
Conditional Circular Coinductive Rewriting

with Case Analysis

Joseph Goguen1, Kai Lin1, Grigore Ro�su2

1 Department of Computer Science & Engineering

University of California at San Diego, USA
2 Department of Computer Science

University of Illinois at Urbana-Champaign, USA

Abstract: We argue for an algorithmic approach to behavioral proofs, re-

view the hidden algebra approach, develop circular coinductive rewriting for

conditional goals, and extend it with case analysis. Some examples are given.

1 Introduction

A natural extension of algebraic speci�cation distinguishes visible sorts for data from

hidden sorts for states, with states behaviorally equivalent i� they are indistinguishable

under a given set of experiments; we have formalized this as hidden algebra, originat-

ing in [9] and further developed in [11, 20, 18, 19] and other papers. While standard

equational proof techniques like induction are suitable for data, coinduction or context

induction is generally needed for non-trivial behavioral properties, typically requiring

extensive human intervention. This is not surprising, since behavioral satisfaction is

�
0
2 -hard [5], so that no algorithm can prove [or disprove] all behaviorally true [or false]

statements. However, successful technology transfer requires placing less demand on

users, as illustrated by the success of model checking. Hence our recent research con-

cerns coinduction algorithms that require no human intervention. The languages we

know supporting automated behavioral reasoning are Spike [2], CafeOBJ [6], and BOBJ

[10], the �rst based on context induction, and the other two on forms of coinduction.

The powerful coinduction algorithm now in BOBJ has developed through several

stages. The �rst is to restrict ordinary term rewriting to behavioral rewriting [18], by

allowing rules to apply only in certain contexts1; this can be used like ordinary rewrit-

ing for ordinary equational reasoning, to check behavioral equivalence by computing

and comparing behavioral normal forms. Circular coinductive rewriting (ccrw) [10]

attempts to prove that a hidden equation holds (in the sense that the two terms can-

not be distinguished by any context) by applying behavioral rewriting to both sides,

allowing also application of the goal in even more restricted contexts than for rewriting,

and generating new goals when rewriting fails to show equivalence; forms of this algo-

rithm have been in BOBJ for more than three years. Conditional circular coinductive

rewriting (cccrw) generalizes ccrw to prove (sets of) conditional equations. Finally,

conditional circular coinductive rewriting with case analysis (ccccrw, or c4rw) adds

case analysis, and seems to be the most powerful automated proof technique now avail-

able for behavioral equivalence. This paper only discusses details for a simpli�ed version

of the c4rw algorithm, showing its correctness by relating its steps to sound inference

rules given in Section 3. Some more sophisticated extensions have been implemented

in BOBJ, and are briey sketched in Section 5, but details are left for future papers.

These extensions make the algorithm much more powerful in practice, and are needed,

for example, in our recent proofs for the alternating bit protocol and the Petersen

mutual exclusion algorithm.

1 Standard equational reasoning is not sound for behavioral satisfaction; see Section 4.

BOBJ's c4rw algorithm takes as input a behavioral speci�cation and a set of

hidden sorted conditional equations, and it returns true, or failed, or else goes into

an in�nite loop2. Here is a simple example, illustrating case analysis in a coinductive

proof a conditional equation:

Example 1. Sets with insertion The behavioral theory SET has one hidden sort, Set,

one hidden constant for the empty set, and operations for element membership and

insertion. The case de�nition separates the situation where X equals Y from that where

it does not; this split is applied only when a subterm of the term being reduced matches

the pattern, eq(X,Y). BOBJ allows case de�nitions to be named, reused, and combined

with other such de�nitions.

bth SET is sort Set .

pr NAT .

op empty : -> Set .

op _in_ : Nat Set -> Bool .

op insert : Nat Set -> Set .

vars M N : Nat . var S : Set .

eq N in empty = false .

eq N in insert(M, S) = eq(N,M) or N in S .

end

cases CASES for SET is

vars X Y : Nat .

context eq(X,Y) .

case eq X = Y .

case eq eq(X,Y) = false .

end

cred with CASES insert(N, S) == S if N in S .

BOBJ's c4rw algorithm is called by the cred command; notice that the goal here is

a conditional equation. An algorithm of [21] �rst determines that fing is a cobasis for

set-sorted terms, i.e., that two terms are behaviorally equivalent i� they are indis-

tinguishable by experiments with in. Next, the condition of the goal is added to the

speci�cation as a new equation, with its variables replaced by new constants (see the

Condition Elimination rule in Section 3). Then BOBJ attempts to prove the goal by

reducing each side to its behavioral normal form and checking for equality; since this

fails, the goal is added to the speci�cation as a circularity, that can only be applied

in a restricted way; then the cobasis is applied to each side, and behavioral rewriting

produces

M in eq(M,s) or M in S = M in s,

where n and s are the new constants for N and S, respectively. After that, case analysis

is applied, and since both cases reduce to true, the result is proved. All this takes just

a few milliseconds, before BOBJ returns true. Note that the circularity is not actually

used in this proof (but we soon give an example that does use a circularity). 2

We have found case analysis essential for larger applications, such as our recent proofs

of the alternating bit protocol and the Petersen mutual exclusion algorithm; in addi-

tion, we reduced the proof score for liveness a real-time asynchronous data transmission

protocol done in CafeOBJ by Futatsugi and Ogata [8], by a factor of about ten. Cir-

cularities have also been essential for many non-trivial examples, but here is a simple

example, proving an identity that is familiar in functional programming, and also il-

lustrating BOBJ's parameterized module capability:

2 failed may mean that the algorithm could not prove the goal, or that the goal is false,

depending on the speci�cation.

