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Abstract. This paper investigates the problem of autonomously allo-
cating a large number of independent, equal sized tasks on a distributed
heterogeneous grid-like platform, using only local information. We pro-
pose A-FAST (Autonomous Flow Approach to Scheduling Tasks), an
efficient, scalable, dynamic and generic (imposing no restrictions on the
topology) protocol for this purpose. Motivated by the idea of pressure
guiding the flow in fluid networks, A-FAST only uses parameters avail-
able locally to a node to guide scheduling decisions. Simulations show
that the protocol performs well over a variety of networks, averaging
more than 99.5% of the optimal performance and outperforms related
techniques like RID (Receiver Initiated Diffusion). We also show how
a modified use of local information can improve the performance of an
unreliable system. Preliminary results from implementing A-FAST on a
small but real-life distributed system show the performance of our proto-
col to be near the maximum throughput of the system. Such a protocol
has the potential to aid the efficient deployment of large, data intensive
applications on very large or dynamically changing heterogeneous peer-
to-peer computing platforms.

Key Words : Heterogeneous computing, peer-to-peer computing, net-
work flows, scheduling.

1 Introduction

The advent of collaborative computing efforts like SETI@home project [25],
GIMP [21] and Entropia [9] has given rise to a range of applications where
a large set of tasks can be distributed across a grid-like platform and solved
concurrently. These applications form the driving motivation of our work, which
aims to schedule a large number of independent, equal-sized tasks, online across
a dynamic and heterogeneous computing platform. We seek a scheduling strategy
with the following properties:

– Autonomous - Uses minimal (or no) global information. In particular it
should not require network-wide information.
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– Generic - Applies to all kinds of networks, regardless of topology.
– Efficient - Results in high overall throughput.
– Scalable - Applies to networks of very large size.
– Dynamic - Adjusts to systems where, due to contention or other reasons,

the bandwidths and computation speeds change over time.
– Practical - Is easy to implement in real-life scenarios.

The autonomic behavior of fluid networks, using pressure as a guiding
force, forms the key inspiration for our work. One can imagine the nodes in a grid
as fluid reservoirs, and the links as pipes connecting these reservoirs. Tasks are
analogous to the circulating fluid in this scenario. In case of the fluids, pressure
helps in bringing the system to a steady state without the use of any centralized
control. We propose a similar approach where nodes autonomously measures
their own pressure. This pressure is then used to decide when to move a task to
a neighboring node, eliminating the need for centralized control over scheduling.
A-FAST shares similarities with well-known techniques like Cycle Stealing [5]
and RID [22], but differs from these techniques by taking both computation and
communication into account, which makes it better suited for a wider range of
networks. We show how several important scheduling-related issues, including
fairness, throughput and reliability, can be easily incorporated in our approach.
Initial simulations show that the protocol achieves more than 99.5% of the
maximum throughput over a range of networks, while preserving the above-
mentioned properties.

The rest of the paper is organized as follows - Section 2 discusses the
related work in this area and Section 3 describes the protocol in detail. In Section
4 we present experimental results showing performance of the protocol under
various conditions. We conclude in Section 5 with a summary of our findings
and suggest future research directions.

2 Related Work

Scheduling independent tasks across heterogeneous sets of resources is a well
known problem. We differ from many of these approaches [14, 1, 6, 24, 10, 17,
19, 12, 29] in that we are developing an autonomous scheduling strategy that
does not require centralized control or knowledge for scheduling.

Several research efforts have formulated the problem of scheduling
tasks across heterogeneous systems as a max-flow problem [7], [30]. However, the
most popular max-flow algorithms, including Ford-Fulkerson [15] and Edmonds-
Karp [8] use global information to make network-wide decisions. Golberg’s algo-
rithm [11] is closer to being autonomous but still requires a notion of height that
depends on the total number of nodes in the network. In [26], the authors pro-
vide a parallel solution to the max-flow problem. However, their approach uses a
notion of timesteps across the network. This involves network-wide synchroniza-
tion and is difficult to achieve in large networks. Moreover, all these techniques
were designed specifically for static systems. In practice, system properties, such
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as node speed, bandwidth, network topology, change over time, making these
techniques unsuitable.

