examples are given in the following subsections, each with a discussion

showing how semiotic morphisms can help with the design of information

visualizations, including suggestions for improving some well known displays.

3.1 A Code Browser

Because a major intuition of semiotic morphisms is that they should preserve

what is most important, it may be surprising that, if there is a con
ict be-

tween structure and content (e.g., because not all the data can be displayed at

once), it is more important to preserve structure than content. This is called

Principle F/C in [14], and it is nicely illustrated by Figure 1, which is based

on a code browser built at Bell Labs [1]. The content of this display, which is

the code of some program, has been sacri�ced in favor of its structure, which

8



Fig. 1. A Code Browser

is its division into �les and procedures. Two spatial dimensions are used to

represent this structure, while color (which shows up as shading in the black

and white version) is very e�ectively used to represent the age of the code.

(The superimposed window on the bottom gives an overview of the whole pro-

gram, plus a close-up showing some actual text. This illustrates the overview

and zoom features of the system.)

Without knowing the use of this system, it is impossible to know how appro-

priate its representation really is. Still, we can infer (this is an example of the

\inverse problem") from the display that the designer thought that the age

of code was the most important attribute, presumably because of its value in

debugging. However, such a tool would be even more useful if it could be con-

�gured to highlight with colors a variety of features of interest for a variety of

problems; such features might include references to certain variables, certain

uses of pointers, certain kinds of recursion, etc. (e.g., consider what might be

needed to work on the Y2K problem).

3.2 FilmFinder

Figure 2 illustrates FilmFinder, a system from Ben Shneiderman's group at

the University of Maryland [25] for displaying �lms, with the vertical axis indi-

cating popularity, the horizontal axis indicating date, and the color indicating

genre 2 ; the area on the right side is for controlling the system. We can see

this display as the image under an appropriate semiotic morphism of a sign

2 As before, this is indicated by tones of gray in our rendition of the display.

9



Fig. 2. FilmFinder

in a system of information about �lms, and we can infer what information

the designer of this interface thought users would consider most important,

namely the popularity, date, and genre of each �lm.

Treating this �gure as a display of scienti�c data about the movie industry, we

see that the density of �lms is signi�cantly greater in the most recent years,

except perhaps for those genres that are least popular; one can also notice

other facts, such as that there has always been a higher percentage of drama,

and that there are increasing percentages of action and horror.

However, this representation is not as useful as it could be. The problem is that

too much content and not enough structure has been preserved. For example,

it would seem better to aggregate all �lms having approximately the same

attributes of interest into one blob, and then display the number of �lms in

a blob using a distinct visual attribute, such as size or brightness. Successive

blobs of the same kind could then be connected by lines having the same

color as the blobs. Users could click on a blob to see what's in it, preferably

displayed in a new popup window. These revisions could facilitate search.

3.3 A Later Version of FilmFinder

Figure 3 depicts a later version of the same tool as in Figure 2, for the same

domain of �lms (the SpotFire version of FilmFinder, from ivee Development

in Sweden); the main improvement is to give the user more control over what

is displayed and how it is displayed. The particular display shown uses length

10



Fig. 3. The SpotFire version of FilmFinder

and date for its two axes, and again uses color for genre, though the genre

color coding scheme is not indicated; prize winning �lms are highlighted by

having a larger size. Here we can observe a clustering at around 90 minutes

length, and we can again observe that there are too many dots to be useful,

even though this particular display cuts o� at 1990! If the user is looking for a

particular �lm or class of �lms, she will have to narrow the focus by imposing

additional constraints, and this single display does not give us enough infor-

mation to know how e�ectively that can be done. We may presume that the

(possibly imaginary) user who created this display thought that these partic-

ular attributes were the most interesting at a certain point during a sequence

of displays constituting a search; but in fact, they do not seem particularly

useful.

