
GalaTex: A Conformant Implementation of the
XQuery Full-Text Language

Emiran Curtmola
UC San Diego

9500 Gilman Drive
La Jolla, CA 92093

ecurtmola@cs.ucsd.edu

Sihem Amer-Yahia
AT&T Labs Research

180 Park Ave
Florham Park, NJ 07932

sihem@research.att.com

Philip Brown
AT&T Labs Research

180 Park Ave
Florham Park, NJ 07932

pebrown@research.att.com

Mary Fernández
AT&T Labs Research

180 Park Ave
Florham Park, NJ 07932

mff@research.att.com

ABSTRACT
We describe GALATEX, the first complete implementation of XQuery
Full-Text, a W3C specification that extends XPath 2.0 and XQuery 1.0
with full-text search. XQuery Full-Text provides composable full-
text search primitives such as keyword search, Boolean queries,
and keyword-distance predicates. GALATEX is intended to serve
as a reference implementation for XQuery Full-Text and as a plat-
form for addressing new research problems such as scoring full-
text query results, optimizing XML queries over both structure and
text, and evaluating top-k queries on scored results. GALATEX is
an all-XQuery implementation initially focused on completeness
and conformance rather than on efficiency. We describe its imple-
mentation on top of Galax, a complete XQuery implementation.

1. INTRODUCTION
The ability to search both the structure and text content of XML

documents is gaining importance with the increase of large XML
repositories such as the US Library of Congress (LOC) documents,1

medical data in XML such as HL7,2 and the INEX (TREC for
XML) data collection.3 Querying XML repositories rich in text
content requires sophisticated full-text search features ranging from
matching individual keywords to combining matches with Boolean
operators and with word distances, stemming, and stop words.

XML querying is a well-studied topic, with several powerful
database-style query languages such as XPath 2.0 [7] and XQuery
1.0 [6] set to become W3C standards. However, due to the fact that
their data model does not represent words and their positions in in-
put documents, XPath and XQuery provide only limited substring
matching functions for text search.

XQuery Full-Text [8] is an extension of XPath and XQuery that
supports fully composable full-text search primitives defined on a
data model of words and positions. The language is highly in-

1http://xml.house.gov/
2http://www.hl7.org/
3http://www.is.informatik.uni-duisburg.de/projects/inex03/

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

spired by TeXQuery [1], a proposal to the W3C Full-Text Task
Force. XQuery Full-Text provides powerful full-text search prim-
itives (called FTSelections) such as simple word search, Boolean
queries, word distance as well as stemming, regular expressions
and stop words. It also supports scoring and top-k ranking of query
results. FTSelections are defined on a data model, called AllMatches,
which represents words and their positions in documents. Because
the semantics of each FTSelection is defined in terms of operators
on the AllMatches data model, the FTSelections are fully compos-
able. We refer the reader to the language specification [8] and the
language use cases [9] for more details on the language.

XQuery Full-Text supports scoring and ranking of query results
and permits any ranking method that satisfies the XQuery Full-Text
scoring requirements [8, 10]. In GALATEX, we adapt the proba-
bilistic relational algebra [4] to AllMatches by extending each full-
text primitive with the ability to manipulate scores. Our implemen-
tation satisfies the XQuery Full-Text scoring requirements.

When implementing GALATEX, we have focused more on com-
pleteness and conformance than on efficiency. Thus, GALATEX

can serve as a reference implementation of XQuery Full-Text and
as a platform for experimenting new research ideas for scoring
XML data, optimizing XML queries on both structure and content,
and evaluating top-k queries.

2. GALATEX
Numerous strategies exist for implementing XQuery Full-Text

– at least as many strategies as there are for implementing XQuery
itself! Possible strategies include extending an existing XQuery en-
gine with native support for the XQuery Full-Text data model and
operators; extending an existing full-text search engine to serve
as an XQuery Full-Text co-processor; or translating XQuery and
XQuery Full-Text into another query language, such as SQL. XQuery
Full-Text relies on the AllMatches data model that captures words
and their positions. Regardless of the implementation strategy cho-
sen, the key implementation problems are representing the All-
Matches data model, implementing the semantics for each FTSe-
lection, and making the word positions used in the input documents
accessible to the AllMatches data model.

Because new languages benefit from the rapid development of
experimental implementations, our strategy was to employ XML

and XQuery directly to implement XQuery Full-Text.
The GALATEX architecture is depicted in Figure 1. A demonstra-
tion of the prototype and of the XQuery Full-Text use cases is avail-
able at: http://www.galaxquery.org/galatex/.

GalaTex Engine

<xml>
 <doc>
Text Text
 </doc>
</xml>

Preprocessing
& inverted lists

generation

Full-Text functions
(FTWordsSelection,
FTWindow, FTTimes

etc.)

GalaTex Parser

Galax
XQuery
engine

 <doc>
 Text Text
Text Text
 </doc>

.xml

.xml

evaluation
inverted lists

getPositio
ns()

containsPos()

wordDistance()

Full-Text
query

Equivalent
XQuery
query

Figure 1: Architecture of GalaTex

In the upper left of Figure 1, GALATEX preprocesses input doc-
uments, and for each distinct word, produces one XML document
containing all the positions of that word. Each position is encoded
as Dewey values [5] that record the depth-first node path from the
XML document root to each node. These documents essentially
contain inverted lists which map words to their positions.