A-FAST shares similarities with the RID (Receiver Initiated Diffusion)
[22, 13] and other similar gradient-based approaches [18, 27]. In these approaches
nodes use some notion of gradient to balance their workload among their neigh-
bors. However, they make their scheduling decisions completely based on the
load at a node without taking its communication into account. A-FAST adopts
a diffusion-like approach similar to these techniques, but requests tasks based
on the supply rate of a node. This ensures that more tasks are received from
nodes connected by faster link-speeds. This makes the protocol applicable to
both computation and communication dominated systems. Moreover, in A-FAST
all communication decisions for a pair of nodes is done independently of their
remaining neighbors, reducing the synchronization requirements among nodes.
We also show later in the paper how A-FAST manages to capture other system
properties like reliability in its notion of pressure.

In [5, 2, 28] variants of the Cycle Stealing technique addresses a similar
problem as ours. In Cycle Stealing, a node that has exhausted all its work ran-
domly asks its neighbors for additional work. While this approach is autonomous
and works well for computation intensive applications, it requires the nodes to be
arranged in a hierarchical fashion to avoid unnecessary transfer of tasks. More-
over, Cycle Stealing does not take communication time into account and does
not differentiate between nodes connected by different connection speeds.

We only consider applications where there are far more tasks to be exe-
cuted than nodes in the system, so throughput is more important than makespan,
latency or response time. In our previous work [4], [16], we presented an au-
tonomous algorithm that, when the network is a tree, achieves the optimum
throughput for a static network. Our experiments showed that the protocol re-
acts quickly to changes in the network as well. However, it may not be desirable
to impose a tree-structure on large networks. In [3], it is proven that the problem
of finding the best tree from a given network is NP-complete, and even if one
could find the best tree, there are networks for which the performance of the
optimal tree is unboundedly worse than the whole network’s performance. Thus,
finding an autonomous solution for a generic network is still open.

3 The A-FAST Task Scheduling Protocol

We begin with a formal description of the problem. We are given a labeled,
directed graph G = (N, E, P, C) representing the network. N = {0, 1, ..., n− 1}
is the set of computing resources. Each node iǫN) has a computing speed P (i)
(P : N → R+), denoting the number of tasks the node can complete in a unit
time. E = {(i, j) : i, jǫN} is the set of links connecting the various nodes in this
graph, and C(i, j) (C : N × N → R+) denotes the number of tasks that can
be sent from node i to node j in a unit time. All tasks are of equal size (both
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computationally and communication-wise)2 and initially reside in the source
node 0. We assume that node 0 has a large number of tasks, so we can ignore
the start-up and wind-down times of the protocol. The graph G is dynamic in
nature, i.e. (N, E, P, C) can evolve during execution. Nodes and edges can be
added and deleted from N and E (except for node 0, which is always present)
and P (i) and C(i, j) can also change. Our objective is to maximize the number
of tasks completed per unit time.

The A-FAST protocol assumes that some number of incoming tasks
can be buffered in a node. Nodes begin by advertising a quantity we will call
their pressure (p) to their neighbors, requesting them for tasks. On receiving
a request, a node compares the requester’s p to its own to decide whether the
request should be serviced. Such an approach allows us to do away with the
need for a centralized scheduler, and instead make all scheduling decisions locally
based on differences in pressure. If a node does not service a request, it informs
the requestor of its decision. On being serviced by a neighbor, a node requests
another task from the same neighbor. However, if its request is denied, it waits
for a set length of time before making another request. Nodes thus periodically
query their neighbors, requesting further tasks. To process a task, a node takes
a task from its buffer. If the buffer is empty the node waits till it receives a task.

We now give two case studies that show how A-FAST can autonomously
achieve two different system requirements — high throughput and improved re-
liability — by making suitable definition of pressure.

