
Search Driven Analysis of Heterogeneous XML Data

Andrey Balmin
IBM Almaden Research

San Jose CA, USA

abalmin@us.ibm.com

Latha Colby
IBM Almaden Research

San Jose CA, USA

lathac@us.ibm.com

Emiran Curtmola
∗

UC San Diego
San Diego CA, USA

ecurtmola@cs.ucsd.edu

Quanzhong Li
IBM Almaden Research

San Jose CA, USA

quanzhli@us.ibm.com

Fatma Özcan
IBM Almaden Research

San Jose CA, USA

fozcan@almaden.ibm.com

ABSTRACT
Analytical processing on XML repositories is usually enabled by
designing complex data transformations that shred the documents
into a common data warehousing schema. This can be very time-
consuming and costly, especially if the underlying XML data has a
lot of variety in structure, and only a subset of attributes constitutes
meaningful dimensions and facts. Today, there is no tool to explore
an XML data set, discover interesting attributes, dimensions and
facts, and rapidly prototype an OLAP solution.

In this paper, we propose a system, called SEDA1, that enables
users to start with simple keyword-style querying, and interactively
refine the query based on result summaries. SEDA then maps query
results onto a set of known, or newly created, facts and dimensions,
and derives a star schema and its instantiation to be fed into an off-
the-shelf OLAP tool, for further analysis.

1. INTRODUCTION
As XML repositories become pervasive, there is a pressing need

to leverage this data in business intelligence applications. Due
to the lack of native XML tools for on-line analytical processing
(OLAP), users typically employ relational OLAP tools if they want
to run analytics over an XML repository. This requires designing a
warehouse schema, and creating complex data transformations that
shred XML documents into this common schema. However, these
tasks are known to be very time-consuming and costly, and most
importantly, warehouse designers must be knowledgable about the
details of the underlying XML data structures. On the other hand,
in practice, XML repositories typically contain data with complex
and varying formats. For example, in several widely used industry-
standard XML schemas, such as XBRL (http://www.xbrl.org) and
HL7 (http://www.hl7.org), there is a common schema, but it is very

∗The work was done while the author was at IBM Almaden Re-
search Center
1SEDA stands for Search, Explore, Discover and Analyze

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/3.0/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2009.
4th Biennial Conference on Innovative Data Systems Research (CIDR)
January 4-7, 2009, Asilomar, California, USA.

generic and contains many optional elements. As a result, the XML
data conforming to these schemas have a lot of variety in their struc-
ture. Moreover, only a subset of the attributes in these schemas
constitutes dimensions and facts that are meaningful to a particular
analytical task. Today, there is no tool to explore an XML data set,
discover interesting attributes, dimensions and facts, and rapidly
prototype an OLAP solution.

As a first step to prototype an OLAP solution, the users need to
find fragments of XML schemas and documents that are relevant
to the analytical task at hand. Querying XML collections that con-
tain lots of variety using schema-aware languages like XQuery[25]
or XPath is cumbersome, and not always viable because XPath ex-
pressions are designed for structural navigation of XML data, and
require a high-degree of schema knowledge. On the other hand,
keyword-based search provides a simple way of retrieving infor-
mation but is insufficient for identifying meaningful facts and di-
mensions, as the search results lack context information and do not
capture the connections between data elements.

In this paper, we presentSEDA [1], a system based on a paradigm
of search and user interaction.SEDA users start with simple key-
word style querying, interactively refine the query based on result
summaries, and obtain result data cubes that can be further ana-
lyzed by off-the-shelf OLAP tools. We envisionSEDA to be com-
plementary to existing OLAP, data modeling, and ETL tools. The
main goal ofSEDA is to enable users to explore an XML data
set, discover interesting dimensions and facts, and pre-analyze the
data before creating a full-fledged data warehouse.SEDA relies
on the collective knowledge of users, who collaboratively define
the dimensions and facts of a warehouse schema. This approach is
similar to the pay-as-you-go [14] paradigm in that the warehouse
schema is defined gradually.