Example 2. iter and map Here DATA is de�nes the interface to STREAM, that is, we con-
sider streams of elements from an arbitrary data structure having some monadic opera-
tion f de�ned on its elements. These streams have the usual head and tail operations,
plus _&_, which appends an element to the head of a stream. Its most interesting oper-
ations are map and iter, which respectively apply f to all the elements of stream, and
create a steam of iterations of f applied to its argument.

th DATA is sort Elt .

op f_ : Elt -> Elt .

end

bth STREAM[X :: DATA] is sort Stream .

op head_ : Stream -> Elt .

op tail_ : Stream -> Stream .

op _&_ : Elt Stream -> Stream .

op map_ : Stream -> Stream .

op iter_ : Elt -> Stream .

var E : Elt . var S : Stream .

eq head(E & S) = E.

eq tail(E & S) = S .

eq head map S = f head S .

eq tail map S = map tail S .

eq head iter E = E .

eq tail iter E = iter f E .

end

cred map iter E == iter f E .

The equation to be proved,

map iter E = iter f E

often appears in proofs about streams in functional programs. Pure behavioral rewriting

fails to prove the goal, so circular coinduction is invoked, with the goal added to the

speci�cation in a form that limits its application. The cobasis is determined to consist

of head and tail, and so new goals are produced by applying these operations to the

original goal. The goal generated by head is directly proved by rewriting, but the goal

generated by tail is reduced by behavioral rewriting to

iter f f E = map iter f E

By applying the circularity at the top level, the left side reduces to iter f f E, which

is the same as the behavioral normal form of the right side of the goal. 2

2 Speci�cation and Satisfaction

We �rst briey review the basics of algebraic speci�cation, and then review the version

of hidden algebra implemented in BOBJ [10], which drops many unnecessary but often

accepted restrictions, including that operations cannot multiple hidden arguments,

that equations cannot have more than one hidden variable, and that all the operations

should preserve behavioral equivalence.

2.1 Preliminaries

The reader is assumed familiar with basic equational logic and algebra. Given an S-

sorted signature � and an S-indexed set of variables Z, let T�(Z) denote the �-term

algebra over variables in Z. If V � S then ��V is a V -sorted signature consisting of

all those operations in � de�ned entirely with sorts in V . We may let �(X) denote the

term �(x1; :::; xn) when the number of arguments of � and their order and sorts are

not important. If only one argument is important, then to simplify writing we place it

at the beginning; for example, �(t;X) is a term having � as root with only variables as

arguments except one, and we do not care which one, which is t. Der(�) is the derived

signature of �, which contains all �-terms, viewed as operations. If t is a �-term and

A is a �-algebra, then At : A
var(t) ! A is the interpretation of t in A, de�ned as

follows: given � : var(t)! A, let At(�) be �(t), the evaluation of t in A with variables

replaced by the values given by �. If one variable of t, say ?, is of special importance,

then we may view the evaluation of t in two steps, as At : A ! (A(var(t)�f?g) ! A)

with the obvious meaning.

2.2 Behavioral Speci�cation and Satisfaction

We generalize the hidden algebra of [9, 11, 19] to include variants such as observational

logic [1, 3, 14] and coherent hidden algebra [6, 7]. See [19] for a detailed presentation

of many variants, with history, many other concepts, and proofs for some results men-

tioned. Two important classes of behavioral logic are the �xed data and loose data,

depending on whether or the data universe is assumed �xed (i.e, \built-in"). Due to

space limitations, our exposition focuses on the loose data version, but all results also

hold for the �xed data version. (But note that validity of case analysis often depends

on having a suitable �xed data algebra; for example, the above proof for SET requires

that sort Bool have the usual two truth values.)

De�nition 1. Given disjoint sets V;H called visible and hidden sorts, a hidden

(V;H)-signature is a many sorted (V [H)-signature. A hidden subsignature of

� is a hidden (V;H)-signature � with � � � and � �V= ��V . The data signature

is � �V , which may be denoted
. A visible sorted operation not in
 is called an

attribute, and a hidden sorted operation is called a method.

Unless otherwise stated, the rest of this paper assumes �xed a hidden signature �

with a �xed subsignature � . Informally, �-algebras are universes of possible states of

a system, i.e., \black boxes," where one is only concerned with behavior under experi-

ments with operations in � , where an experiment is an observation of a system attribute

after perturbation; this is formalized below, where the symbol ? is a placeholder (i.e.,

a variable) for the state being experimented upon.

De�nition 2. A � -context for sort h 2 H is a term in T� (f? : hg [Z) with one

occurrence of ?, where Z is an in�nite set of special variables. A � -context with visible

result sort is called a � -experiment. If c is a context for sort h and t 2 T�;h then c[t]

denotes the term obtained from c by substituting t for ?; we may also write c[?] for the

context itself.

De�nition 3. Given a hidden �-algebra A with a hidden subsignature � , we de�ne for

all sorts s 2 V [H an equivalence relation between elements a; a0 2 As by a ��

�
a
0 i�

Ac(a)(�) = Ac(a
0)(�) for all � -experiments c and all (V [H)-sorted maps � : var(c)!

A; we call this relation � -behavioral equivalence on A. We may write � instead

of ��

�
when � and � can be inferred from context, and we write �� when � = � .

Given an (V [H)-equivalence � on A, an operation � in �s1:::sn;s
is congruent3 for

� i� A�(a1; :::; an) � A�(a
0
1; :::; a

0
n
) whenever ai � a

0
i
for i = 1:::n. An operation �

is � -behaviorally congruent for A i� it is congruent for ��

�
. We often write just

3 This is called \coherent" in [7], where the concept originated.

congruent for behaviorally congruent4. A hidden � -congruence on A is a (V [H)-

equivalence on A which is the identity on visible sorts and for which each operation in

� is congruent.

