Semiotic Morphisms, Representations and Blending
for Interface Design

Joseph Goguen*
Department of Computer Science & Engineering
University of California at San Diego, USA
jgoguen@ucsd.edu

Abstract

Issues of representation arise in natural language processing, user interface design, art, and
indeed, communication with any medium. This paper addresses such issues using algebraic
semiotics, which draws on algebraic specification to give (among other things) an algebraic
theory of representation, and a generalization of blending in the sense of cognitive linguistics.
New ideas in this paper include distinguishing structural and conceptual blending, using
co-relations for blending, and using hidden algebra for dynamic signs. Some examples are
developed in detail, including their formalization in the BOBJ language.

1 INTRODUCTION

Notions of design, representation and meaning in formal computer science are impoverished com-
pared with what is necessary for applications like web design and natural language understanding.
However, these notions are precise, amenable to implementation, and have many applications.
This paper describes algebraic semiotics, a formal theory of complex signs addressing interface
issues, in a general sense of “interface” that includes user interface design, natural language, and
even art. Algebraic semiotics is broader than most computer science, but still precise and im-
plementable; it is based on concepts from algebraic semantics and cognitive linguistics, as briefly
reviewed in Section 2. BOBJ is used to give formal specifications for representations and blends,
and all code here has been run. An advantage of formalization is that, by forcing one to be ex-
plicit, some subtle issues are exposed that usually get glossed over. On the other hand, algebraic
semiotics formalizations are grounded in social reality, contrary to much of classical semiotics.
Dates and windows with scrollbars are discussed in detail to illustrate the approach.

Acknowledgements I thank Kai Lin for maintaining BOBJ, and Fox Harrell for some valuable
comments. I also thank the students in my classes CSE 171 and 271 for their feedback.

2 ALGEBRAIC SEMIOTICS

This section briefly reviews key concepts of algebraic semiotics and its application to interface
design [9, 7, 10, 13, 8, 11], assuming some familiarity with the relevant mathematics. Algebraic
semiotics incorporates major insights from the founders of semiotics, Charles Saunders Peirce [18]
and Ferdinand Saussure [19]. Peirce emphasized (among other things) that the relation between a
given token and its object is not just a function (as in denotational semantics), but a relation that
depends on the situation in which the token is interpreted, while Saussure emphasized (among
other things) that signs come in systems. Neither Peirce nor Saussure considered representations
of sign systems, dynamic signs, the values of user communities, or pragmatic aspects of design.
Mathematically [9], a semiotic system or semiotic theory or sign system (we use these
terms interchangeably) consists of a signature (which declares sorts, subsorts, operations, and

*This material is based on work supported by the National Science Foundation under Grant No. 9901002.

perhaps some fixed data sorts) with some axioms!; in addition, there is a level ordering on sorts
(having a maximum or “top” element) and a priority ordering on the constructors at each level.
Sorts classify the parts of signs, constructors build new signs from given parts, and data sorts
classify the values of attributes of signs (e.g., color and size). Levels express the whole-part
hierarchy of complex signs, whereas priorities express the relative importance of constructors and
their arguments; social issues play an important role in determining these orderings.

There is a basic duality between theories and models: A semiotic theory determines the class of
models that satisfy it, which we call its semiotic space; and a class of models has a unique (up to
equivalence) most restrictive theory whose models include it; this duality is a Galois connection?.
We may also use the term “semiotic space” for a semiotic theory, which, though potentially
confusing, is justified by the duality. The main reason to prefer theories over models as a basis
is that theories define spaces of signs, with axioms constraining the allowable signs, and hence
the allowable representations; another is the ease of treating levels and priorities. For example, in
formalizing the space of books, we want to allow anything with the right structure as a model; and
in formalizing the representation that produces indices from books, we may well want to impose
two axioms on the target space of indices, requiring that indexed items must be phrases of 1, 2 or
3 words, and that the page total for indexed phrases must be not more than 2% of a book’s page
total.

The following are some further informal examples of semiotic systems: dates; times; bibliogra-
phies (in one or more fixed format); tables of contents (e.g., for books, again in fixed formats);
newspapers (e.g., the New York Times Arts Section); and a fixed website, such as the CNN home-
page (in some particular instance of its gradually evolving format). Note that each of these has
a large space of possible instances, but fixed structure. The next two sections explain two ex-
amples in detail. Section 3 discusses dates, using traditional initial model semantics (see [15] for
an introduction to this, as well as to OBJ), while the second example, windows with scrollbars,
discussed in Section 4, uses hidden algebra to model the dynamic aspect of these signs, since what
is displayed in a window must change in concert with what its scrollbar shows. This paper is not
the place for an exposition of hidden algebra (see [9, 16] for that), but we note that the elements
of hidden sort in a model of a hidden theory are states, which can be changed by operations in
the signature.

Mappings between structures became increasingly important in twentieth century mathematics
and its applications; examples include linear transformations (and their representations as matri-
ces), continuous maps of spaces, differentiable and analytic functions, group homomorphisms, and
much more. Mappings between sign systems are only now appearing in semiotics, as uniform repre-
sentations for signs in a source space by signs in a target space. Since we formalize sign systems as
algebraic theories with additional structure, we should formalize semiotic morphisms as theory
morphisms; however, these must be partial, because in general, not all of the sorts, constructors,
etc. are preserved in real world examples. For example, the semiotic morphism that produces an
outline from a book, omits the sorts and constructors for paragraphs, sentences, etc., while pre-
serving those for chapters, sections, etc. In addition to the formal structure of algebraic theories,
semiotic morphisms should also (partially) preserve the priorities and levels of the source space.
The extent to which a morphism preserves the various features of semiotic theories determines its
quality, as we will show in examples below.

