
WikiAnalytics: Ad-hoc Querying of
Highly Heterogeneous Structured Data

Andrey Balmin#1, Emiran Curtmola∗2

#IBM Almaden Research Center, USA
1abalmin@us.ibm.com

∗UC San Diego, USA
2ecurtmola@cs.ucsd.edu

Abstract— Searching and extracting meaningful information
out of highly heterogeneous datasets is a hot topic that received
a lot of attention. However, the existing solutions are based on
either rigid complex query languages (e.g., SQL, XQuery/XPath)
which are hard to use without full schema knowledge, withoutan
expert user, and which require up-front data integration. At the
other extreme, existing solutions employ keyword search queries
over relational databases [3], [1], [10], [9], [2], [11] as well as over
semistructured data [6], [12], [17], [15] which are too imprecise
to specify exactly the user’s intent [16].

To address these limitations, we propose an alternative search
paradigm in order to derive tables of precise and complete results
from a very sparse set of heterogeneous records. Our approach
allows users to disambiguate search results by navigation along
conceptual dimensions that describe the records. Therefore, we
cluster documents based on fields and values that contain the
query keywords. We build a universal navigational lattice (UNL)
over all such discovered clusters. Conceptually, theUNL encodes
all possible ways to group the documents in the data corpus
based on where the keywords hit.

We describe, WIKI ANALYTICS, a system that facilitates data
extraction from the Wikipedia infobox collection. WIKI ANALYT -
ICS provides a dynamic and intuitive interface that lets the aver-
age user explore the search results and construct homogeneous
structured tables, which can be further queried and mashed up
(e.g., filtered and aggregated) using the conventional tools.

I. M OTIVATION

Growing popularity of Wikipedia and other wikis raises
the issue of querying this data to extract insights that span
multiple pages. Although most of Wikipedia is free text, it also
contains a large amount of structured information in tables,
list, categories, and infoboxes. A number of ongoing efforts
[7], [5], [4], [13] aim to harness this information.

We focus on querying Wikipedia infoboxes, which are
essentially typed records of field-value pairs. Infoboxes appear
on over a million Wikipedia pages and often contain the
most vital information about the entity described by the
page. For example, an infobox on Arnold Schwarzenegger’s
page (Figure 1) contains information about his office, family,
birthday, party and religious affiliation, and more.

A major challenge in querying infoboxes is the diversity of
their structure. Every infobox instance has an equivalent of
a type – wiki template that renders the infobox wikitext into
HTML. However, new templates can be introduced, and old
templates can be extended relatively easily. Moreover, enabling
query processing was never a requirement for the authors of

templates and infoboxes. As a result, templates often allow
for many ways of representing the same information. For
example, a very popular “officeholder” template has both
date of birth andbirthdate fields. Figure 3 conveys
the heterogeneity of the infoboxes. There are about2, 500

distinct infobox types (templates), with over50, 000 distinct
<type, field> pairs. However, there is a clear long tail in the
distribution of the number of occurrences of the fields, with
almost20, 000 fields occurring in exactly one infobox and only
300 fields occurring in over4, 000.

Many other types of data, such as product catalogs and elec-
tronic forms collections, exhibit similar structural diversity.
These sources are also often designed for human consump-
tion with structural flexibility as the key feature and query
processing as an afterthought. As a result, many products ina
catalog may have rare or unique fields, and most fields on any
given form may be optional or filled with different information
by different users.

Such structural diversity presents major problems when
queries need to access many objects (infoboxes) in order to
extract lists of results. For example, if a user wants to construct
a list of all Governors of California, a good heuristic may be
to look for infoboxes with typegovernor andoffice field
with value “Governor of California.” However, this constructed
list will be only 90% correct. The list will miss four former
governors, including Ronald Reagan whose infobox type is
president with value “33rd Governor of California” hidden
in the order2 field. Other missing governors are Hiram
Johnson and Jerry Brown, for whom the value “Governor
of California” occurs in office2 and office3 fields,
respectively. We call such resultsstructural outliers. They are
critical for deriving a complete and precise answer.

II. W IKIANALYTICS APPROACH ANDDEMO SCENARIO

It is hard to imaginea priori reliable integration of informa-
tion from all large clusters and outliers for the entire dataset
- either heuristic or manual. Instead, we adopt a “pay as you
go” approach, where only the objects potentially relevant to
the result are interactively integrated at query time.

Our system, WIKI ANALYTICS, provides multiple cluster-
ings of all potential results, based on the names and values of
fields that contain the query keywords. We call such fields
and their valuesfeatures. Conceptually, the features define

(a) Infobox visualization in
Wikipedia.