Throughout this paper, we will use an example based on a data
scenario constructed from real world data sources. Our example
scenario is derived by combining the six annual releases of World
Factbook2 (from 2002 to 2007) and the Mondial XML3 data. The
World Factbook is a publicly available database created and main-
tained by the Central Intelligence Agency (CIA). It contains com-
prehensive statistics for every country and territory in the world for
each year. The “schema” of this data evolves from year to year. The
Mondial data set is a rich compilation of geographical Web data
sources on global statistics of world countries, cities, provinces,
seas and international organizations. Example data graphs from

2https://www.cia.gov/library/publications/the-world-factbook/
3http://www.dbis.informatik.uni-goettingen.de/Mondial/

this data set are shown in Figures 1 and 2, where the solid lines
represent parent/child edges and the dashed lines represent non-tree
edges4 denoting various relationships.

sea
“Pacific Ocean”

country
“Philippines”

sea
“China sea”

country
“China”

country
“united
states”

geography
“America”

economy

GDP_ppp
“12.31T”

import
partners

item item

trade
country
“China”

percentage
“15%”

trade
country
“Canada”

percentage
“16.9%”

year
“2006”

export
partners

item

trade
country
“Canada”

percentage
“23.4%”

bordering

bordering

bordering

bordering

trade
partner

Figure 1: Example graph from World Factbook & Mondial

Consider a scenario where a user is interested in finding facts
about various countries and continents using this data set, but she is
not fully aware of the schema of the data. We will use the following
example to illustrate how the user can search, discover and analyze
this data set:

EXAMPLE 1. Consider a user looking for information on im-
port partners of “United States” and their trade amounts. The user
starts by searching for “United States” and “import”, finds XML
fragments similar to Figure 2 (b), realizes that “percentage” infor-
mation is available, and formulatesQuery 1: as follows
(∗, “United States”) ∧ (trade country, ∗) ∧ (percentage, ∗)

The query language ofSEDA will be explained in Section 3. For
now, it suffices to know that the first component of the query term
denotes the query context and is matched to node names and paths,
and the second component denotes the content and is matched to
the textual content of nodes. The text “United States” occurs in
three different contexts in Figures 2 (a), (b), and (c) respectively:
in the content of nodes labeled “country” and within nodes labeled
“trade country”, as an import or an export partner. Each of these
three contexts has different real-world semantics and it is very hard
for a system to automatically discover what the users’ intentions
really are. Similarly, trade country and percentage occur in two dif-
ferent contexts, within the context of an import or an export partner.
This suggests 12 different ways of combining these nodes.

SEDA first quickly retrieves top-k tuples of nodes ranked using a
scoring function which considers both the content and the structural
connections between the nodes. The score function is based on the
compactness of the graph representing a tuple of nodes satisfying
query terms. AlthoughSEDA employs one particular top-k algo-
rithm, we can also employ any other top-k algorithm that works on
graphs.

In addition to the top-k results,SEDA also computes two re-
sult summaries, calledcontextandconnection, that enable the user
to restrict entities and relationships of the query. In our example,
the user will be presented with three different contexts for “United
States”, two different contexts for “trade country” and two differ-
ent contexts for “percentage”. Since the user is interested in import
4The labels on the dashed lines represent the relationship between
the nodes connected by the edge.

country
“United
States”

economy

GDP
“10.082T”

year
“2002”

percentage
“3.5%”

import
partners

item item

trade
country
“United
States”

percentage
“70.6%”

trade
country

“Germany”

country
“Mexico”

economy year
“2003”

percentage
“15.3%”

export
partners

item

trade
country
“United
States”

country
“Mexico”

economy year
“2005”

(a)

(b) (c)

GDP
“924.4B”

GDP_ppp
“1.006T”

Figure 2: Example data fragments from World Factbook

partners of “United States”, she can select the corresponding con-
texts for each term, and refine her query to restrict the results only
to those contexts. Even when the user restricts her query to “import
partners”, there are still two different ways to connecttrade coun-
try andpercentageelements, represented as dotted lines in Figure 1.
SEDA computes a set of “meaningful” connections from the top-k
results by using dataguide summaries and allows the user to choose
which of those are relevant for her query.