We can also infer what the designer of this version thought would be most

important, by examining the controls on the right of the display; we may

hope that these were determined by polling an adequate pool of typical users,

but the key issue should be how easy it is to use these controls in scenarios

that have been found to be of particular importance. Presumably typical users

are more likely to be looking for a good video to rent, than they are to be

analyzing trends in the movie industry. So once again, the controls should

re
ect the key features involved in typical searches, rather than just the most

important attributes of �lms in general. It would take some experimental

work to determine what these key search relevant attributes might be. But

we can still criticize the design of the control console, because of its exclusive

focus on simple attributes instead of structure. And we can criticize the �ne

grain control given to users over length and year, suggesting instead that soft

constraints would be more appropriate; it also seems doubtful that length is a

highly signi�cant attribute for search. In addition, we can criticize its design

philosophy, advocating instead a more socially oriented approach that relates

11



the pro�le of one user to the pro�les of other users to select �lms that similar

users have found interesting (there are numerous variations on this theme,

such as listing �lms that a user's friends have liked). Finally, we can note that

the design ideas proposed to improve the previous version of this system still

apply to this version.

Fig. 4. Two Representations of a File Hierarchy

3.4 A File System

Figure 4 sketches a semiotic space for a �le hierarchy, along with two semiotic

morphisms, for visualizing it two di�erent ways in the graphical user interface

of Apple's Macintosh OS 8.6. The source space is a representation of the

abstract structure of the �le system; its structure is that of an ordered labeled

�nite tree. When Folder C is opened in the representation on the right, the

location of �le Document.txt is represented textually in the small area at the

top of its window, whereas in the left representation, its location has a visual

representation, based on position, including indentation. The left visualization

is better, because it shows more of the source space structure in visual form,

and also provides more browsing a�ordances in visual form. However, even

more could be done in this direction.

4 Discussion

As the examples above illustrate, it is often more practical to apply algebraic

semiotics informally, calling on precise de�nitions only when needed for es-

12



pecially diÆcult design decisions, and otherwise using the formal framework

mainly as a way to guide the analysis. The examples also illustrate that even

a little relevant theory can pinpoint signi�cant de�ciencies and suggest im-

provements. The UCSD Semiotic Zoo [7] displays a number of other graphical

designs, and uses algebraic semiotics to analyze their de�ciencies.

Measuring quality by what is preserved and how it is preserved seems a novel

idea, at least when formulated with the precision and generality suggested

here. The principle that it is more important to preserve structure than con-

tent when a trade-o� is forced, has surprised even some design professionals,

although it is in the literature for many special cases, for example in the books

of Edward Tufte, e.g., [26]. Another non-obvious result is that preserving high

level sorts is more important than preserving priorities, when a trade-o� is

necessary. The need to take account of social issues in user interface design,

e.g., in our discussion of Figure 3, is also surprising to many people; for this

reason, our version of semiotics is not just algebraic but also social. This in-

sight is not unique to algebraic semiotics; for example, the importance of social

factors in hci is the focus of its cscw sub�eld.

References

[1] Stephen Eick. Engineering perceptually e�ective visualizations for abstract

data. In Scienti�c Visualization Overviews, Methodologies and Techniques,

pages 191{210. IEEE, 1997.

[2] Gilles Fauconnier and Mark Turner. Conceptual integration networks. Cognitive

Science, 22(2):133{187, 1998.

[3] Harold Gar�nkel. Studies in Ethnomethodology. Prentice-Hall, 1967.

[4] James Gibson. The theory of a�ordances. In Robert Shaw and John Bransford,

editors, Perceiving, Acting and Knowing: Toward an Ecological Psychology.

Erlbaum, 1977.

[5] Joseph Goguen. User interface design class notes. The cse 271 website, at

www.cs.ucsd.edu/users/goguen/courses/271.

[6] Joseph Goguen. Semiotic morphisms, 1996. Available on the web at

www.cs.ucsd.edu/users/goguen/papers/smm.html. Early version in Proc.,

Conf. Intelligent Systems: A Semiotic Perspective, Vol. II, ed. J. Albus, A.

Meystel and R. Quintero, Nat. Inst. Science & Technology, pages 26{31.