{{ Infobox Governor
| name = Arnold Schwarzenegger
| nick = Governator
| image = Arnold Schwarzenegger 2004-01-30.jpg
| imagesize= 200px
| order = 38th
| office = Governor of California
| term start = November 17, 2003
| lieutenant = {{nowrap|[[Cruz Bustamante]]<small> (2003-

-2007)</small>}}
{{nowrap|[[John Garamendi]]
<small>(2007-present)</small>}}

| predecessor= [[Gray Davis]]
| successor=
| order2 = Chairman of the [[President’s Council on

Physical Fitness and Sports]]
| term start2 = 1990
| term end2 = 1993
| president2 = [[George H. W. Bush]]
| birth date = {{birth date and age|1947|07|30}}
| birth place = [[Thal, Austria|Thal]], [[Styria]], [[Austria]]
| nationality = [[Austria]][[United States|American]]
| party = [[Republican Party (United States)|Republican]]
| spouse= {{nowrap|[[Maria Shriver]] (1986-present)}}
| religion = [[Roman Catholic]]
. . .}}

(b) WikiText source code that generates Figure 1a.

<infobox type="Governor">
<field>
<field_name>name</field_name>
<field_value>Arnold Schwarzenegger
</field_value></field>

<field>
<field_name>nick</field_name>
<field_value>Governator
</field_value></field>

<field>
<field_name>order</field_name>
<field_value>38th</field_value>

</field>
<field>
<field_name>office</field_name>
<field_value>Governor of California
</field_value></field>

...
<field>
<field_name>religion</field_name>
<field_value> Roman Catholic
</field_value></field>

...
</infobox>

(c) Infobox as an XML document.

Fig. 1. Sample Wikipedia Infobox: “Arnold Schwarzenegger”

the relevant dimensions on the data specifying the matching
context for the query keywords.

WIKI ANALYTICS heuristically finds large clusters that are
likely to contain the results. It also enables users to easily
identify the outliers by exploring and interacting with allthe
clusters. This allows users to disambiguate the query basedon
the structure of the results. The intuition is that occurrence of
the same keyword in different fields or in different field values
is likely to have different meanings. For example, a group
of governor infoboxes with “California” in theoffice
field, which we denote as the“California′′

∈ office

feature, is semantically different from a group where the same
keyword occurs in thebirthplace field. Furthermore, even
within the “California′′

∈ office cluster, it is important to
differentiate the infoboxes based on the actual textual values
that contain keywords. For instance, there is a significant
semantic difference between infoboxes with values “Governor
of California” in the office field and “Governor of Baja
California” in the same field.

We compute the initial set of infoboxes for clustering
by using an off-the-shelf keyword search system that sup-
ports stemming, term expansion, and other standard recall-
enhancing techniques. Note that the keyword search by itself
is not sufficient for building result lists since it cannot provide
100% precision. Imprecise results are tolerable for “point”
queries because the user can browse a few candidates to
identify a single result. However, if a user needs to compileor
aggregate a list of tens or hundreds or thousands of infoboxes,
browsing each candidate individually becomes infeasible.In
this case, clustering results simplifies the browsing process
and enables users to accept and reject semantically similar
results as a group.

In order to give users a full picture of the possible clus-
terings of the query results we adopt a notion ofconcept
lattice [8] over the clusters of infoboxes. We devise a data
structure, calleduniversal navigational lattice(UNL), which

encodes all possible ways to group the infoboxes in the query
result based on where the keywords hit, i.e. their features.A
node is created inUNL for every distinct subset of infoboxes
that shares some features. Edges in theUNL correspond
to containment relationships between the infobox sets. We
developed a GUI that allows users to navigate theUNL and
iteratively interact with it by including and excluding clusters
from the result list.

After the initial UNL construction we further help the user
by heuristically pre-selecting the largest meaningful cluster of
infoboxes for the result list. Our heuristic follows the edges
in UNL by always picking the largest sub-cluster, until each
keyword is found in either the same type or field name for each
infobox, or in the same value of the same field. In general, this
heuristic performs reasonably well in our experience, but the
WIKI ANALYTICS GUI allows the user to un-select the entire
heuristically selected cluster or some of its sub-clusters.

Consider a scenario where the user wants to find a
comprehensive and precise list of all Governors of California
and to extract their religious affiliations. InWIKI ANALYTICS

the user might start by typing in the following query keywords:
“California governor religion.” Over theUNL corresponding
to this query, the default heuristic picks a cluster of infoboxes
that all have three features in common. First, they have
typegovernor – this covers keyword “governor”. Second,
they have a fieldreligion with any value – this covers
“religion”. Finally, they have value “Governor of California”
in field office – this turns out to be the largest feature that
covers query keyword “California”. This cluster accounts for
34 out of99 search results. As mentioned above, the heuristic
finds34 out of a total of38 Governors of California, missing
out 4 structural outliers. Even with good domain knowledge,
the user will find it hard to locate them. �

In general, theUNL grows super-linearly with the size of
the result and it is rarely practical to present the full lattice as
it is to the user due to its large size. We introduce a number

Fig. 2. GUI: Faceted Search-like Interface over the Documents Clustered by Feature Sets

of pruning techniques to keep theUNL size under control.
The pruning serves two goals: it keepsUNL construction
fast enough for on-line processing, and makes the result
easier for users to comprehend and work with. First, in order
to separate homogeneous patterns from outliers, the feature
pruning technique filters out clusters with fewer objects than
a user-definedfeature support threshold(FST). Typically, this
eliminates a majority of the features and allows the users to
focus on large clusters of structurally homogeneous records.
Second, the user can accept or reject any of these clusters,
which consist entirely of results or non-results, respectively.

For instance, using the defaultFST = 5 in our running
example, in order to focus on the outlier answers, let us
“accept” the heuristically selected large result cluster and
also reject three obviously irrelevant neighboring clusters
described by features:office contains value “Governor of
Alta California”, field office contains “Governor of Baja
California”, and field office contains “Military Governor
of California”, which contain15, 5, and 5 records, respec-
tively. These clusters are shown in theWIKI ANALYTICS GUI
in Figure 2. �

Finally, the user can recompute theUNL over the remaining
objects, and with a lowerFST . These steps can be repeated
iteratively allowing the user to zoom in on progressively
smaller clusters in order to identify the structural outliers.

Let us now recompute theUNL for the remaining40

records withFST = 1. Analyzing this shorter list of records,
it is easy to spot clusters with suspicious field names like
order2, office2, and office3. They contain the four
outlier records, which are Governors of California that were
not picked up by the heuristic, as described in Section I.�

The final result of a WIKI ANALYTICS search process is a
table or a data feed with a key column (name of the wiki
page), and a value column for every keyword specified as an
extraction by using the special “!” character out of the current
cluster selection. For example, the query “California governor
religion!” returns pairs of page name and religious affiliation.

�

�

������

������

������

������

�
�
�
�
�
��
�
	�

�
�

�
��
	�
�
��
��

�
��
�

�

	

��

��
��

��	
��� ���

�

������

������

������

� �� ��� ����

�
�
�
�
�
��
�
	�

�
�

�
��
	�
�
��
��

�
��
�

���

Fig. 3. Wikipedia is sparse: Distribution of fields per number of times they
occur in Wikipedia infoboxes.

The resulting feeds can later be joined and aggregated by
mashup tools like Yahoo Pipes1 and Damia[14], and/or vi-
sualized by services like Swivel2 and Many Eyes3.

We propose to demonstrate interactively the WIKI ANA-
LYTICS tool as a proof-of-concept for our new search explo-
ration approach to ad-hoc querying of highly heterogeneous
Wikipedia infoboxes. We will demo this query example along
with other similar querying scenarios on the Wikipedia dataset.

III. SYSTEM ARCHITECTURE

In this section, we describe our design goals and the system
architecture of WIKI ANALYTICS. Our design is constrained
by three main requirements: (i) an easy to use and an ef-
fective search interface to explore and disambiguate answers
by making data selections while navigating heterogeneous
collections, (ii) enable the user to select a complete and precise
set of answers according to intentions expressed initiallyas a
keyword query, and (iii) the search should not modify nor
markup the original data corpus in a way to facilitate data
discovery.

Based on these design decisions, we chose the architecture
of Figure 4 consisting of the following parts: data storage and

1http://pipes.yahoo.com/
2http://www.swivel.com
3http://manyeyes.alphaworks.ibm.com/manyeyes

Wikipedia

Infoboxes

Universal Table (logically)

DB2 Text Search® Indexer

Input: keyword search query

e.g., California governor religion!

Fields

Documents

Storage & Indexing

(Heterogeneous,

Sparse data)

DB2 pureXML®

Identify features and clusters on the fly

Type Office Order Religion Born !

Gov Cali Cali Catholic * *

Gov Gov of

Cali

* * Cali *

* * * * * *

Query Processing

Fields
Docu-

ments

�

� �

�

�
�

�

Dynamic User Interface (flatten to trees)

Interactive

Selection

of Final Answers

Query Answer

Infobox Religion

Arnold Catholic

Ronald Catholic

Pat Roman

Compute Universal Navigational Lattice (UNL)

1 2 3 10 20

n3n2n1

n4 n5

n7

n6

Fig. 4. WIKI ANALYTICS Architecture

indexing, query processing, and a dynamic user interface with
cluster selection.

For the first part, we extract the infoboxes from a Wikipedia
snapshot of2008 and we convert them to XML by using the
Wiki2XML tool of the Texterra project4. For instance, Figure 1
shows a sample record of Arnold Schwarzengger’s infobox in
XML format. In order to query infoboxes, we store them in
IBM’s DB2 pureXML R© database which comes with native
XML storage and querying support. We leverage the power of
DB2 Text SearchR© engine for XML full-text search.