Note that we take the direction of a semiotic morphism to be the direction that models or
instances are mapped. Thus, if B is is a semiotic system for books and 7T one for tables of
contents, then books (which are models of B) are mapped to their tables of contents, which are
models of T'. However, this map on models is determined by, and is dual to, the theory inclusion
T — B, which reflects the fact that the structure of tables of contents is a substructure of that
of books. (This duality is also consistent with the fact that blending diagrams are drawn “upside
down” in algebraic semiotics, compared with cognitive linguistics.) On the other hand, when

1This paper uses only algebraic signatures (with subsorts and data sorts), and as axioms, equations and sort
constraints, though other logical systems could certainly be used instead. See [15] for a relatively easy exposition
of algebraic signatures and equations; sort constraints are explained in Section 3.

2As in the theory of institutions [12], but note that this duality does not involve levels or priorities

initial model semantics is used, as in Section 3, the models map in the same direction as the
theory morphism?.

Note also that our use of the word “space” conflicts with that in cognitive linguistics, where
conceptual spaces are actually single models, rather than classes of models. Moreover, concep-
tual spaces only have constants (called “elements”) and relations among them; they do not have
multi-argument constructors, sorts, levels, priorities, or axioms. For this reason, we should also
distinguish conceptual blending, alias conceptual integration, from structural blending, which
we may as well also call structural integration, where the former is blending of conceptual
spaces and the latter is blending of semiotic systems, as theories, in general involving non-trivial
constructors. For example, the integration of a window with its scrollbar is structural, not con-
ceptual, although the conceptual aspects can also be studied (as in Section 6). Algebraic semiotics
also goes beyond conceptual spaces to provide entities with states. These features are necessary
for applications to user interface design, but also seem likely to have other applications?.

Whereas conceptual spaces are good for studying meaning in natural language, they are not
adequate for user interface design and other applications where structure is important, such as
web design and music. For example, conceptual spaces and conceptual blending can help us
understand concepts about music, but semiotic spaces and structural blending are needed for an
adequate treatment of the structure of music, e.g., how a melody can be combined with a sequence
of chords. Conceptual spaces are good for talking about concepts about (e.g., how we talk about)
things, but are awkward for talking about the structure of things. Note also that greater cultural
variation can be found in conceptual blending than in structural blending, because the former
deals with concepts about something, whereas they latter deals with the structure of its instances
and/or its representations.

There are at least three “modes” in which one might consider representations: analytic, syn-
thetic, and conceptual. In the analytic mode, we are given one or more sign from the representation
(i.e., the target) space, and we seek to reconstruct both the source space and the representation.
In the synthetic mode, we are given the source space and seek to construct a good representation
for the signs in that space, using some given technology (such as command line, or standard GUI
widgets, or 3D color graphics) for the target space. In the conceptual mode, we seek to analyze
the metaphorical structure of the representation, in the style of cognitive linguistics [21, 4]; for
example, how is Windows XP like a desktop, or how is a scrollbar like a scroll? A treatment in
this mode will involve conceptual spaces, in the sense of cognitive linguistics; see Section 6. In
each mode, particularities of the cultures involved may be very significant, as we shall see.

There are at least two perspectives that one might take towards the study of signs and repre-
sentations: pragmatic and theoretical. The first is the perspective of a designer, who has a job to
get done, often within constraints that include cost, time, and stylistic guidelines; we may also call
this an engineering perspective, and it will generally involve negotiating trade-offs among various
values and constraints. The second is the perspective of a scientist who seeks to understand prin-
ciples of design, and is thus engaged in a process of constructing and testing theories. From the
second perspective, it makes sense to describe the semiotic spaces involved in a detailed formal
way, and to test hypotheses with calculations and experiments with users. But from the pragmatic
perspective, it makes sense to formalize only where this adds value to the design process, e.g., in
especially tricky cases, and even then, only to formalize to the minimum extent that will get the
job done. Experience shows that one can often get considerable benefit from applying principles
of algebraic semiotics, such as identifying and preserving key features of the source space, without
doing a great deal of formalization.

On the other hand, for designing safety critical systems, or for developing a deeper scientific
understanding of design, one might wish not only to construct a formal mathematical model,
but also to make it executable, so that it can be debugged, for example, using some version of

3Because these model spaces consist of only initial models, the map between them is the free functor, which is
adjoint to, and in the opposite direction to, the forgetful functor induced by the theory morphism; hence it goes the
same direction as the theory morphism, rather than the opposite direction. See [12] for more on these concepts.

4For example, some cognitive linguists have claimed that blending should be considered a basis for grammar;
but this seems likely to require multi-argument constructors.

OBJ, such as OBJ3, CafeOBJ [3], Maude [2] or BOBJ [16]°; all these are precise, fully formal
mathematical notations, based on various forms of equational logic. If concision is more important
than executability, then a strongly typed first order logic might be used instead.

From either the pragmatic or theoretical perspective, one should seek to model semiotic spaces
as simply as possible, since this will simplify later tasks, whether they are engineering design or
scientific theorizing and experimentation (not forgetting that the conceptual simplicity of a theory
does not necessarily correspond to the simplicity of its expression in any particular language). A
famous quotation from Einstein is relevant here:

Everything should be as simple as possible, but no simpler.

However, from a pragmatic perspective, good representations need not be the simplest possible,
for reasons that include engineering tradeoffs, the difficulty (and inherent ambiguity) of measuring
simplicity, and social and cultural factors, e.g., relating to esthetics. Similar considerations apply,
though to a notably lesser extent, to the simplicity of semiotic theories, since creating such theories
is itself a design task, subject to various trade-offs. It may be reassuring to be reminded that in
general there is no unique best representation.

3 ANALYSIS OF DATES

Let’s begin with dates and their representations. Dates were also discussed in [9] and [7], but it
is interesting, and not very difficult, to do the analysis with much greater precision; this example
is also interesting because of the way that it highlights the possibility of different representations
being best for different purposes, where these purposes depend on the particular situations of
users, including their culture. This example does not require dynamic entities with state, though
it could be reformulated to do so; some dynamic signs are considered in the next section.