Once the user specifies all the contexts and connections that are
relevant to her query, she has the option of using the results of this
exploration to create an OLAP cube. In this case,SEDA computes
a full (i.e. not top-k) set of result tuples, with two columns for each
query term: The first one contains the Dewey ID [19] XML node
reference, and the other one contains the full root-to-leaf path of the
node. Figure 3(a) shows two result tuples extracted from the doc-
ument in Figure 1. Next,SEDA automatically matches each path
column of this full query result to the contexts of known facts and
dimensions. Given a match, it extends the results with necessary
key columns, so that we can compute meaningful aggregates. The
user also has the option of defining new dimensions and facts based
on the columns of their query results. In that case, the system also
asks for a key and automatically verifies its uniqueness. Finally,
SEDA generates the corresponding fact and dimension tables to be
fed into an OLAP tool. In our example, assuming that the facts and
dimensions of Figure 3(b) already exist in the system,SEDA iden-
tifies that the query results contain thecountryand import coun-
try dimensions, as well as theimport trade percentatefact. If the
user agrees with this decision, the system will automatically add the
/country/year column to the result, since the key for thecountry
dimension5 contains/country/year path. Moreover, the system
will match the newly added/country/year column to the con-
text of the existingyear dimension, and add this dimension to the
output. The final dimension and fact tables generated bySEDA
for Query 1 are shown in Figure 3(c). Note, that without theyear
dimension, the fact table would not have a primary key, prevent-
ing users from computing meaningful aggregates on this cube. For
example, there would be no information on what distinguishes the
records that contain “China 12.5%” and “China 13.8%”.

We chose to dynamically construct the cube by identifying di-
mensions and facts in a query result that relevant to a particular
analytical task in order to deal with highly heterogenous data sets.
For example, query term(∗, “UnitedStates”) actually matches
not 3, but 27 paths in our World Factbook dataset. Some of the

5In this example all dimensions and facts contain “/country/year”
in their key, but it is sufficient for any one of them to have it.

Full Query Result R(q)a)

…

/country /country/economy/import_partners/

item/percentage

n1.2.2.2.2/country/economy/import_partners/item

/trade_country

n1.2.2.2.1n1

n1

……

/country/economy/import_partners/
item/percentage

n1.2.2.1.2/country/economy/import_partners/item
/trade_country

n1.2.2.1.1/country

nodeid1 path1 nodeid2 path2 nodeid3 path3

Facts F

………

(/county, /county/year)/country/economy/GDP_ppp

(/county, /county/year)/country/economy/GDPGDP

(/county, /county/year,
../trade_country)

/country/economy/import_
partners/item/percentage

Import-trade-
percentage

Dimensions D
ContextList

name context key

(/county, /county/year)/countrycounty

………

(/county, /county/year)/country/yearyear

(/county, /county/year, .)/country/economy/
import_partners/item/

trade_country

Import-
country

b)

Fact Table (percentage)

15China2006United States

16.9Canada2006United States

13.8China2005United States

10.3Mexico2005United States

10.7Mexico2004United States

12.5China2004United States

…………

c)

ContextList
name context key

Dimension Tables
(country, year, import-country)

Canada

Mexico

China

…

United States

…

2006

2005

2004

…

Figure 3: Sample result for Query 1

matches are in prominent paths, such as/country, which occurs
in 1577 out of 1600 documents. However, some other paths are
more rare such as
/transnational issues/refugees/country of origin,
occurring in only 186 documents. We observe a long tail of such
infrequent paths, which makes shredding all the attributes into a
data warehouse very difficult.