3.1 Task Scheduling in Dynamic Heterogeneous Systems

For each edge (j, i)ǫE, we assume there is an incoming buffer IBj,i on node i

that holds the most recent response (either a denial or a task) sent by j to i.
Additionally, each node i has a task buffer TBi that has a capacity of mi “slots”,
where each slot can hold one task. These slots can be in one of the following
states:

– S1: the slot is “empty”.
– S2: a task is being transferred into the slot from one of the IBjis.
– S3: the task in the slot is getting executed by Ni.
– S4: the task in the slot is being sent to another node Nk i.e. it is being

transferred from TBi into IBik.
– S5: the slot holds a task and is currently not in any of the above states.

Task buffers can have multiple slots in states S1, S2, S4 and S5, but
for simplicity we will allow only one task at a time to be in state S3. We say
“TBi is full” when the number of slots ei in state S1 is zero. We define the buffer
occupancy, bi of a node to be the number of slots in state S5 at the current time.

2 We conjecture that if tasks are of different sizes, but have a constant computation-to-
communication ratio, that the behavior of algorithms will be similar to the equal-size
task problem. An interesting open question is how to make scheduling decisions when
the ratio is non-constant but known.
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For scheduling tasks in a heterogeneous system we set the pressure, pi, of each
node to its buffer occupancy.

The sub-protocols for responding to a request, processing a response
and performing a task are shown in Figures 1 and 2. The highlighted sections of
the protocols use the shared variables bi and/or ei, and must be synchronized
to run correctly. This can be done by acquiring locks (if each protocol is a sep-
arate process), or by executing the shaded sections atomically (if a single buffer
manager procedure handles all three protocols). The Wait primitive in Figure 2
should be implemented using a periodic polling mechanism that prevents live-
lock.

OnRecvReqest(j, bj)  { // request from node j

	 i = CurrentNode;
	 pi = bi ; // pressure of node is equal to its buffer occupancy
	 pj = bj ; 

	 if (pi-1 > pj) { // node has more tasks than requesting node
		 bi = bi - 1; 
		 send(task, Nj); // send single task to Nj
		 ei = ei + 1;
	 } else { 
		 send(refuseMsg, Nj ); // refuse Nj
	 }
}


OnRecvData(j, rj) { // response from node j

	 i = CurrentNode;
	 
	 if (rj is a task) {
		 flag = true;
		 while(flag) {
			 if(ei > 0) { // there is an empty slot
				 e i = ei - 1 ;
				 transfer task from IB ji to TBi ;
				 b i = bi + 1 ;
				 requestData(j, b i) ; // request more tasks from node j
				 flag = false;
			 } else {
				 wait for a while;
		 }
	 } else { 
		 wait for a while
		 requestData(j, bi); // request tasks again
	 }
}




Fig. 1. Protocol nodes follow on (a) receiving a task request (b) on receiving a
response from a neighbor

ProcessTask() {
	 i = CurrentNode;

	 if (bi > 0) { // There exists some task
		 dispatch task for processing;
		 bi = bi - 1;
		 perform task;
		 ei = ei + 1; 
	 } else { 
		 Wait(till pi > 0); 
	 }
}


Fig. 2. Protocol nodes follow to perform a task

Intuitively, A-FAST should adapt to both a computation-dominated
system as well as a communication-dominated one: faster nodes empty their
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buffers faster and their pressure decreases, making them likely to receive more
tasks. Similarly if a link is fast, tasks will be delivered more quickly across it,
making the receiver request more tasks along that link as compared to a slower
link. We will verify these claims experimentally in Section 4.

3.2 Adding Reliability to the System

We now show how the idea of pressure can be modified to incorporate a measure
of node reliability into the scheduling strategy.

We define an unreliability parameter, τi, for each node in the system,
which reflects the average time a node remains online. A fair estimate of the
value of τi can be computed completely independently by each node. This can
be done by maintaining a three tuple of <num of readings,τi,last val> in the
persistent storage of each node. On coming online, node i increments the value

of num of readings, sets τi to (τi+last val)
num of readings

, saves these values, assigns last val
to 0 and then continues. last val is periodically updated to the elapsed time and
saved. The last recorded value of this variable can then be used as an estimate
of how long the node remained online (the accuracy depends on the frequency
of updates). τi thus gives an estimate of the expected duration node i is likely
to remain online.