We first introduce the data sorts that will be used in examples throughout this paper: the sort
Nat of natural numbers, from the builtin module NAT; the sort Id of quoted identifiers, from the
builtin module QID; and the sort Float of floating point numbers, from the builtin module FLOAT.
Note that the sort Bool for the booleans, from the builtin module BOOL, is automatically imported
by every module, without having to be mentioned.

A convenient source theory specifies dates as triples of natural numbers satisfying appropriate
constraints®:

dth DATE is
sort Date .
pr 3TUPLE[NAT, NAT, NAT] *(sort Tuple3 to Date?,
op (1*_) to (day_), op (2*_) to (month_), op (3*_) to (year_.)).
vars D MY : Nat . subsort Date < Date? .
mb << D ; M; Y > : Date if O < D and D <= 30 and 0 < M and M <= 12 .
end

The keyword pair dth. . .end marks the opening and closing of this module, with DATE given as
its name. The first line of its body declares a new sort named Date, while the second line imports
the generic module 3TUPLE, instantiates it with three instances of the data sort Nat, imported via
the builtin module NAT; the main sort of this newly created module is then renamed from Tuple3
to Date?, for things that might or might not turn out to be dates; and its three selectors are
also renamed. Here 3TUPLE is a builtin BOBJ generic module, having the constructor <<_, _, _>>,
and the three selectors 1*_, 2%_, and 3*_. The next line introduces three Nat-valued variables,
and after that, a subsort Date of Date? is introduced; it will be used for those triples that satisfy
the constraint. The final, most interesting, line gives the constraint on dates. The keyword
mb indicates what in Maude is called a membership declaration, and although we adopt the mb
notation of Maude, we prefer to call these sort constraints, since they define which elements

5«QBJ” is the family name, while “CafeOBJ,” “OBJ3,” “BOBJ,” etc. name specific members of the family
(although Maude is an exception to this convention).

8That there are 12 months, and that months have 30 days; in a more precise description, months would have
different numbers of days, and there would be leap years, but we give a simplified version for expository purposes.

of a supersort must also belong to the subsort. The division into lines is arbitrary, because the
BOBJ parser ignores carriage returns and linefeeds; hence we will often compress code by placing
phrases on the same line.

It is clear that Date is the top level sort, and that day, month, and year are selectors for what
could be seen as secondary sorts. However, because these have not been given explicit constructors,
we cannot express a priority ordering on secondary constructors; although we could do so with a
good deal of extra trouble, it is much simpler to enrich the theory with the new notion of selector
priority orderings, which are optional partial orderings on the selectors of certain constructors’.
It is well known that Europeans prefer to have the day come first, then the month, then the year,
whereas Americans prefer to have the month first, then the day, then the year. These orderings
cannot be directly expressed in BOBJ, and although they could be expressed indirectly, this would
not do much good, so we just indicate them informally, with the following notation:

day >> month >> year
month >> day >> year

Although both orderings are in common use, the European one is more rational, because it pre-
serves the natural ordering of these units by their increasing size. We can formalize this by looking
at the coefficients in the formula for the difference (in days) between two dates,

<<KD;M; Y>> -<D?” ; M ; Y>> =(D-D’) +30(M-N’) + 365(Y - Y’).
This makes explicit by how much years are larger than months, and months than days.

This illustrates that the socially most preferred orderings are not necessarily the most rational,
which can present a designer with a potentially confusing trade off. In this case, it is not difficult
to see that the socially most preferred ordering should be used, and that if there is no definite
social preference, then the more logical European ordering should be used.

But notice that, for some purposes, an equally reasonable ordering by decreasing size would
be more useful than either ordering discussed above:

year >> month >> day

For example, a list of quarterly net earnings of some company with release dates of the quarterly
reports, would be easier to scan if the year came first. However, in most everyday situations, the
year is known, and the more rapidly changing item, which is the day, is the least likely to be
known (although people may also be more likely to forget the month in certain situations). In
fact, this ordering is used in China and some other countries. Notice also that this ordering is also
consistent with the usual ordering for times, where

hour >> minute >> second

whereas the European ordering is not.

We will restrict consideration to representations of this semiotic space into a semiotic space
of strings of characters, although there are certainly other very interesting representations, such
as position in a calendar (and there are many kinds of calendar). There are four especially well
known representations of dates as character strings; these can be classified by two binary variables,
European vs. American, and numerical vs. mixed. The European representations put day first,
then month, followed by year, while the American representations put month first and day second.
The numerical representations separate the three components with - or /, while the two mixed
representations write out the months as words.

To formalize this, we need to define a target space of strings of characters. For this, it is
convenient to use a generic list module, which will be instantiated several times in this paper:

dth LIST[X :: TRIV] is sort List .
pr NAT . subsort Elt < List .
op nil : -> List .

7This enrichment of the theory illustrates how the detailed study of concrete examples can contribute to scientific
progress. This new feature actually adds no expressive power, but it can greatly simplify theories. Note that
selector priority orderings should be considered part of the semiotic theory, like level orderings and constructor
priority orderings, not part of the algebraic theory of the data structures involved.

op __ : List List -> List [assoc].

op |_| : List -> Nat .
var X : E1t . var L : List .
eq |nil] = 0 .
eq IX| =1
eq IXL| =1+ |L|
end
Here the phrase [X :: TRIV] defines the interface of the generic module; X is a formal parameter,

and TRIV is a builtin interface theory, which says that any theory with a designated sort can be
used as an actual parameter; it includes a formal sort parameter, designated E1t. The operation
__ is the constructor for lists, nil is the empty list, and the operation |_| gives the length of a
list. The so-called “attribute” [assoc] of the __ operation declares it to be associative.