In the lower left of Figure 1, GALATEX translates XQuery Full-
Text queries into equivalent XQuery queries by mapping each FT-
Selection into a call to its corresponding XQuery function. The
XQuery functions themselves (upper right of Figure 1) are imple-
mented in an XQuery library module, where each function im-
plements one FTSelection primitive. They take one or more All-
Matches values and produce an AllMatches value.

An AllMatches value specifies all possible position solutions to
a full-text search query and can be viewed as a propositional logic
formula in disjunctive normal form [1]. We represent instances of
the AllMatches data model using XML values.

Consider the following full-text query which returns those books
that contain paragraphs containing words similar to usability and
software case sensitive within ten words of each other:

//book[.//p ftcontains
("usability" with stemming) && ("software" case sensitive)
with distance at most 10 words]/title

The equivalent XQuery expression generated by the parser is:

//book[(let $ec_1:= (.//p) return
fts:FTContains($ec_1,
fts:FTWordDistance(-1, 10,
fts:FTAnd(
fts:FTWordsSelectionAny($ec_1, "usability",
fts:FTStemOption("with stemming"), "1"),

fts:FTWordsSelectionAny($ec_1, "software",
fts:FTCaseOption("case sensitive"), "2")))))]/title

GALATEX also offers support for match options. They are modi-
fiers that apply to each of the search words. Possible match options
are case sensitive, special characters, regular expressions, stem-
ming, stop words, ignore elements, language selection, thesaurus,
and diacritics [8]. A match option has the effect of expanding one
search word to a set of words that becomes the new set of search
words for the current full-text query.

A possible evaluation plan for the given translation query is shown
in Figure 2. A bottom-up evaluation of the plan builds AllMatches
for the two search keywords which become inputs to FTSelections:

FTAnd and FTDistance. Finally, FTContains filters the evaluation
context and returns only those nodes that contain at least one match
that satisfies all the constraints in the final AllMatches.

FTWordsSelectionAny
Token: usability
MatchOption: stemming

FTWordsSelectionAny
Token: software
MatchOption: case insensitive

Word Positions

FTAnd

FTDistanceAtMost
(at most 10 words)

Build
AllMatches

Manipulate
AllMatches

AllMatches AllMatches

AllMatches

AllMatches

FTContains
Evaluation

Context

Filtered
Evaluation

Context

getPositions() getPositions()

Figure 2: An XQuery Full-Text evaluation plan

GALATEX is implemented on top of the Galax XQuery engine [3].
On the right of Figure 1, Galax takes the input documents, the trans-
lated query and the library module of XQuery functions, evaluates
the translated query and yields the result as an XML document. The
final result contains the XML value in which the search words are
highlighted. A demonstration of GALATEX will be available along
with this poster.

3. CONCLUSION
We described GALATEX, the first conformant implementation

of XQuery Full-Text that is able to query XML documents both
on structure and text content. GALATEX uses XML and XQuery
to implement XQuery Full-Text, which permits implementation on
top of any existing XQuery engine. In addition to a command-line
interface, GALATEX includes a browser interface that permits users
to execute both the XQuery Full-Text use cases [9] and their own
queries. Our strategy to implement the XQuery Full-Text language
using XML and XQuery is general and expedient. Ultimately, we
want GALATEX to be both complete and efficient. We explore
improvements on full-text search and full-text scoring in [2].

4. REFERENCES
[1] S. Amer-Yahia, C. Botev, J. Shanmugasundaram. TeXQuery: A Full-Text

Search Extension to XQuery. WWW 2004.
[2] E. Curtmola, S. Amer-Yahia, P. Brown, M. Fernández. GalaTex: A Conformant

Implementation of the XQuery Full-Text Language. AT&T Technical Report
TD-66VRF4, 2004.

[3] M. Fernández, J. Siméon, B. Choi, A. Marian, G. Sur. Implementing XQuery
1.0: The Galax Experience. VLDB 2003.

[4] N. Fuhr, T. Rölleke. A Probabilistic Relational Algebra for the Integration of
Information Retrieval and Database Systems. ACM TOIS 15(1), 1997.

[5] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, C. Zhang.
Storing and querying ordered XML using a relational database system.
SIGMOD 2002.

[6] The World Wide Web Consortium. XQuery 1.0: An XML Query Language.
W3C Working Draft. http://www.w3.org/TR/xquery/.

[7] The World Wide Web Consortium. XML Path Language (XPath) 2.0. W3C
Working Draft. http://www.w3.org/TR/xpath20/.

[8] The World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Full-Text. W3C
Working Draft 09 July 2004.
http://www.w3.org/TR/2004/WD-xquery-full-text-20040709/

[9] The World Wide Web Consortium. XQuery and XPath Full-Text Use Cases.
W3C Working Draft 09 July 2004.
http://www.w3.org/TR/xmlquery-full-text-use-cases/

[10] The World Wide Web Consortium. XQuery and XPath Full-Text Requirements.
W3C Working Draft 02 May 2003.
http://www.w3.org/TR/xmlquery-full-text-requirements/.