To incorporate reliability into A-FAST we modify our existing defini-
tion of pressure to pi = bi

τK

i

, where K is some real positive constant (we shall

term it Assurance Constant) denoting the importance of reliability to the sys-
tem. A node now sends the buffer occupancy and unreliability constant to its
neighbors when requesting a task and the neighbor can calculate its value of p.

By doing this we make the pressure of a node inversely proportional to
its chances of breaking down. Thus for two nodes with similar buffer occupancies,
the node with a smaller value of τ (less reliable) will have a higher pressure,
making tasks flow out of it towards a more “reliable” node. It must however be
mentioned that giving too much importance to reliability might have adverse
effects since slower but more reliable nodes will start getting more jobs assigned
to them. This can be controlled by choosing an appropriate value of K and will
be studied further in the experimental evaluations.

4 Experimental Results

We now present experimental results from simulations as well as real life systems
to show how A-FAST works under different situations.

4.1 Experimental Setup

We tested A-FAST on two different networks topologies - internet-like graphs
(G1), generated using the Network-Emulator package (NEM) [23] and cluster-

6



0 10 20 30 40
Simulation Time

0.9

0.92

0.94

0.96

0.98

1

F
ra

ct
io

n
 o

f 
M

ax
im

u
m

 T
h
ro

u
g
h
p
u
t

n = 200
n = 400
n = 600
n = 800

0 10 20 30 40
Simulation Time

0.9

0.92

0.94

0.96

0.98

1

F
ra

ct
io

n
 o

f 
M

ax
im

u
m

 T
h

ro
u

g
h

p
u

t

n = 200
n = 400
n = 600
n = 800

Fig. 3. (a)Performance of A-FAST on Internet-like graphs (G1) (b) Performance
of A-FAST on Cluster-like graphs (G2)

like graphs (G2)3. For both topologies, we generated graphs of four different
sizes (n = 200, 400, 600 and 800). Each node i in these graphs were assigned a
random processing speed, P (i) (ranging between 1 and MAX P), representing
the number of tasks node i can process in a minute of simulated time. The values
of C(i, j) were similarly assigned (ranging between 1 and MAX C), denoting
the number of tasks that can be sent along the link in one minute. We set
both MAX P and MAX C to the same value (40) to allow the throughput of
the system to be equally dependent on computation and communication. We
assumed zero latency networks for our simulations. This might be unreasonable
in certain scenarios where the frequent exchange of request messages and the
single task transfer approach of the protocol might affect the performance of the
system. We discuss in the concluding section how our ongoing work is addressing
this issue for real systems (Note that by assuming zero latency the request/denial
message transfer times were reduced to zero but the task transfer times were non-
zero, depending on the bandwidth of the connecting links). Experiments were
repeated multiple times and the average value over all the runs were reported.

4.2 Throughput in a Heterogeneous System

We compared the performance of the first variant of the protocol as a percentage
of the maximum throughput of the system (calculated using the maxflownet
package [20]). The results for the two types of topologies, are shown in Figures
3(a) and (b).

A-FAST performed very well, averaging over 99.5% of the maximum
throughput for both the topologies and the different sizes. Though our graphs
were small, this showed A-FAST to be both generic and scalable. It can also be

3 For G2, we built k clusters of equal size. Nodes in these clusters were heavily con-
nected (average connectivity of k/2). The clusters were then connected to each other
in a random tree topology.
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Fig. 4. Relative Performance of A-FAST vs RID on Communication-dominated Graphs

observed that the startup time of A-FAST is also small with almost all the sim-
ulations reaching 98% efficiency within 5 minutes of simulated time (5 minutes
corresponded to approximately 750 completed tasks in our simulation setup).

We also implemented a version of the RID algorithm to compare its
performance against A-FAST for communication-dominated systems. We gen-
erated these systems by generating the G1 type graphs where link speeds were
less than the processing speed of the nodes joining them. The version of RID
balanced the load every time the number of tasks in the Task Buffer fell be-
low 5. The experiments were run for 60 minutes to allow the RID algorithm to
reach steady state throughput. The results are shown in Figure 4. While A-FAST
achieves nearly 99.5% of the optimal throughput, RID only achieves around 95%
of the optimal value. RID also takes a larger amount of time to reach the steady
state throughput.