Notice that behavioral equivalence is the identity on visible sorts, because the triv-

ial contexts ? : v are proper experiments for all v 2 V . The following is the basis for

coinduction and other important results, generalizing [11] to operations that have more

than one hidden argument or are not behavioral; see [20, 19] for a proof. Since �nal alge-

bras do not necessarily exist in this setting, existence of a largest hidden � -congruence

does not depend on them, as in coalgebra [22, 16, 15].

Theorem 1. Given a hidden subsignature � of � and a hidden �-algebra A, then

� -behavioral equivalence is the largest hidden � -congruence on A.

Behavioral satisfaction of conditional equations can now be naturally de�ned in

terms of behavioral equivalence:

De�nition 4. A hidden �-algebra A � -behaviorally satis�es a �-equation (8X) t =

t
0 if t1 = t

0
1; :::; tn = t

0
n
, say e, i� for each � : X ! A, if �(ti) �

�

�
�(t0

i
) for all

1 � i � n, then �(t) ��

�
�(t0) ; in this case we write A j��

�
e. If E is a set of

�-equations we then write A j��

�
E when A � -behaviorally satis�es each �-equation

in E. When � and/or � are clear, we may omit either or both from j��

�
.

Case analysis is often needed, for example, in our recent proofs of the alternating

bit protocol and the Petersen mutual exclusion algorithm. An elegant formulation of

case analysis adds a new kind of sentence, which can also be used in speci�cations:

De�nition 5. Given a hidden signature �, a �-case sentence over variables X

is a nonempty set fC1; C2; :::; Cng, written (8X)
W
n

i=1 Ci, where each Ci for 1 � i � n

is a set of pairs of �-terms over variables in X. Given a hidden �-algebra A, A j�

(8X)
W
n

i=1 Ci i� for any � : X ! A there is some 1 � i � n such that �(t) ��

�
�(t0)

for each t = t
0 in Ci.

De�nition 6. A behavioral (or hidden) �-speci�cation (or -theory) is a triple

(�;�;E) where � is a hidden signature, � is a hidden subsignature of �, and E is a set

of �-sentences (equations of cases). The operations in � ���V are called behavioral.

A �-algebra A behaviorally satis�es (or is a model of) a behavioral speci�cation

B = (�;�;E) i� A j��

�
E, and in this case we write A j� B; we write B j� e if

A j� B implies A j��

�
e. An operation � 2 � is behaviorally congruent for B i�

� is � -behaviorally congruent for each A such that A j� B.

Many examples of non-� -behaviorally congruent operations arise in programming

language semantics. For example, if we consider two programs in a given language

equivalent i� they both terminate and have same output, then appropriate operations

can be de�ned for � to enforce this natural relation of behavioral equivalence. How-

ever, to properly de�ne the syntax and the semantics of a programming language, its

behavioral speci�cation needs to de�ne various operations which do not preserve this

behavioral equivalence, such as its execution environment (two programs may declare a

variable x, one instantiate it to 0 and the other to 1, and then never use that variable).

Proposition 1. If B = (�;�;E) is a behavioral speci�cation, then all operations in �

and all hidden constants, are behaviorally congruent for B.

4 A similar notion is given by Padawitz [17].

Of course, depending on E, other operations may also be congruent. An easy to check

criterion for congruence is given in [20], and is further generalized in [4, 21]. As shown

in [20], congruent operations can be added to or removed from � at our discretion when

the equations in E do not have equalities of hidden sort in their conditions, which is

often the case.

3 Behavioral Inference

This section introduces �ve new inference rules that are sound for behavioral equiv-

alence, beyond the usual rules of reexivity, symmetry, transitivity and substitution;

note that they all work on conditional equations. We let Æ denote the relation we are

de�ning, for deduction from a speci�cation to an equation. Also, if B is a behavioral

speci�cation and Y is a set of variables, we let B(Y) denote B with Y adjoined to the

signature of B; similarly, if E is a set of equations, we let BfEg denote B with E ad-

joined to the equations of B. This notation also allows us to write things like B(Y)fEg

and B(Y)fE;E0g.

As discussed in the paragraph before Proposition 1, operations are not always con-

gruent. This implies that the congruence rule of equational deduction is not always

sound for behavioral reasoning. However, there are important situations where it is

sound: a) when applied at the top of a visible term; and b) when applied to behav-

iorally congruent operations. The reason for the �rst is that behavioral equivalence is

the identity on visible sorts, and for the second is that behaviorally congruent opera-

tions preserve the behavioral equivalence relation:

Congruence :

8>>><
>>>:

a)
B Æ (8X) t = t

0 if c; sort(t; t0) 2 V

B Æ (8X;W) �(W; t) = �(W; t0) if c; for all � 2 Der(�)

b)
B Æ (8X) t = t

0 if c; sort(t; t0) 2 H

B Æ (8X;W) Æ(s; t) = Æ(s; t0) if c; for all Æ 2 � and s 2 T�(W)

where s is an appropriate string of �-terms over the variables inW . Deduction with this

rule plus the usual reexivity, symmetry and transitivity rules, satis�es an important

property given in Proposition 2 below, using the following concepts:

De�nition 7. A �-context is behavioral i� all operations on the path to ? in are

behavioral, and is safe i� either it is behavioral or there is some behavioral experiment

0 (of visible result) such that =

00[0] for some appropriate 00.

Proposition 2. If B Æ (8X) t = t
0 if c then B Æ (8X;W) [t] = [t0] if c for any

appropriate safe �-context , where W are the variables of .