Our main contributions can be summarized as follows:

1. An end-to-end tool to explore and analyze an XML data set
to discover interesting properties, facts and dimensions, en-
abling the creation of a full-fledged OLAP solution.

2. A systematic approach for performing complex analysis of
XML data starting with simple keyword-based query terms.

3. Techniques for deriving and representing context and con-
nection summaries to enable user-assisted disambiguation of
context and connections, which in turn results in a simplified
specification of a precise complex analytic query.

4. Techniques for automatic computation of data cubes from
each query result for OLAP-style analysis of the data.

The rest of this paper is organized as follows: We first review
related work in Section 2. Section 3 provides some basic defini-
tions. The overview ofSEDA is in given Section 4. Section 5 and
Section 6 describe how context and connection summaries are gen-
erated and used in user assisted disambiguation of relevant results,
and Section 7 shows how the results of the previous exploration
can be used in completing the specification and computation of an
OLAP-style aggregation query. Finally, we present our conclusions
and some ideas for future work in Section 8.

2. RELATED WORK
XML Flexible Querying: A number of different approaches

have been proposed for flexible querying of XML data[6, 12, 26,
13, 20, 18, 16, 10]. They try to infer and identify meaningfully
related answers that are relevant to the user query based on various
proposed heuristics. As described in the paper [22], the proposed
heuristics do not work on all data scenarios. InSEDA, we use a
heuristic based on compactness of data graphs augmented with user
feedback to disambiguate relevant results.SEDA does not limit the
connection relationships to tree patterns. It incorporates user feed-
back, and enables OLAP-style analysis on query results.

XML Analytics: A complementary body of work studies group-
ing and analytics in XML. [3] proposes a group-by operator as an
extension to XQuery[25] and presents how complex analysis of
XML data can be achieved using the proposed extension. OLAP
on XML data incorporates XML grouping techniques to define and
compute a data cube such as in [23, 11, 24]. In [24] the data cube
is computed based on matching tree patterns with structural relax-
ations to accommodate for XML’s flexible representation. These
methods still require the formulation of XQuery queries to perform
OLAP computation. Our approach combines search and user guid-
ance to alleviate this issue.

Faceted Search:Faceted search engines[2, 21, 7] address the
problem of disambiguating multiple real-world entities matching
a given keyword by organizing the data into facets and providing
a navigational interface. In these systems, the facets are precom-
puted and the data is indexed accordingly [2, 21, 7]. However, the
query language ofSEDA is more than just simple keywords and
as a result, the set of contexts each query term can identify is very
large. For example, for the World Factbook data set, we have 1984
distinct paths. As a result, inSEDA we have chosen to generate

these contexts dynamically for each query.

We adopt a pay-as-you-go approach to defining the data cubes
from heterogenous data, which is advocated by Dataspaces [14]
data integration work. Unlike Dataspaces which gradually inte-
grates myriad of data sources, the goal ofSEDA is to identify the
part of the data set that is of interest for an OLAP solution, and
gradually build up a star schema. In addition,SEDA needs to deal
with massive variations in data structures due to schema evolution
and optional attributes in XML schemas.

3. DATA MODEL AND QUERY LANGUAGE
Before describing the details of theSEDA system, we first present

the underlying data model and the query language ofSEDA.
SEDA operates on a collection of XML documents, which may

have links between them. So, we model XML data as a directed
graph in which nodes represent element or attribute nodes (referred
to as data nodes from now on), and edges represent various rela-
tionships between nodes. In this work, we consider four types of
relationships between data nodes: (1) parent/child relationship6, (2)
IDREF links, (3) XLink/XPointer links, and (4) valued-based rela-
tionships (such as primary key-foreign key relationship). These
four relationships convey various semantic information between
the participating nodes. We assume that instances of the last type
of relationship, i.e. value-based relationships, are provided as in-
put into the system. If not, such relationships can be discovered by
employing algorithms to discover keys, such as [27, 17]. Note that
discovering and adding appropriate edges into the data graph may
require prepocessing of the XML data. We now formally define the
data operated on bySEDA as follows:

DEFINITION 2 (DATA GRAPH). A data nodev1 is related to
another data nodev2, if one of the following holds:

1. v1 is a child ofv2, or v2 is a child ofv1.