Since BOBJ does not provide a character data type, but does provide both words and natural
numbers, it is convenient to take lists of the union of these two sorts for our target space theory:

dth CHS is sort Ch .
pr NAT + QID + LIST[Ch] *(sort List to ChList).
subsorts Nat Id < Ch .

end

Elements of the builtin module QID have the sort Id and have forms such as ‘A, ‘abc, ‘a21, etc.,
so that elements of the sort ChList include things like 9 ‘May 2003. To get representations of
the foorm 5 / 9 / 2003, we can just rename the list constructor, as follows:

dth CHS/ is pr CHS *(op (__) to (_/_)). end

It remains to define the representation morphisms (see also the discussion of “co-relations” at the
end of Section 3). This can also be done very easily in BOBJ, by defining a function from the
top sort of the source theory to the top sort of the target theory; we can even use the notation of
denotational semantics.

dth DATE-REP is pr DATE + CHS .
op E[[_]] : Date -> ChlList .
op A[[_]] : Date -> ChlList .
var D : Date .

eq E[[D 1] = day(D) month(D) year(D)
eq A[[L D 1] = month(D) day(D) year(D)
end

(We do not have to import any modules for data sorts, because these are automatically imported
via the modules DATE and CHS, which have already imported them.) These are straightforward
semiotic morphisms, each of which preserves one of the two most common orderings on the selectors
of the date constructor. It is easy to test this morphism in BOBJ, as follows:

red E[[<< 9 ; 5 ; 03 > 1]
red A[[<< 9 ; 5 ; 03 > 1]
These two commands produce the following output (it is also interesting to notice the form of

the date in this output), from which some material indicating successful processing of the various
modules has been deleted:

NARRERERRARRRRRRRYS
-—— Welcome to BOBJ —---
ARRRER AR RRRRRREAY

BOBJ version 0.9.220 built: Sun May 11 03:02:23 PDT 2003
University of California, San Diego
Sun May 11 19:27:46 PDT 2003

dth DATE-REP

reduce in DATE-REP : E [[(k< 9 ; 5 ; 03 >>)]]
result List: 9 5 03

rewrite time: 59ms parse time: 10ms
Warning: non-termination corrected

reduce in DATE-REP : A [[(k< 9 ; 5 ; 03 >>)1]
result List: 5 9 03

rewrite time: 32ms parse time: 11ims
Warning: non-termination corrected

The “Warning: non-termination corrected” message arises because of the way that sort con-
straints are implemented in BOBJ; it is not a cause for concern. The representations using the
character / are almost the same:
dth DATE-REP/ is pr DATE + CHS/ .
op E[[_]] : Date -> ChlList .
op A[[_]] : Date -> ChList .
var D : Date .

eq E[[D 1] = day(D) / month(D) / year(D)
eq ALL D 11 = month(D) / day(D) / year(D)
end

Of course, this representation can be (and has been) tested the same way. The mixed case can be
done almost as easily; we must specify the mapping of month numbers to month names, but we
do not need to rename the list constructor; this is left as an exercise.

An alert reader might wonder why we defined these representations in what seems like a
denotational style, when our theory calls for semiotic morphisms, which are almost supported by
the BOBJ view feature. Actually, we do use BOBJ views, but since they do not support partiality,
we define a supertheory, called a co-relation, which specifies how entities in the two theories are
connected, and into which both the source and target theory are included by injective views. This
is motivated by the following:

1. Semiotic morphisms are not functions, because in general they are only partially defined
on the items to be represented. Moreover, the theories of complex sign systems, such as
user interfaces, typically employ auxiliary constructions that should not be mapped into the
space of representations.

2. The abstract (category theoretic) notion of a relation between spaces A, B is a space R and
two maps, A < R — B, which can be thought of as projecting “pairs” in R to their two
components.

3. Under the duality discussed in Section 2, on the theory level a relation in the above sense
becomes a theory C with two inclusions A’ = C' < B’, where A, B' are the theories of A, B,
respectively, i.e., it is a co-relation between the theories.

4. Any co-relation induces a dual relation between the corresponding spaces of models.

Thus, co-relations are a convenient way to represent semiotic morphisms using the capabilities of
BOBJ, in contrast to a denotational approach, which is strictly functional. There is an analogy here
with Peirce’s semiotic triangle, which is also relational, in contrast to Saussure’s more functional
view of signification.
Finally, we consider a “unified numerical” representation, which counts the total number of
days that have passed since 1 January 0000, given by the following module:
dth DATE-NUM-REP is pr DATE .
op N[[_]] : Date -> Nat .
var D : Date .
eq N[[L D]]1 = day(D) + (30 * month(D)) + (365 * (2000 + year(D)))
end

This assumes the European ordering of day, month and year, and also assumes the twenty-first
century; the value of N[[<< 9 ; 5 ; 03 >> 1], our standard example, is 731,254 (days). It is
interesting to consider why it is such a bad representation. This is an instance of the important
question of measuring the gquality of representations. It is obvious from the American vs. Euro-
pean representations that social convention can play an important role. But there are also some
important structural considerations, of which we mention here just three:

1. The most important subsigns of a sign should map to correspondingly important subsigns of
its representation (more technically, this calls for preserving important sorts and construc-
tors).

2. Tt is better to preserve form (i.e., structure) than content, if something is sacrificed®.
3. The most important axioms about signs should also be satisfied by their representations.

These principles are a basis for comparing the date representations given above. Whereas the
American and European representations preserve the structuring into day, month and year in the
source space DATE, the numerical representation does not, thus violating the first principle; for
example, there is no subsign for years. The American and European representations lose some
content (because we need to know the century), while the numerical representation does not;
however, the first two representations are still better because they preserve form, as predicted
by Principle F/C. Finally, the axioms (which are sort constraints) in DATA are not preserved by
the numerical representation, because there are no subsigns to which they can refer, but they are
preserved by the other representations, although they may take a different form (e.g., if months
are represented by names).