The deduction theorem says that to prove an implication p ! q one can add p to

the set of axioms and then prove q. In equational logics, since universal quanti�ers bind

both the condition and the conclusion of a conditional equation, to make the deduction

theorem work one must �rst unbind the variables in the condition. This is typically

done via the \theorem of constants," which adds a new constant to the signature for

each variable of interest. Here is a behavioral rule combining these two,

Condition Elimination:
B(Y)fE(c)g Æ (8X � Y) t = t

0

B Æ (8X) t = t0 if c

where Y is the set of variables occurring in c, and E(c) is the set of ground unconditional

equations contained in c (arising since c is a conjunction of equalities). In the lower part

of the rule above, t, t0 and c are all de�ned over the signature of B and use variables in

X , while in the upper part, t and t0 still use variables in X but all their variables in Y

are replaced by new constants, thus giving a new behavioral speci�cation B(Y), where

each variable in Y is regarded as a new constant.

A case sentence can be used to derive new equations by providing a substitution

from the case statement's variables into terms over the equation's variables. Formally,

let B be a behavioral speci�cation containing the case statement (8Y)
W

n

i=1 Ci, let '

be a map Y ! T�(X), and let Vi = var('(Ci)); then the rule is

Case Analysis:
B(Vi)f(8;)'(Ci)g Æ (8X � Vi) t = t

0 if c; for 1 � i � n

B Æ (8X) t = t0 if c

This says that to prove (8X) t = t
0 if c by case analysis using (8Y)

W
n

i=1 Ci, one must

provide a substitution instantiating the case statement to the context of the proof task

and then, for each case Ci, prove the equational sentence using that case as an axiom,

after the relationship between the case's variables and the equation's variables is made

explicit by replacing them by constants.

Unrestricted use of the Case Analysis rule can be very expensive, even non-

terminating, and it can also be hard to �nd appropriate substitutions '. Since our

main goal is an automatic and relatively eÆcient procedure for proving behavioral

equivalence, we have developed a simple mechanism to tell BOBJ both when to perform

a case analysis and with what substitution. In BOBJ, each case statement comes with a

pattern, usually denoted by p, which is just a �-term with variables. The Case Analysis

rule is enabled only if the pattern pmatches a subterms of t or t0, and then a substitution

also comes for free.

Our most powerful rule is circular coinduction, but �rst we recall the important

notion of cobasis, originating in [20] and later simpli�ed in [18, 12, 21]. For this paper, a

cobasis � is considered a subset of � that generates enough experiments, in the sense

that no other experiment can distinguish two states that cannot be distinguished by

these experiments. Finding a minimal cobasis seems to be undecidable, but there are

cobasis criteria that work well in practice [20, 4, 21], and are implemented in BOBJ. In

addition, users can also declare their own cobases.

Intuition for circular coinduction can be enhanced by considering its duality with

structural induction. Inductive proofs show equality of terms t(x); t0(x) over a given

variable x (seen as a constant) by showing t(�(x)) equals t0(�(x)) for all � in a basis,

while circular coinduction shows terms t; t0 behaviorally equivalent by showing equiv-

alence of �(t) and �(t0) for all � in a cobasis. Moreover, coinduction applies cobasis

operations at the top, while structural induction applies basis operations at the bottom.

Both induction and circular coinduction assume some \frozen" instances of t; t0 equal

when checking the inductive/coinductive step: for induction, the terms are frozen at the

bottom by replacing the induction variable by a constant, so that no other terms can

be placed beneath the induction variable, while for coinduction, the terms are frozen at

the top, so that they cannot be used as subterms of other terms (with some important

but subtle exceptions, which are treated by the Special Context inference rule below).

Freezing terms at the top is elegantly handled by a simple trick. Suppose every

speci�cation has a special visible sort b, and for each (hidden or visible) sort s in the

speci�cation, a special congruent operation [] : s ! b. No equations are assumed for

these operations and no user de�ned sentence can refer to them; they are there for

technical reasons. Thus, with the inference rules introduced so far, for any behavioral

speci�cation B and any conditional equation (8X) t = t
0 if c, it is necessarily the case

that B Æ (8X) t = t
0 if c if and only if B Æ (8X) [t] = [t0] if c. The circular

coinduction rule preserves this property. Let � be a cobasis for B, and assume that the

sort of t and t
0 is hidden.

Circular

Coinduction
:

Bf(8X) [t] = [t0] if cg Æ (8X;W) [Æ(t;W)] = [Æ(t0;W)] if c;

for all appropriate Æ 2 �

B Æ (8X) t = t0 if c

We call the equation (8X) [t] = [t0] if c added to B a circularity; it could just as

well have been called a coinduction hypothesis or a co-hypothesis, but we �nd the �rst

name more intuitive because, from a coalgebraic point of view, coinduction is all about

�nding circularities.

Another way to look at the circular coinduction rule is through the lense of context

induction [13]. To clarify the discussion in this paragraph, we replace the operations [?]

by C[?]. Then our rule says that to show (8X) t = t
0 if c, one can assume (8X) C[t] =

C[t0] if c and then show (8X;W) C[Æ(t;W)] = C[Æ(t0];W) if c for each Æ 2 �, which,

if one thinks of C[Æ(?;W) as (C; Æ)(?;W), is just an induction scheme on contexts. In

fact, this is how we prove the soundness of this rule (see Theorem 2 below).

The restriction of the application of circularities to the top of proof goals enforced

by the operations [?] excludes many important situations (e.g., see Example 5). We

begin our consideration of when this restriction can be lifted with the following:

De�nition 8. A ��� context [?] is called special i� for any ��experiment C[?],

there exists a ��experiment D[?] such that C[[?]] = D[?] and the size of D[?] is

not bigger than the size of C[?].