[7] Joseph Goguen. The ucsd Semiotic Zoo, 1996{2001. Website at URL

www.cs.ucsd.edu/users/goguen/zoo/.

[8] Joseph Goguen. Towards a social, ethical theory of information. In Geo�rey

Bowker, Leigh Star, William Turner, and Les Gasser, editors, Social Science,

Technical Systems and Cooperative Work: Beyond the Great Divide, pages 27{

56. Erlbaum, 1997.

13



[9] Joseph Goguen. An introduction to algebraic semiotics, with applications

to user interface design. In Chrystopher Nehaniv, editor, Computation for

Metaphors, Analogy and Agents, pages 242{291. Springer, 1999. Lecture Notes

in Arti�cial Intelligence, Volume 1562.

[10] Joseph Goguen. Social and semiotic analyses for theorem prover user interface

design. Formal Aspects of Computing, 11:272{301, 1999. Special issue on user

interfaces for theorem provers.

[11] Joseph Goguen. Towards a design theory for vitual worlds: Algebraic semiotics,

with information visualization as a case study. In Proceedings, Virtual Worlds

and Simulation, pages 298{303. Society for Modelling and Simulation, 2001.

[12] Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for

speci�cation and programming. Journal of the Association for Computing

Machinery, 39(1):95{146, January 1992.

[13] Joseph Goguen and Charlotte Linde. Techniques for requirements elicitation. In

Stephen Fickas and Anthony Finkelstein, editors, Requirements Engineering '93,

pages 152{164. IEEE, 1993. Reprinted in Software Requirements Engineering

(Second Edition), ed. Richard Thayer and Merlin Dorfman, IEEE Computer

Society, 1996.

[14] Joseph Goguen and Grant Malcolm. Algebraic Semantics of Imperative

Programs. MIT, 1996.

[15] Joseph Goguen and Grant Malcolm. A hidden agenda. Theoretical Computer

Science, 245(1):55{101, August 2000. Also UCSD Dept. Computer Science &

Eng. Technical Report CS97{538, May 1997.

[16] Joseph Goguen, James Thatcher, and Eric Wagner. An initial algebra approach

to the speci�cation, correctness and implementation of abstract data types. In

Raymond Yeh, editor, Current Trends in Programming Methodology, IV, pages

80{149. Prentice-Hall, 1978.

[17] Werner Kuhn. Modeling the semantics of geographic categories though

conceptual integration. In M.J. Egenhofer and D.M. Mark, editors, Geographic

Information Science, Second International Conference (GIScience 2002), pages

108{118. Springer, 2002. Lecture Notes in Computer Science, Vol. 2478.

[18] George Lako�. Women, Fire and Other Dangerous Things: What categories

reveal about the mind. Chicago, 1987.

[19] George Lako� and Mark Johnson. Metaphors We Live By. Chicago, 1980.

[20] George Lako� and Rafael N�u~nez. Where Mathematics Comes from: How the

Embodied Mind Brings Mathematics into Being. Basic Books, 2000.

[21] Charles Saunders Peirce. Collected Papers. Harvard, 1965. In 6 volumes; see

especially Volume 2: Elements of Logic.

[22] Harvey Sacks. On the analyzability of stories by children. In John Gumpertz

and Del Hymes, editors, Directions in Sociolinguistics, pages 325{345. Holt,

Rinehart and Winston, 1972.

14



[23] Harvey Sacks. Lectures on Conversation. Blackwell, 1992. Edited by Gail

Je�erson.

[24] Ferdinand de Saussure. Course in General Linguistics. Duckworth, 1976.

Translated by Roy Harris.

[25] Ben Shneiderman. Designing the User Interface. Addison Wesley, 1998. Third

edition.

[26] Edward Tufte. The Visual Display of Quantitative Information. Graphics Press,

1983.

[27] The blending website. Maintained by Mark Turner, and available at the URL

www.wam.umd.edu/~mturn/WWW/blending.html.

15