2. v1 contains an IDREF attribute whose value is equal to the
ID attribute ofv2.

3. v1 contains an XPointer/XLink pointer attribute, whose tar-
get node isv2.

4. v1 andv2 have the same data value, wherev1 is a primary
key andv2 is a foreign key.

The data graphG(V, E) of an XML collectionC is a directed
graph where,V is the set of XML element and attribute nodes in
C, andE = {(v1, v2) | v1 is related tov2}. In G, we distinguish
a subset of nodesRoot ⊂ V , called root nodes, which are the root
elements of the XML documents in collectionC.

Each data node has a context and content. We define thecon-
text of a data noden, denoted bycontext(n), as its root-to-leaf
path, starting from a root noder ∈ Root, and following only par-
ent/child edges. We define thecontentof a data noden, denoted by
content(n), as the concatenation of all the text node descendants
of n by traversing parent/child edges only.

The query language ofSEDA incorporates full-text search as the
core component. A query inSEDA consists of a set ofquery terms.

DEFINITION 3 (QUERY TERM). A query termqt is a pair of
the formqt = (context, search query), wheresearch query is
any full-text search expression, andcontext is either empty or one

6In this work, we treat element-attribute relationships as a special
case of parent/child relationship.

of the following: (i) a root-to-leaf path, (ii) keyword query, allow-
ing wildcards, or (iii) disjunctions of (i) and (ii).

A data noden satisfies a query termqt iff

1. Content(n) satisfiessearch query, and

2. One of the following holds:
(1) qt.context = empty, or
(2) qt.context = node-name(n), or
(3) qt.context = context(n), or
(4)qt.context is a disjunction and∃ disjunct d ∈ qt.context
such thatd = node-name(n) or d = context(n).

Thesearch query of a query term can be a simple bag of key-
words, a phrase query or a boolean combination of those. For
example, the query term(country, “Romania”) asks for a node
namedcountry that contains the keyword “Romania”. In its sim-
plest form, aSEDA query is a set of query terms. The result of a
SEDA query is a set of tuples satisfying the query terms.

DEFINITION 4 (QUERY RESULT). Suppose that a queryq con-
tains a set of query termsQT = {qt1, qt2, . . . , qtm}. Then, we
define the result ofq, denoted byR(q), as a set of m-tuples of
the form< n1, n2, . . . , nm >, where eachni satisfiesqti for
1 ≤ i ≤ m and there exists a connected data graphg(V ′, E′) ∈ G
with V ′ = {n1, n2, . . . , nm}.

4. SYSTEM OVERVIEW
The architecture ofSEDA is provided in Figure 4. It contains

three major components: a user interface, an execution engine and
a storage and indexing component. A user interacts with the sys-
tem through various panels in the GUI. To help users in the for-
mulation of complex queries,SEDA provides context and connec-
tion summary panels, as well as an OLAP panel, in addition to
the query and result panels. The execution engine contains several
units for processing a user’s query, guiding her to refine her search
for increasing precision and finally for computing OLAP-style data

cubes. XML data is stored in DB2R© pureXML
TM

7. In addition,
the storage component contains several indexes to efficiently sup-
port these operations, including a Lucene full-text index.