4.3 Adding Reliability to A-FAST

Fig. 5. Effect of adding reliability on (a) system throughput and (b) task loss
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To test the reliability-aware A-FAST variant described in Section 3.2,
each node was randomly assigned a value τ between the range (5, 75). We con-
ducted our experiments for 40 minutes of simulation time, giving nodes an equal
chance of failing or surviving in the lifetime of the experiments. We then tested
A-FAST with four different values of the unreliability constant K, denoting the
importance of reliability for the experiments (note that for K = 0 the protocol
reduces to the standard buffer-based pressure approach described in Section 3.1
and is provided as a base case)4. We measured the change in throughput and
number of lost tasks (tasks that were assigned to nodes when they broke down).
The results are shown in Figure 5 (a) and (b).

In all our experiments, the throughput of the reliability-aware version
of A-FAST achieves better throughput when compared to the standard version.
However, one cannot conclude anything definitive about the impact of K on
throughput. This is because a smaller value of K reduces the importance of
reliability and increases the chance of a potentially faulty node getting more
tasks while a larger value of K might make slower and more reliable nodes
get more tasks, thereby affecting performance. However, it is evident that the
introduction of reliability as a parameter to pressure, does pay off.

We also see a marked improvement in the reduction of task losses with
A-FAST. A task loss might eventually require re-transmitting the task and by
reducing the task loss one might eventually improve the system-throughput even
further.

4.4 Practical Implementation

As a proof of concept we implemented a prototype version of A-FAST. This
section presents some initial results from these experiments. The version of A-
FAST described in Section 3.1 was implemented using Java RMI. The system
was tested on a 9-node cluster of Pentium III (800 MHz) processors. One of these
nodes was designated as a source with a large number of matrix multiplication
tasks. We arranged the remaining 8 nodes in three virtual topologies - star,
ring and a complete binary tree. As a yardstick for A-FAST’s performance we
also provide an approximate upper bound of the throughput of the system. The
maximum throughput of the system is bounded by the sum of the maximum
throughput of each participating node. To get an estimate of a node’s maximum
throughput, we ran the tasks on each target node separately (multiple times).
The total of these values is provided in Figure 6 (a). The individual throughput
of the nodes are shown in Figure 6 (b)5.

Though preliminary in nature, these results show A-FAST performs
efficiently on all three topologies. The three topologies produced comparable

4 We also tried the experiments with larger and smaller values of but for K>1.25 the
results were similar to that of K=1.25 and therefore have not been shown in the
graphs.

5 We ignored the first 100 tasks transferred by n0 (to avoid the effect of startup time)
and tracked the number of results contributed by each node for the subsequent 250
tasks.
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Fig. 6. (a) Execution time of A-FAST on a small cluster. (b) Individual through-
put of nodes for the different topologies

results with an additive difference (contributed mostly by their start-up times).
Figure 6 (b) shows that for the star and ring topologies A-FAST does a very
good job of autonomous load balancing. However, for the tree topology certain
nodes outperform the others. This happens mainly because nodes in the tree do
not have equal connectivity and the throughput of the communication-intensive
nodes was affected negatively.

5 Conclusion and Future Work

This paper presents a new autonomous scheduling protocol based on the idea
of pressure in fluid networks. Preliminary experiments show that the protocol
is efficient and can scale and autonomously adjust in dynamic heterogeneous
networks. We showed how different parameters like throughput and reliability
can also be captured. Simulations showed the protocol to be efficient, achieving
more than 99.5% of the maximum throughput on average. The need for such
protocols is likely to grow as we start using the world wide web not only as an
information medium but also as a computing resource.

We are currently pursuing a number of different aspects of this prob-
lem. Some of these include: a theoretical bound on the performance of the pro-
tocol; the effect of unequal-sized tasks; the effect of dependency between tasks;
and capturing other aspects of scheduling with pressure. We are also working on
a version of A-FAST supporting lazy updates of pressure to reduce the effect of
latency and periodic message transfers.
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