For a different example of the third quality principle, the source theory for time of day in
minutes has an important axiom expressing its cyclic nature, s'440(¢) = ¢, where s is the unary
next-minute or “click” function, and ¢ is a variable for time. This axiom is elegantly satisfied by
the familiar circular clock, because it satisfies the stronger axiom s72°(t) = t.

We now introduce a generalized lexicographic ordering that can be used in comparing the
quality of representations. Suppose <; is a partial order on a set R for each i € I, where I is a
finite partially ordered set, with ordering < and maximum element T. Let r =; ' mean r <; r'
and ' <;r,let r <;r' meanr <; r' and v’ Z; 7, and let r L; r' mean r £; ' and 7' £; r. Let
i < j mean that ¢ < j in I and there is no k € I such that i < k¥ < j in I. We now define the
lexicographic product < = @,y <; on R, of the <; over I, by first defining orderings <*on R
for i € I, as follows: r < r' iff r <; 7', orelse (r =; 7' orr L; r') and (r <7 ' or r L7 ¢') for all
j <i,and r <7 7' for at least one j < i. Then r <! ¢ iff r <; 7' when i is minimal in I. Finally,
we let < be <.

We may apply this as follows: Let R be a set of representations of some semiotic theory
T, let <; be partial quality orderings on R, and let I with < reflect the relative importance
of these orderings. For another example, C' might be the constructors of 7', with L the levels
of T, with < the level ordering, and with <, the priority ordering on things of level ¢ € L.
Then),.;, <¢ on R combines the level and priority orderings in the correct way. If we now
let R be some representations of T, let C' with < be as above, and let r <. r' iff r preserves ¢
better than 7' does?, then < is a useful quality measure for representations of 7' (though not the
only one, since it does not take account of axioms). For example, the American and European
representations are each better with respect to their own priority ordering, and both are better than
the numerical representation, with either priority ordering. Further discussion of quality measures
for morphisms is given in [15, 11], where it is explained how they relate to Peirce’s classification of
signs as symbolic, indexical, and iconic [18], and where it is noted that in general, each application
requires its own carefully crafted “designer ordering”; the lexicographic construction described
above is intended as a technical tool to ease the definition of such orderings.

8This is called Principle F/C [15]; although special cases are familiar to designers in many specialized areas,
e.g., see [20], this may be the first general statement of the principle.

9For example, r’ preserves every argument place of ¢ that r does, and possibly more; or more generally, <. is
the lexicographic product of the argument place preservation relations of ¢ over their priority ordering.

4 ANALYSIS OF SCROLLBAR AND WINDOW

Our second example is windows with scrollbars, as in GUI operating systems. Scrollbars differ
from dates in having states, so that initial algebra semantics is awkward; we therefore use hidden
algebra semantics (e.g., [16]). This section considers scrollbars, and the next blends them with
windows. We start with the source theory of “pointed files,” which are text files with a pointer to
the top line of the displayed text. We first specify data theories for lines and files, noting that the
dfn feature in the second line of the body below abbreviates

pr LIST[QID] *(sort Id to LongLine).

and that psort gives a way to make a sort other than the first one introduced into the principal sort
of a module, so that it can be the default choice when instantiating parameterized modules. Files
are a data theory, while pointed files are a behavioral theory, with its “hidden” sorts representing
states.

dth FILE is sort Line .
dfn LongLine is LIST[QID]
subsort Id < Line < LongLine .
var L : LongLine .
mb L : Line if |L| <= 78 .
pr LIST[Line] *(sort List to File, op (__).File to (_._)).
psort File .
end

bth PTR-FILE is pr (NAT || FILE) *(sort Tuple to PtrFile?)
sort PtrFile . subsort PtrFile < PtrFile? .

var P : Nat . var F : File .
mb < P, F > : PtrFile if P <= |F|
end

The keyword “bth” in the module PTR-FILE indicates that it defines states, which here have
the hidden sort PtrFile?. The infix operation || is a builtin parameterized module that forms
modules with a new (hidden) sort for states composed of the principal sorts of its two argument
modules, with the constructor <_,_> of sort Tuple, and with selectors 1* and 2%, the same as for
the parameterized module TUPLE. The sort constraints say that lines have 78 or fewer characters,
and that proper pointed files have pointer value not greater than the length of the file.

Now we consider the target semiotic space for scrollbars. It is similar to the space for dates:
scrollbars will have a height and two pointers, indicating the top and bottom of the highlighted
part of the scrollbar, which we denote top and bottom, respectively. Height is actually a parameter
which needs to be instantiated when a scrollbar is created, whereas top and bottom are parts of
the state that vary as the scrollbar is used. Consequently, we need a parameterized theory for
scrollbars, and therefore we first need a parameter theory to define its interface:

th HEIGHT is pr FLOAT . op height : -> Float . end

bth SCROLLBAR[H :: HEIGHT] is sort Scrollbar .

pr (FLOAT || FLOAT) *(sort Tuple to Scrollbar?,

op (1*_) to (top_), op (2*_) to (bottom_)).

subsort Scrollbar < Scrollbar? .

vars T B : Float .

mb < T, B > : Scrollbar if 0 <= B and B <= T and T <= height .
end

We define the relationship between PTR-FILE and SCROLLBAR [H] with the following co-relation:

bth PTR-FILE-REP[H :: HEIGHT] is

pr (PTR-FILE || SCROLLBAR[H]) *(sort Tuple to PtrFileScrollbar).

op [[_]1] : PtrFile? -> Scrollbar? .

var Pf : PtrFile? .

eq [[Pf 11 = < (max(1* Pf, 40) * height)/ |2* Pf]| ,
(max (0, 1% Pf - 40) x height)/ |2x Pf| > .
var Pfs : PtrFileScrollbar .
eq top 2x Pfs = top [[1x Pfs]]
eq bottom 2* Pfs = bottom [[1% Pfs 1]
end