An example screen shot ofSEDA is given in Figure 5 [1]. In
the top panel on the left, the user formulates and refines her query.
In this example, the user asks for trade partners of “United States”.
The control flow ofSEDA is depicted in Figure 6. When a user
submits a query toSEDA, it first employs a top-k search unit to
compute the most relevant top-k answers fast. InSEDA, we em-
ploy a top-k search algorithm based on the family of threshold al-
gorithms (TA)[8]. TheSEDA top-k algorithm retrieves the results
from full-text indexes and calculates top answers according to a
ranking function which takes into account both the content score
as well as the structural properties of the matched nodes. However,
we can use any top-k search algorithm that works on data graphs.
The results of the top-k search algorithm are shown on the right in
theSEDA GUI as depicted in Figure 5.

In addition to top-k results,SEDA also computes two result sum-
maries, calledcontextandconnection, which help the user to un-
derstand the structural properties of the returned results and allow
her to further specify additional conditions to express her intention
more accurately. Thecontext summaryis a list of contexts, repre-
sented by root-to-leaf paths, in which the query terms are found.
The connection summarycontains all the paths that connect the
7DB2 pureXML is a trademark of the IBM Corporation

XML Data
Storage

Query
Panel

Context
Summary

Panel

Connection
Summary Panel

Result
Panel

Data Cube
Analysis Panel

Top-k
Search Unit

Context
Summary
Generator

Connection
Summary
Generator

Complete
Result Set
Generator

Data Cube
Processor&

Analyzer

User Interface

Execution Engine

Storage and Indexing

Indexes

Figure 4: Architecture of SEDA

nodes in the top-k results. Notice from Definition 4 that the num-
ber of results, and, thus, the number of distinct paths that connect
them can potentially be infinite on graph data. Thus, we limit the
relationship summary construction to top-k results. The middle and
the bottom panels on the left in Figure 5 show the context and con-
nection summaries for the example query. We describe howSEDA
computes context and connection summaries in Sections 5 and 6,
respectively.

Full-text Search Query

Context Summary
(identify contexts)

Connection Summary
(identify relationships)

Top-K answers
or

All answers

Aggregations of Data

Top-K Results Modified Query

Top-K Results

All Results

Feedback
Loop

Feedback
Loop

Precise data, ready for analysis

Figure 6: Control Flow in SEDA

If the user finds what she is looking for in the initial top-k results,
she may stop the exploration. Otherwise, she may refine her query
with the help of the context and connection summaries. If a sub-
set of contexts are chosen,SEDA computes the top-k results again
limited to this subset. This allows the system to consider only con-
nections between objects relevant to the chosen context set. Once

the user selects a subset of connections she is interested in,SEDA
has sufficient information about the user’s intention and now can
compute theentire result set, not just the top-k, and generate data
cubes from the complete results. The rationale is that once the user
restricts the contexts and the connections, the search query is re-
fined enough that its result has the precision and recall required for
formulating an OLAP-style complex query. To compute the cube,
SEDA automatically maps each column in the result to a dimen-
sion or a fact, and allows the user to choose a subset of dimensions
or facts from the set it identified, as well as add other dimensions
and facts. For this purpose,SEDA provides a data cube screen
panel, instead of the top-k results panel, on the left, as shown in
Figure 7. The dimensions and measures that match the user query
are highlighted in the pulldown menu, but the user is free to choose
any dimension and measure she wants. In the final step,SEDA
automatically generates database queries to create the tables in the
corresponding star schema and feeds the tables into an OLAP tool
for further analysis. The details are explained in Section 7.

5. CONTEXT DISCOVERY
In this section, we show how users may select one or more con-

texts for each of the query terms to better reflect their intentions.
In SEDA, we represent the context of nodes in terms of their root-
to-leaf paths. Additionally, a context can be further abstracted and
represented by a real-world entity, if such information is available.
ConsiderQuery 1 in the introduction, which asks for the percent-
age trade amounts of import trade partners of “United States” and
the data in Figure 2. The phrase “United States” will be found in
three different contexts: as a country name in Figure 2 (a), as an
import partner trade country in Figure 2(b) and as an export partner
trade country in Figure 2(c). Each of these three contexts has differ-
ent real-world semantics which makes it challenging for a system
to automatically discover what the users’ intentions really are.