The next rule allows circularities to be used inside of special contexts:

Special

Context
:

B Æ (8X) [t] = [t0] if c

B Æ (8X;W) [(t;W)] = [(t0;W)] if c; when is a special context

We now describe two kinds of special contexts, but will consider other more general

kinds in future publications.

De�nition 9. An operation f in ��� is context collapsed i� for any ��experiment

C[?], one of the following two conditions holds:

1. there exists an attribute g in � and a context D[?] such that C[f(W)] = D[g(W)]

and D[?] does not involve hidden sorts.

2. C[f(W)] = t where t does not involve hidden sorts.

It is not hard to see that f is context collapsed if both of the following are satis�ed:

1. For any attribute g in � and any variable x of hidden sort, g(f(x; V);W) = t,

where t contains no hidden sorts, or t = D[g0(x;W)] where g0 is another attribute

in � and D[?] does not involve hidden sorts.
2. For any non-attribute operation g in � and any variable x on a hidden sort,

g(f(x; V);W) = x, or g(f(x; V);W) = C[x] where C is a context made by context

collapsed operations.

De�nition 10. An operation f in ��� is context preserved i� both of the following

are satis�ed:

1. For any attribute g in � and any variable x of hidden sort, g(f(x; V);W) = t

where t involves no hidden sorts, or t = D[g0(x;W)] where g0 is an attribute in �

and D[?] involves no hidden sorts.

2. For any non-attribute operation g in � and any variable x on a hidden sort,

g(f(x; V);W) = C[f(g0(x; V;W); V;W)] or

g(f(x; V);W) = C[f(x; V;W)] or

g(f(x; V);W) = C[g0(x; V;W)] or

g(f(x; V);W) = x

where C[?] is a context of context collapsed operations and g
0 is in �.

A context consisting of context collapsed operation and context preserved operations

obviously satis�es the condition in the Special Context rule, so that circularities can be

applied under it.

One should be extremely careful in checking that contexts are special. For example,

the cobasis operations in � cannot be special, because otherwise the Circular Coinduc-

tion rule would prove everything. As shown by Example 3, even behavioral operations

in ��� cannot all be special. The examples and theory in this paper show that the

issues involved are more subtle than we realized in [18], which described an overly opti-

mistic algorithm. The following is the main result of this paper; its soundness assertions

are used to justify the steps of the c4rw algorithm.

Theorem 2. The usual equational inference rules, Reexivity, Symmetry, Transitivity,

and Substitution, as well as the new rules above, Congruence, Condition Elimination, Case

Analysis, Circular Coinduction and Special Context, are all sound. By soundness here we

mean that if B Æ (8X) t = t
0 if c and sort(t; t0) 6= b, or if B Æ (8X) [t] = [t0] if c,

then B j� (8X) t = t
0 if c.

4 Behavioral Rewriting

Behavioral rewriting relates to the �rst �ve rules of Theorem 2 as ordinary term rewrit-

ing relates to equational logic: it provides a simple, eÆcient and automatic procedure

for checking equalities. To simplify the exposition, we treat only unconditional rewrit-

ing, but the generalization to conditional rewriting is similar to that for ordinary term

rewriting. The fact that some operations may not be behaviorally congruent requires

modifying ordinary term rewriting.

De�nition 11. A �-rewrite rule is a triple (8Y) l ! r, where l; r 2 T�(Y). A

behavioral �-rewriting system is a triple (�;�;R), where � is a hidden signature,

� is a hidden subsignature of �, and R is a set of �-rewrite rules.

De�nition 12. The behavioral (term) rewriting relation associated to a behav-

ioral rewriting system R is the smallest relation V such that:

1. �(l)V �(r) for each (8Y) l! r in R and � : Y ! T�(X).
2. if t V t

0 and sort(t; t0) 2 V then �(W; t) V �(W; t
0) for all � 2 Der(�) and all

appropriate variables W , and
3. if tV t

0 and sort(t; t0) 2 H then Æ(W; t)V Æ(W; t
0) for all Æ 2 � and all appropriate

variables W .

When R is important, we write VR instead of V.

Behavioral rewriting only applies a rule to a hidden redex if only behavioral5 operations

occur on the path from that redex towards the root until a visible sort is found; if no

5 We suggest declaring as many operations as possible behavioral; in particular, all congruent

operations should be behavioral [20]. Those who don't like this may substitute \behavioral

or congruent" for \behavioral" through the rest of this paper.

visible operation is found, rewriting is still allowed if all operations on the path from

the redex to the root are behavioral. We can formulate an equivalent de�nition of

behavioral rewriting with the following:

Proposition 3. tV t
0 i� there is a rewrite rule (8Y) l! r in R, a safe �-context ,

and a substitution � such that t = [�(l)] and t
0 = [�(r)].

Behavioral rewriting is implemented in CafeOBJ [6] and BOBJ [10]. Conuence and

termination of behavioral rewriting are interesting subjects for research, but we do not

focus on them here, except to notice that termination of ordinary rewriting produces

termination of behavioral rewriting, because V is a subrelation of the usual term

rewriting relation, so that any termination criterion for ordinary rewriting applies to

behavioral rewriting. Many classical results generalize:

Proposition 4. If R = (�;�;R) is a behavioral �-rewriting system and B = (�;�;E)

is its associated behavioral speci�cation, i.e., if E = f(8Y) l = r j (8Y) l! r 2 Rg, and

if V and �Eq are the behavioral rewriting and equational derivability (using the �rst

�ve rules in Theorem 2) relations on R and B, respectively, then

1. V � �Eq ,

2. If V is conuent then �Eq =
�

V;
�

W, and

3. If V is canonical then t �Eq t
0 i� bnfB(t) = bnfB(t

0), where bnfB(u) is the behav-

ioral normal form of a �-term u.