This scrollbar representation of a subfile of a file, satisfies the three quality principles at the end
of Section 4. It sacrifices content but preserves the file-subfile ratio. We can test this semiotic
morphism by instantiating the generic scrollbar with a particular height, say 6 (inches), as given
in the module H6 below, and then also making some assumptions about the pointer and file.

dth H6 is pr FLOAT . 1let height = 6.0 . end

bth PTR-FILE-REP6 is pr PTR-FILE-REP[H6]

let p = 250 .

op f : -> File .

eq |f| = 400 .
end

red [[<p, £>1]
The BOBJ output for this reduction is as follows:

reduce in PTR-FILE-REP6 : [[(< p , £ >)]]
result Scrollbar: < 3.75 , 3.15 >

rewrite time: 1665ms parse time: 20ms
Warning: non-termination corrected

This says that the top pointer is 3.75 from the bottom of the scrollbar, while the bottom pointer is
3.15 inches from the bottom. (The difference between these is .6 inches, one tenth of the scrollbar
length, as it should be in this case, because 40 is 10% of 400.)

Working on this example forced consideration of the slightly complex way that scrollbars
function near the bottom of files; although this is hardly a great mystery, it is something that I
had never explicitly thought about before. Also, some new bugs were uncovered and corrected
in the BOBJ system, and (as discussed before) the notion of selector priority was discovered.
Phenomena like this are a typical and important part of scientific research, though they are not
often reported.

5 DBLENDING SCROLLBAR AND WINDOW

This section extends the analysis of the previous section to include the window as well as its
scrollbar, and the link between them; indeed, what we normally call a “window” generally consists
of both a scrollbar and an area for displaying something else, such as a text file. Such a system
is a structural blend of its two components. The goal of this section is mainly to illustrate this
notion of blend, rather than to explain the particular example. It is easy to define windows in the
same style as the previous section, and then combine them with scrollbars:
bth WINDOW is sort Window .
pr FILE . subsort Window < File .
var F : File .
mb F : Window if |F| <= 40 .
end

bth WINDOW-SCROLLBAR is pr WINDOW || SCROLLBAR . end

Thus, windows are objects with a state that is a file of not more than 40 lines, and a window-
scrollbar is an object with a state having two components, a window and a scrollbar. However,

this combination does not link what is in the window with what the scrollbar displays; for that,
we need a more complex setup.

In cognitive linguistics (e.g., [21, 4]), blends have a so-called generic space, containing ab-
stractions of concepts that occur in both input spaces, instances of which are not necessarily
identified in the blended space. But in algebraic semiotics the material in this theory is shared,
i.e., identified in the blend of the theories of the two interfaces. This is consistent with the
mathematical foundations and methodology of [9, 7], but not with the intuitions in the cognitive
linguistics literature. For this reason, the term base theory is used in [9, 7], rather than generic
space. Our example needs the subfile representation in the scrolbar to correspond to the material
displayed in the window. One possibility is a theory for a file with a subfile, which we might like
to define as follows:

bth FILE-SUBFILE is pr (FILE || FILE) *(sort Tuple to FsubF7).
sort FsubF . subsort FsubF < FsubF? .
vars F F’ F1 F2 : File .
mb < F , F> > : FsubF if F == F1 F’ F2 .
end
which says that F’ is a subfile of F; however, the implicit existential quantifiers over F1 and F2 in
the condition cannot be handled by BOBJ, so we replace them by explicit Skolem functions:
bth FILE-SUBFILE is pr (FILE || FILE) *(sort Tuple to FsubF7).
sort FsubF . subsort FsubF < FsubF?7 .
vars F F’ : File .
ops skl sk2 : File File -> File .
mb < F , F’> > : FsubF if F == (sk1(F, F’) . F’ . sk2(F, F’)).
end
Next, we give two semiotic morphisms to knit window and scrollbar together into a blend. The
first is the obvious inclusion view of WINDOW as a subtheory of FILE-SUBFILE, while the second is
a co-relation between FILE-SUBFILE and PTR-FILE:
view WINDOW-TO-FILE-SUBFILE from WINDOW to FILE-SUBFILE is
end

bth C1 is pr (FILE-SUBFILE || PTR-FILE) *(sort Tuple to FsubFPtrFile).
op [[_]1] : FsubF -> PtrFile .
vars F F’ : File .
eq [[<F ,F>>1] =< [ski(F,F)| + [F’| , F > .
var Fspf : FsubFPtrFile .
eq 1* 2% Fspf = |sk1(1x 1% Fspf, 2% 1x Fspf)| + |2* 1% Fspf|
eq 2% 2% Fspf 1x 1% Fspf .
end
If to these we just add the obvious inclusion view of WINDOW into WINDOW-SCROLLBAR and the
co-relation PTR-FILE-REP6, then the resulting diagram gives the blend we want.

5.1 VARIABLE SiZE WINDOW AND SCROLLBAR
Variable size windows and scrollbars require a more elaborate construction. The following is one
possible base theory, providing a file (in the sense of the module PTR-FILE) and two pointers, T
and B, to lines in the file, for the top and bottom of the displayed material. The sort constraint
just says that B must not be more than T, which must not be more than the length of the file:
bth FILE2PTR is
pr PTR-FILE + (FILE || NAT || NAT) *(sort Tuple to File2Ptr?).
sort File2Ptr . subsort File2Ptr < File2Ptr? .
vars T B : Nat . var F : File .
mb <F, T, B> : File2Ptr if B <= T and T <= |F|
psort File2Ptr? .
end

A more abstract theory that could be used instead of 3PTR, uses the length of the file and pointers
to two locations within it, without giving the file itself.