Search engines address this problem by providing a faceted search
interface, so that users can choose the context they are interested in.
While faceted search engines precompute facets, inSEDA we have
chosen to generate these contexts dynamically for each query. But,

Figure 5: Example screen shot ofSEDA

Figure 7: Data cube specification user interface.

as in the case of faceted search, we still rely on the user to choose
the appropriate context.

Given a SEDA query q, for each query term, we compute a
context bucket that contains all distinct paths that the query term
appears in within the entire data collection. To compute this effi-
ciently, we maintain a full-text index which maps individual key-
words to the set of distinct paths in which they appear. This allows
us to compute the set of distinct paths for phrase queries, as well as
other search queries with multiple keywords connected with con-
junction or disjunction. This index is illustrated in Figure 8.

…

path1keyword1

keyword2

keyword3

keywordn

path5path4

path3path2

path6 path7 path8 path9

Figure 8: Full-text index for contexts

This full-text index contains all keywords that appear in the data
set as content, as well as all the tag names. Each distinct path is
treated as a virtual document. Hence, the posting lists contain all
the paths a given word appears in. We store the count of occurences
of each path in the document store. An alternative design, which
would avoid accessing the document store, would be to store the
counts for each path in the posting lists. But, then this would have
the drawback of repeating the same information in many posting
lists.

The exact usage of this index depends on the query term. If
a query term contains only a full-text search query, we take that
search query and run it on the full-text index directly. If the query
term also contains a full root-to-leaf context, then we use the last
tag name in the full root-to-leaf path to probe the index, in con-
junction with the search query, and compute the frequency of the

path. If the context of the query term is only a tag name, including
wildcards, then we use the tag name, in conjunction with the search
query to probe the index.

SEDA displays all contexts for a query term sorted by their fre-
quencies.SEDA shows the frequencies in the entire data collec-
tion, not the frequencies in the query result. Note that this is dif-
ferent than faceted search engines which show the frequency of a
given keyword in the corresponding path. Instead we display the
absolute frequency of the path itself, irrespective of the keyword.
The rationale behind this choice is to give the user some idea about
the structural properties of the data. Once the user specifies the set
of contexts she is interested in,SEDA re-computes top-k results,
with the additional constraint that the results satisfy the contexts
chosen by the user.

6. RELATIONSHIP DISCOVERY
Once the user restricts the set of contexts she is interested in, the

set of alternative connectionsSEDA needs to consider is reduced.
However, there may still be some ambiguity. Recall fromQuery 1
that even when the user chooses one context for each query term,
restricting the results to only import partners, there are still two dif-
ferent ways to connecttrade countryandpercentagedata nodes,
shown as dotted lines in Figure 1. This case is an example when
there are different paths between different instances of two types.
In another scenario, there maybe multiple paths connecting two
data node instances, each representing a different real-world rela-
tionship, in a data graph. For example, in Figure 1, we see two
paths between “United States” and “China”, one representing the
geographical relationship and the other one representing the trade
partnership.

There are various heuristics proposals in the literature to decide
which connections are more meaningful. But as shown in [22],
these heuristics work in some scenarios but fail in others. It is
very hard to find an approach that will work in all possible data
and query scenarios, because each different connection represents
a different semantic relationship and it is impossible to know what
the user intension really is. InSEDA, we rely on user feedback,
instead of heuristics, to decide which connections are relevant for
the user’s query.

A straight-forward algorithm to compute all possible graphs that
connects user’s contexts is as follows: First compute the complete
result set ofq onG, map the nodes in the result tuples ontoG, and
identify all connected graphs. However, this is a very expensive
operation, because the number of possible connections is usually
pretty large. It may even be infeasible to show all connections be-
tween matching nodes on graph data.