We now extend behavioral rewriting to take account of special contexts, for use in the

algorithm of the next section:

De�nition 13. V] is de�ned for behavioral rewriting systems extended with the spe-

cial sorts b and operations [], by extending V minimally such that if [t] V] [t0] then

[(t;W)] V] [(t0;W)] for each special context (see De�nition 8). Given a behavioral

rewriting system R with its associated behavioral speci�cation B, we let bnf
]

R(t) and/or

bnf
]

R(t
0) denote the normal form of a term t under the rewriting relation V].

Soundness of V] follows from Proposition 4 and soundness of the Special Context rule

(Theorem 2, which also says what we mean by soundness in the context of the special

sort b and operations []).

5 The C4RW Algorithm

A simple way to automate behavioral reasoning is just to behaviorally rewrite the

two terms to normal forms, and then compare them, as suggested by Proposition 4.

Although this is too weak to prove most interesting properties, the c4rw algorithm

combines it with circular coinduction and case analysis in a harmonious and automatic

way, for proving hidden properties, which are usually the most interesting and diÆcult.

Intuitively, to prove a hidden conditional equation (8X) t = t
0 if c, one applies the

circular coinduction rule and tries to prove the resulting apparently more complex

properties. The algorithm maintains a list of goals, which is reduced when a goal is

proved, and is increased when new goals are generated by the coinduction or case

analysis rules. The algorithm terminates when either a visible proof task cannot be

proved, in which case failed is returned, or when the set of goals becomes empty, in

which case true is returned. The proof goals are stored in bracketed form to control

their application. We �rst describe the main procedure, c4rw, which has a set, G, of

hidden equations with visible conditions as initial goals.

The loop at step 1 processes each goal in G, and terminates when G becomes empty

or when a failed is returned at step 9. Step 2 removes goals from G, and step 3 puts

them (in frozen or bracketed form) into the original speci�cation. These frozen versions

of goals can then be used in subsequent proofs, much as induction hypotheses are used

in inductive proofs by induction, but \at the top" instead of \at the bottom" (see the

discussion in Section 3).

Steps 4 and 5 prepare for applying the Circular Coinduction rule. Since it generates

new conditional proof obligations, each with the same condition, and since all these

will later be subject to Condition Elimination, for eÆciency step 4 �rst generates new

constants for the variables in the condition, and then step 5 calculates the set of ground

unconditional equations that will later be added to the speci�cation by Condition Elim-

ination. Steps 6{11 apply the Circular Coinduction rule. For each appropriate operation

Æ in the cobasis �, step 7 tries to prove that [Æ(t;W)] equals [Æ(t0;W)], by �rst apply-

ing the Condition Elimination rule (BfE�(c)g), then using behavioral rewriting on both

terms, and �nally checking equality with the procedure ProveEq, which is explained

below. Notice that behavioral rewriting can use the frozen equation; more precisely, the

frozen equation is applied (as a rewrite rule) if the term [Æ(t;W)] reduces to an instance

(via a substitution) of [t] (of course, if the condition holds). This is equivalent to saying

that the equation (8X) t = t
0 if c can only be applied on the top when reducing the

terms Æ(t;W) generated by circular coinduction. If the procedure ProveEq does not

return true, meaning that it was not able to prove the two b-sorted terms equal, then

the algorithm returns failed if the cobasis operation was visible (step 8), or else it adds

a new (hidden) goal to G, as required by the Circular Coinduction rule.

procedure c4rw(B; �;G)
(can modify its B and G arguments)

input: - a behavioral theory B = (�;�;E)

- a cobasis � of B
- a set G of hidden �-equations of visible conditions (in bracket form)

output: true if a proof of B j� G is found; otherwise failed or non-terminating

1. while there is some e := (8X) [t] = [t0] if c in G do

2. let G be G � feg
3. let B be Bfeg
4. let � be a substitution on X assigning new constants to the variables in c;

add the new constants to B
5. let E�(c) be the set of visible ground equations in �(c)

6. for each Æ 2 � appropriate for e do

7. if ProveEq(B; bnf]
BfE�(c)g

([Æ(t;W)]); bnf
]

BfE�(c)g
([Æ(t0;W)]); �(c); E�(c)) 6= true

8. then if Æ is an attribute

9. then return failed

10. else let G be G [f(8X;W) bnf]B([Æ(t;W)]) = bnf]B([Æ(t
0;W)]) if cg

11. endfor

12. endwhile

13. return true

We next discuss the procedure ProveEq, which takes as arguments a behavioral

speci�cation, two b-sorted terms, u; u0, and the ground version of the equation's con-

dition (with its variables replaced by new constants) together with the set of ground

equations it generates; it returns true, or failed, or loops forever. Step 1 returns true

if the two terms are equal, and steps 2{6 check whether any case statement in B can

be applied. Remember that the Case Analysis rule requires a substitution of the vari-

ables in the case statement into terms over the variables of the equation to derive, and

that we use a pattern in BOBJ which automatically selects a substitution, � (step 3).