The query processing part consists of two modules: feature
extraction and construction of the universal navigation lattice
UNL. The text index produces a set of infobox documents
that match all query keywords. The first module conceptually
views these infoboxes as a (sparse) universal table, with a row
for each infobox and a column for every field that occurs in
at least one of them. A feature with a corresponding cluster
of documents is created for each field name and field value
that contain a given query keyword. The second module builds
the UNL lattice graph. Intuitively,UNL encodes all possible
meaningful clusters of documents by all sets of features. We
create relevant clusters and links between them so as to use
the features as dynamic structural dimensions that slice and
dice in the data collection to facilitate document exploration
and selection.

The third part takes care of the lattice presentation and of
the user interaction for the scope of document selection. The
lattice is exposed into a tree interface that creates experience
similar to that of the multi-faceted dynamic search over the
feature sets. This facilitates complete access to the data without

4http://modis.ispras.ru/texterra/download/index.html

dropping any query answers and enables smart querying as
well as easy data selection. Lastly, we extract the final result
for further data processing, e.g., business intelligence data
analytics or data mashups. Figure 2 shows our target search
GUI interface.

WIKI ANALYTICS provides a web-based interface to the
data. We implemented the backend using Java servlet tech-
nology to extract the features from DB2 and to construct the
UNL in memory. For presentation, the lattice is flattened into
trees and serialized to a Flex frontend application. The GUI
allows interactive visualization of theUNL with support for
(de)selection of record clusters.

IV. CONCLUSION

Large quantities of structured data are being created by
online communities in wikis and other highly heterogeneous
data sources. In this paper we presented WIKI ANALYTICS,
a tool to support on-line ad-hoc querying over these data.
We demonstrate effective methods within a smart interactive
user interface that facilitates exploration and disambiguation
of search results in order to compile complete and precise
answers that span multiple records or pages.

REFERENCES

[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: a systemfor
keyword-based search over relational databases. In18th International
Conference on Data Engineering (ICDE’02), 2002.

[2] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Authority-based
keyword queries in databases using ObjectRank. InInternational
Conference on Very Large Data Bases (VLDB’04), 2004.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S.Sudarshan.
Keyword searching and browsing in databases using BANKS. In18th
International Conference on Data Engineering (ICDE’02), 2002.

[4] K. Bollacker, R. Cook, and P. Tufts. A platform for scalable, collab-
orative, structured information integration. In6th Intl. Workshop on
Information Integration on the Web (IIWeb’07), 2007.

[5] M. Cammarano, X. L. Dong, B. Chan, J. Klingner, J. Talbot,A. Y.
Halevy, and P. Hanrahan. Visualization of heterogeneous data. IEEE
Trans. Vis. Comput. Graph., 13(6):1200–1207, 2007.

[6] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A Semantic
Search Engine for XML. InInternational Conference on Very Large
Data Bases (VLDB’03), 2003.

[7] DBpedia. http://www.dbpedia.org.
[8] B. Ganter and R. Wille. Formal concept analysis: Mathematical

foundations. InSpringer-Verlag, 1999.
[9] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-style

keyword search over relational databases. InInternational Conference
on Very Large Data Bases (VLDB’03), 2003.

[10] V. Hristidis and Y. Papakonstantinou. Discover: keyword search in
relational databases. InInternational Conference on Very Large Data
Bases (VLDB’02), 2002.

[11] F. Li, C. Yu, W. Meng, and A. Chowdhury. Effective keyword search
in relational databases. InInternational Conference on Management of
Data (SIGMOD’06), 2006.

[12] Y. Li, C. Yu, and H. V. Jagadish. Schema-Free XQuery. InInternational
Conference on Very Large Data Bases (VLDB’04), 2004.

[13] Powerset. http://www.powerset.com/.
[14] D. E. Simmen, M. Altinel, V. Markl, S. Padmanabhan, and A. Singh.

Damia: data mashups for intranet applications. InSIGMOD Conference,
pages 1171–1182, 2008.

[15] M. Theobald, R. Schenkel, and G. Weikum. An Efficient andVersatile
Query Engine for TopX Search. InInternational Conference on Very
Large Data Bases (VLDB’05), 2005.

[16] Z. Vagena, L. Colby, F. Ozcan, A. Balmin, and Q. Li. On the
effectiveness of flexible querying heuristics for XML data.In Fifth
International XML Database Symposium (XSym’07), 2007.

[17] Y. Xu and Y. Papakonstantinou. Efficient Keyword Searchfor Smallest
LCAs in XML Databases. InInternational Conference on Management
of Data (SIGMOD’05), 2005.