bth 3PTR is pr (NAT || NAT || NAT) *(sort Tuple to 3Ptr7).
sort 3Ptr . subsort 3Ptr < 3Ptr? .
vars A B L : Nat .
mb <A, B, L>: 3Ptr if A<= B and B<=1L .
end
That FILE2PTR is more concrete than 3PTR is expressed by the co-relation FILE2PTR+ below, which
is FILE2PTR enriched with the more abstract representation:

bth FILE2PTR+ is pr FILE2PTR .
pr (NAT || NAT || NAT) *(sort Tuple to 3Nat)

op |_| : File2Ptr? -> 3Nat .

vars T B : Nat . var F : File .

eq IKF, T, B> =<B, T, |[F| >.
end

Then the view can be described quite simply as follows:
view V1 from 3PTR to FILE2PTR+ is sort 3Ptr? to 3Nat . end

Next, we give semiotic morphisms for building the blend. The co-relation C2 connects
FILE-SUBFILE with FILE2PTR, and V3 is a default view, for which BOBJ can fill in all the map-
pings automatically, while the third instantiates the parameterized co-relation PTR-FILE-REP for
a six inch scrollbar.

bth C2 is pr (FILE-SUBFILE || FILE2PTR) *(sort Tuple to FsubFF2Ptr).
op [[_]1] : FsubF -> File2Ptr .
vars F F’ : File .
eq [[<F ,F>>1] =<F, [ski(F,F>)| + |F’| , |ski(F,F>)| > .
var S : FsubFF2Ptr .
eq 1% 2% S = 1% 1% S .

eq 2% 2% S = [sk1(1* 1x S, 2% 1x S)| + [2* 1% S|
eq 3% 2% S = [sk1(1*x 1*x S, 2% 1*x S)|
end

view V3 from PTR-FILE to FILE2PTR is
sort PtrFile? to PtrFile? .
end

bth PTR-FILE-REP-VAR is pr PTR-FILE-REP[HEIGHT]
op winsize : -> Float .
var F : File .
eq height = (6 / 40) * winsize .

end

Putting this collection of theories and morphisms together gives the blend we want, in which the
size of the window is given by the (user-definable) constant winsize.

5.2 WHAT Is BLENDING?

This subsection briefly discusses some points about structural blending and its relation to other
traditions. We first note that two kinds of dynamics are involved in blending: the process of
blending itself, and entities with internal states. Whereas cognitive linguistics has so far focussed
mainly on the former, algebraic semiotics is more concerned with the latter, due to its focus on
user interface design and similar applications. Our second point is that in structural blending,
cross-space mappings emerge through the identifications implied by the base space; relations like
causality are represented as ordinary relations (Bool-valued functions in BOBJ) rather than having

Figure 1: A Scroll and a Scrollbar

a special ad hoc status. Thirdly, the distinction between single and double scope blending seems
a bit artificial in algebraic semiotics, because its applications typically involve multiple “scopes”
arising from multiple spaces and morphisms among them. Fourthly, we are developing a formal
characterization of blending, based on the notion of colimit [9], taking account of the quality
orderings on morphisms, and allowing there to be more than one blend for a given system of
spaces and morphisms. Finally, in contrast with much of classical semiotics, but in agreement
with cognitive science in general, and cognitive linguistics in particular, we eschew belief in the
Platonic reality of signs, sign systems, etc., even though there is a strong tendency in our culture
to identify mathematical formalizations with such ideal entities.

6 CONCEPTUAL ANALYSIS OF WINDOW AND SCROLLBAR

This section sketches a conceptual analysis of scrollbars, mainly intended to show how this level
of analysis differs from that of the previous sections, in that it focuses on questions like “How is
a scrollbar like (and unlike) a scroll?” rather than questions like “How does a scrollbar represent
window-based file display?” or “How good is that representation?” A major motivation for analyses
at the conceptual level is to explore the cognitive consistency of designs. The appropriate tools
for answering such questions are models of how we think about scrollbars, rather than models of
scrollbars themselves. As in traditional cognitive linguistics, there is little payoff from being highly
precise in such discussions, and we shall therefore be relatively informal.

The conceptual space for a scroll (see Figure 1) contains two rollers, a roll of parchment (or
other material) with text on it, and the affordance!® for scrolling through the text by rotating one
or both of the rollers. Note that it is possible to expose any contiguous segment of the text with
appropriate roller rotations.

A scrollbar is a bar with a highlighted sub-bar (in Figure 1, the sub-bar is highlighted by
darkening); it represents an arbitrary contiguous segment of text, by the proportions of the lo-
cations of the boundaries of the highlighted sub-bar to the total length of the bar, as described
in the module PTR-FILE-REP-VAR. Typically, affordances for moving the segment up or down
are presented as arrowheads at the top and bottom of the bar, as in Figure 1, and there are
also non-perceived affordances for making larger jumps up or down the text, by clicking on the
corresponding non-highlighted areas (however many users are not aware of these affordances).

The analogy between the displayed text of a scroll and the highlighted sub-bar of a scrollbar
is good, except that it is more convenient to use a real scroll with its rollers to the left and
right of the text!!, whereas the scrollbars that represent displayed text are oriented vertically,
not horizontally. This situation is reflected in the mathematics, which expresses the proportional
representation quite nicely while ignoring orientation (see Section 5.1).

On the other hand, analogies for the affordances are not so close. First, scrolling the text
by using the mouse to move the highlighted portion of the scrollbar is very different from any

10We understand affordances in the sense of Gibson, as potential interactions between an organism (here, the
user) and the environment (here, the system) [5, 6] and “perceived affordances” in the sense of Norman [17] as
affordances that the user is able to perceive as such, by virtue of what is displayed.