Step 4 checks whether the case analysis L can show the two terms equivalent, using

the procedure CaseAnalysis described below. If no case sentence can show the terms

u; u
0 equivalent, then step 7 returns failed.

procedure ProveEq(B; u; u0; �(c); E�(c))

input: - a behavioral theory B
- two terms u and u0 of visible sort b

- a ground visible condition �(c) and its ground equations E�(c)

output: true if a proof of B j� (8var(u; u0)) u = u0 if �(c) is found;

otherwise failed or non-terminating

1. if u = u0 then return true

2. for each case sentence (p;L) in B do

3. if p matches a subterm of u or u0 with substitution �

4. then if CaseAnalysis(L; �;B; u; u0; �(c); E�(c))

5. then return true

6. endfor

7. return failed

The CaseAnalysis procedure just applies the Case Analysis rule. For each case C,

it �rst adds a new constant for each variable in C (step 2) and generates the ground

equations of C (step 3). Steps 4{5 check the top derivation in the CaseAnalysis rule:

step 4 checks whether the condition of the equational sentence became false (to keep

the presentation short we have not introduced an inference rule for false conditions),

and if this is not the case, then step 5 recursively checks whether u and u
0 became

equal under the new assumptions)since this recursion may not terminate, some care

may be required when de�ning case statements).

procedure CaseAnalysis(L; �;B; u; u0; �(c); E�(c))

1. for each case C in L do

2. let � be � with a new constant substituted for each variable in C

3. let E�(C) be the set of visible ground equations in �(C)

4. if bnfBfE�(C)g
(�(c)) 6= false and

5. ProveEq(BfE�(C)g; bnf
]

BfE�(C);E�(c)g
(u); bnf]

BfE�(C);E�(c)g
(u0); �(c); E�(c)) 6= true

6. then return failed

7. endfor

8. return true

To take full advantage of behavioral rewriting, one must carefully orient the new

equations added at step 10 as rewrite rules; the success of c4rw depends on how well

this is done. The following orientation procedure has worked very well in practice: If

both directions are valid as rewrite rules (i.e., both sides have the same variables), then

orient so that the left side has less symbols than the right side; if the terms have the

same number of symbols, then orient with right side smaller than the left side under

the lexicographic path ordering induced by the order in which operations are declared.

The following is a more precise description:

1. if only one direction is valid, then use it;
2. if both directions are valid, but one of Æ(t;W) and Æ(t0;W), say t1 has more symbols

than the other, say t2, then add the rule [t1]! [t2] if c to G;
3. if both directions are valid and have the same number of symbols, but t1 � t2,

then add [t1]! [t2] if c to G, where � is the lexicographic path ordering induced

by the operation declaration ordering, de�ned by

f(t1; :::; tn)� ti for all 1 � i � n;

f(t1; :::; tn)� f(s1; :::; sn) if ht1; :::; tni � hs1; :::; sni in lexicographic order;

f(t1; :::; tn)� g(s1; :::; sm) if f > g and f(t1; :::; tn)� si for all 1 � i � m.

Example 3. An Invalid Coinduction This shows how the unrestricted use of circularities

can give rise to incorrect results. Notice that odd is a congruent operation not in the

cobasis, which for streams, consists of just head and tail.

bth FOO is pr STREAM[NAT] .

op odd_ : Stream -> Stream .

var S : Stream .

eq head odd S = head S .

eq tail odd S = odd tail tail S .

ops a b : -> Stream .

eq head a = head b .

eq tail a = odd a .

eq tail tail b = odd b .

end

set cred trace on .

cred odd b == a .

The \proof" goes as follows, using the cobasis fhead; tailg as usual:

head odd b == head a

follows by behavioral reduction, and

tail odd b == tail a

reduces to

odd odd b == odd a

which follows (illegitimately) by applying the circularity inside the context odd. To

show that the rresult really is false, one may take a to be the stream which begins with

001 and then has all 2s, and b to be the sequence which also begins with 001, and then

continues with all 0s. (Of course, BOBJ's c4rw algorithm also fails to prove it; in fact,

it goes into an in�nite loop during behavioral rewriting when given this input.) 2

Example 4. Two de�nitions of Fibonacci, plus Evenness Here is a not so trivial example.

The goal of the �rst invocation of c4rw via cred is to show equality of two di�erent

de�nitions of the stream of all Fibonacci numbers; for this, the algorithm generates

an unending stream of new circularities, thus illustrating how c4rw itself can fail to

terminate. The zip function interleaves two streams. The second goal involves both a

conditional goal and a circularity, and it succeeds.

bth 2FIBO is pr STREAM[NAT] .

ops fib fib' : Nat Nat -> Stream .

vars N N' : Nat . vars S S' : Stream .

eq head fib(N, N') = N .

eq tail fib(N, N') = fib(N', N + N') .

eq head fib'(N, N') = N .

eq head tail fib'(N, N') = N' .

op zip : Stream Stream -> Stream .

eq head zip(S, S') = head S .

eq tail zip(S, S') = zip(S', tail S) .

op add_ : Stream -> Stream .

eq tail tail fib'(N, N') = add zip(fib'(N, N'), tail fib'(N, N')).

eq head add S = head S + head tail S .

eq tail add S = add tail tail S .

end

set cred trace on .

cred fib(N, N') == fib'(N, N') .

bth EVENNESS is pr 2FIBO + STREAM[BOOL] * (sort Stream to BStream) .

op all-true : -> BStream .

eq head all-true = true .

eq tail all-true = all-true .

op even?_ : Nat -> Bool .

op even?_ : Stream -> BStream .

vars M N : Nat . var S : Stream .

eq even? 0 = true .

eq even? s 0 = false .

eq even? s s N = even? N .

eq head even? S = even? head S .

eq tail even? S = even? tail S .

eq even?(M + N) = true if even?(M) and even?(N) .

end

cred even? fib(M, N) == all-true if even?(M) and even?(N) .