1This is because of the location of human hands on the left and right of the body. Moreover, in many old
languages, the text is oriented vertically and read from top to bottom.

affordance of a real scroll; this indirect control arises through the structural blending of the
window with its scrollbar. Operating one roller does not cause exposure of a different text of the
same size, but rather increases or decreases the displayed text, from the left or right, depending
on which roller is rotated in which direction. The behavior of the scrollbar controls is closer to
that of the “up” and “down” buttons on an elevator than to the rollers on a scroll, though this
behavior also differs from that of elevator buttons. The non-perceived scrollbar affordances do not
correspond to any affordances of real scrolls.

7 (CONCLUSIONS

The approach advocated in this paper is not limited to user interface design in the narrow sense,
as the representations for dates and the conceptual analysis of windows demonstrate. One way to
explore the potential for extended applications of algebraic semiotics is to think of “interfaces” in
a very broad sense that includes any form of communication in any medium, which is already the
scope of Piercian semiotics. For example, Principle F/C applies to the generation of an outline
from a book, as well as to the navigational guides provided within buildings, such as floor numbers,
room numbers, and lists of office occupants with their room numbers.

New ideas in this paper include formalization of dynamic signs using hidden algebra, orderings
on the selectors of a given constructor, co-relations for blending, and generalized lexicographic
order to measure representation quality, based on the importance of components. In addition, the
following are some subtle points revealed during the process of formalization:

1. There is a rich duality between models and theories.
2. The maps induced on models by theory maps go in the opposite direction.

3. While initial semantics is good for static signs, hidden semantics (or some similar formalism)
is needed for dynamic signs, in order to handle states.

4. Non-trivial constructors are needed for many examples, which therefore require structural
blending instead of conceptual blending.

On the other hand, and in opposition to efforts at formalizing meaning such as situation semantics
[1], algebraic semiotics stresses the necessity for grounding in social process, both before and after
formalization, the first to obtain reasonable levels and priorities, and the second to check that the
formalization is useful.

It is hoped that the examples in this paper will convince readers that algebraic semiotics
provides a precise and useful tool for analyzing representations and interfaces, including not just
specification techniques, but also some very general quality principles to aid design. However,
it should be emphasized that in design practice, algebraic semiotics should generally be applied
far more informally than the BOBJ code here might suggest. Practical application is still at an
early stage, and only one serious case study has been done, the Tatami system [14, 15], but this
promises to be an exciting area for future exploration.

REFERENCES
[1] Barwise, J. and Perry, J. (1983). Situations and Attitudes. MIT (Bradford).

[2] Clavel, M., Durédn, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., and Quesada,
J. F. (2001). Maude: Specification and programming in rewriting logic. Theoretical Computer
Science.

[3] Diaconescu, Rizvan. and Futatsugi, K. (1998). CafeOBJ Report: The Language, Proof Tech-
niques, and Methodologies for Object-Oriented Algebraic Specification. World Scientific. AMAST
Series in Computing, Volume 6.

[4] Fauconnier, G. and Turner, M. (2002). The Way We Think. Basic.

[6] Gibson, J. (1977). The theory of affordances. In Shaw, R. and Bransford, J., editors, Perceiving,
Acting and Knowing: Toward an Ecological Psychology. Erlbaum.

[6] Gibson, J. (1979). An Ecological Approach to Visual Perception. Houghton Mifflin.

[7] Goguen, J. (1996). Semiotic morphisms. Available on the web at
www.cs.ucsd.edu/users/goguen/papers/smm.html. Early version in Proc., Conf. Intel-
ligent Systems: A Semiotic Perspective, Vol. II, ed. J. Albus, A. Meystel and R. Quintero, Nat.
Inst. Science & Technology, (Gaithersberg MD, 20-23 October 1996) pages 26-31.

[8] Goguen, J. (1996-2001). The ucsD Semiotic Zoo. Website at URL

www.cs.ucsd.edu/users/goguen/zoo/.

[9] Goguen, J. (1999a). An introduction to algebraic semiotics, with applications to user interface
design. In Nehaniv, C., editor, Computation for Metaphors, Analogy and Agents, pages 242—-291.
Springer. Lecture Notes in Artificial Intelligence, Volume 1562.

[10] Goguen, J. (1999b). Social and semiotic analyses for theorem prover user interface design.
Formal Aspects of Computing, 11:272-301. Special issue on user interfaces for theorem provers.

[11] Goguen, J. (Spring 2003). User interface design class notes. The CSE 271 website, at
www.cs.ucsd.edu/users/goguen/courses/271/.

[12] Goguen, J. and Burstall, R. (1992). Institutions: Abstract model theory for specification and
programming. Journal of the Association for Computing Machinery, 39(1):95-146.

[13] Goguen, J. and Harrell, F. (2003). Information visualization and semiotic morphisms. In
Malcolm, G., editor, Visual Representations and Interpretations. Elsevier. Proceedings of a
workshop held in Liverpool, UK.

[14] Goguen, J., Lin, K., Rogu, G., Mori, A., and Warinschi, B. (2000). An overview of the Tatami
project. In Cafe: An Industrial-Strength Algebraic Formal Method, pages 61-78. Elsevier.

[15] Goguen, J. and Malcolm, G. (1996). Algebraic Semantics of Imperative Programs. MIT.

[16] Goguen, J., Rosu, G., and Lin, K. (to appear 2003). Conditional circular coinductive rewrit-
ing. In Recent Trends in Algebraic Development Techniques, 16th International Workshop,
WADT’02. Springer, Lecture Notes in Computer Science. Selected papers from a workshop
held in Frauenchiemsee, Germany, 24-27 October 2002.

[17] Norman, D. A. (1988). The Design of Everyday Things. Doubleday.

[18] Peirce, C. S. (1965). Collected Papers. Harvard. In 6 volumes; see especially Volume 2:
Elements of Logic.

[19] Saussure, F. (1976). Course in General Linguistics. Duckworth. Translated by Roy Harris.
[20] Tufte, E. (1983). The Visual Display of Quantitative Information. Graphics Press.
[21] Turner, M. (1997). The Literary Mind. Oxford.