The last equation is really a lemma that should be proved by induction; it is needed

in the proof that if fib is given two even arguments, then all its values are even. 2

Example 5. Two de�nitions for iteration The goal here is to prove the equivalence of

two ways to produce a stream of increasingly many copies of a function applied to an

element.

bth MAP-ITER [X :: DATA] is pr STREAM[X] .

ops (iter1_) (iter2_) : Elt -> Stream .

var E : Elt . var S : Stream .

eq head iter1 E = E .

eq tail iter1 E = iter1 f E .

eq head iter2 E = E .

eq tail iter2 E = map iter2(E) .

end

cred iter1 E == iter2 E .

The c4rw algorithm generates two circularities, one of which is applied in a special

context, i.e., not at the top, in fact, under map. Hence this is an example that actually

requires the use of special contexts. 2

6 Conclusions and Future Research

We believe that the c4rw algorithm, especially with its use of special contexts, is the

most powerful algorithm now available for proving behavioral properties of complex

systems. However, much can be done to improve it. First, the conditions for contexts

to be special in Section 3 are only the beginning of what could be a long journey, parallel

to the one followed in research on automatic induction algorithms. In fact, it would

probably be useful to combine the c4rw algorithm with some automatic induction

methods. In any case, we will consider more powerful conditions for special contexts in

future publications.

Another topic that seems worth exploring is adding conditions to case statements;

the idea is that after the pattern is matched, the case split would only be applied if

the condition is satis�ed. This could make the application of case splits more precise,

as well as reduce the computation needed for some large examples.

Finally, more should be done on the duality between induction and circular coinduc-

tion. In particular, since we are talking about sophisticated algorithms that generate

new hypotheses, not just about basic forms of induction and coinduction, the very

notion of duality may need some careful explication.

References

1. G. Bernot, M. Bidoit, and T. Knapik. Observational speci�cations and the indistinguisha-

bility assumption. Theoretical Computer Science, 139:275{314, 1995.

2. N. Berregeb, A. Bouhoula, and M. Rusinowitch. Observational proofs with critical con-

texts. In Fundamental Approaches to Software Engineering, volume 1382 of LNCS, pages

38{53. Springer, 1998.

3. M. Bidoit and R. Hennicker. Behavioral theories and the proof of behavioral properties.

Theoretical Computer Science, 165(1):3{55, 1996.

4. M. Bidoit and R. Hennicker. Observer complete de�nitions are behaviourally coherent.

In K. Futatsugi, J. Goguen, and J. Meseguer, editors, OBJ/CafeOBJ/Maude at Formal

Methods '99, pages 83{94. Theta, 1999.

5. S. Buss and G. Ro�su. Incompleteness of behavioral logics. In H. Reichel, editor, Pro-

ceedings of Coalgebraic Methods in Computer Science, volume 33 of Electronic Notes in

Theoretical Computer Science, pages 61{79. Elsevier Science, 2000.

6. R. Diaconescu and K. Futatsugi. CafeOBJ Report: The Language, Proof Techniques, and

Methodologies for Object-Oriented Algebraic Speci�cation. World Scienti�c, 1998. AMAST

Series in Computing, volume 6.

7. R. Diaconescu and K. Futatsugi. Behavioral coherence in object-oriented algebraic spec-

i�cation. Journal of Universal Computer Science, 6(1):74{96, 2000.

8. K. Futatsugi and K. Ogata. Rewriting can verify distributed real-time systems { how to

verify in CafeOBJ. In Y. Toyama, editor, Proc. Int. Workshop on Rewriting in Proof and

Computation, pages 60{79. Tohoku University, 2001.

9. J. Goguen. Types as theories. In G.M. Reed, A.W. Roscoe, and R.F. Wachter, editors,

Topology and Category Theory in Computer Science, pages 357{390. Oxford, 1991.

10. J. Goguen, K. Lin, and G. Ro�su. Circular coinductive rewriting. In Proceedings, Automated

Software Engineering, pages 123{131. IEEE, 2000.

11. J. Goguen and G. Malcolm. A hidden agenda. Theoretical Computer Science, 245(1):55{

101, 2000.

12. J. Goguen and G. Ro�su. Hiding more of hidden algebra. In Proceeding, FM'99, volume

1709 of LNCS, pages 1704{1719. Springer, 1999.

13. R. Hennicker. Context induction: a proof principle for behavioral abstractions. Formal

Aspects of Computing, 3(4):326{345, 1991.

14. R. Hennicker and M. Bidoit. Observational logic. In Proceedings, AMAST'98, volume

1548 of LNCS, pages 263{277. Springer, 1999.

15. B. Jacobs. Mongruences and cofree coalgebras. In M. Nivat, editor, Algebraic Methodology

and Software Technology (AMAST95), pages 245{260. Springer, 1995. LNCS 936.

16. B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. Bulletin of

European Association for Theoretical Computer Science, 62:222{259, 1997.

17. P. Padawitz. Towards the one-tiered design of data types and transition systems. In

Proceedings, WADT'97, volume 1376 of LNCS, pages 365{380. Springer, 1998.

18. G. Ro�su. Behavioral coinductive rewriting. In K. Futatsugi, J. Goguen, and J. Meseguer,

editors, OBJ/CafeOBJ/Maude at Formal Methods '99, pages 179{196. Theta, 1999.

19. G. Ro�su. Hidden Logic. PhD thesis, University of California, San Diego, 2000.

20. G. Ro�su and J. Goguen. Hidden congruent deduction. In R. Caferra and G. Salzer, editors,

Automated Deduction in Classical and Non-Classical Logics, volume 1761 of LNAI, pages

252{267. Springer, 2000.

21. G. Ro�su and J. Goguen. Circular coinduction. In International Joint Conference on

Automated Reasoning (IJCAR'01). 2001.

22. J. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science, 249:3{

80, 2000.