The solution employed bySEDA is to choose a subset of “mean-
ingful” connections to present to the user, and let her specify the
ones that are relevant for her query. Given the large number of
possible connections, the challenge is to discover a subset that is
meaningful. We refer to this subset of connections to be presented
to the user as theconnection summary. Our approach is to use the
result set,Rtop−k(q), generated by the top-k algorithm, instead of
the complete result setR(q), to extract and create a set of con-
nections to be presented to the user. In addition, instead of com-
puting connected graphs, we show pairwise connections between
the matching nodes. Although we are biased towards the top-k re-
sults, we expect users to select the contexts first to identify the set
of objects they are interested in. Once the user chooses the set of
contexts she is intested in, top-k results contain only connections
between those relevant contexts and we will be able to capture the
meaningful connections.

SEDA displays these connections in a visual graph representa-

tion and allows the user to pick or drop connections from the con-
nection summary. Once the user selects the set of connections that
are relevant for her query,SEDA refines the search results to in-
clude result tuples that satisfy only those connections.

6.1 Computation of Connection Summary
We now describe the algorithm for computing the connections in

the connection summary. We assume that the data graphG does
not fit in memory, which we expect to be the case for general XML
data collections. We observe that we do not necessarily need to
work onG itself. Instead, we can compute and use asummaryof
the structural organization ofG.

For the implementation of the algorithm, we decided to leverage
the dataguide structures [15, 9] over XML data. We first compute
a collection of dataguides, denoted byDG, together with a set of
links between the dataguides corresponding to the external edges
between documents inG (e.g., IDREF links,XLink/XPointer links
and value-based links). We represent a dataguidedg as a list of full
root-to-leaf paths such that every full root-to-leaf path inG maps
onto a full root-to-leaf path in onedg ∈ DG.

The dataguide computation algorithm computes the summary of
each document, i.e. its dataguide, and tries to merge this dataguide
with existing dataguides that have been computed so far. As a re-
sult, it has a computational cost ofO(n∗m), wheren is the number
of documents, andm is the number of dataguides. When we try to
merge the dataguide of an individual document, saydg(d), with
existing dataguides, we have three possibilities.dg(d) might be a
subset of or be exactly the same as one of the existing dataguides, or
it may overlap with some of them. In the first two cases, we do not
need to do any further processing. In the final case, we have the op-
tion of generating a separate dataguide. But, this may not summa-
rize the data as much as we want. For example, we observed that on
our World Factbook data set, we created 1600 dataguides for 1600
XML documents due to a large number of optional elements. The
other alternative is to merge the new dataguidedg(d) with an exist-
ing dataguide based on some similarity measure, which reduces the
number and the total size of dataguides in the summary. For this
purpose, we use a similarity metric based on the overlap between
the set of paths belonging to two different dataguides, given by:

overlap(dg1, dg2) = min

|common paths(dg1,dg2)|
|paths(dg1)|

,

|common paths(dg1,dg2)|
|paths(dg2)|

where,common paths(dg1, dg2) denotes the set of common
root-to-leaf paths betweendg1 and dg2, andpaths(dg) denotes
the set of root-to-leaf paths indg. We merge two dataguides if their
overlap factor is over a given threshold. We ran our algorithm on
different data sets and observed that the effectiveness of the over-
lap threshold in reducing the total number of generated dataguides
depends on the dataset, ranging from a factor of 3 to a factor of 100
reduction. Table 1 shows the dataguide statistics for an overlapping
threshold of40% for four different data sets that we examined. We
observe that the effectiveness of the overlap threshold in reducing
the total number of generated dataguides depends on the dataset.
For example, for datasets, such as the Google Base, where the data
schema is flat and regular, we observe a reduction of upto two or-
ders of magnitude. At the other end of the spectrum, for very flex-
ible datasets, such as for the World Factbook, we see a reduction
factor of only 3.

It is important to note that there may be connections discovered
from the dataguides, which do not have any instantiation in the
portion of data graphG induced by the query result. We refer to

Table 1: Dataguide statistics for threshold of40%
Data set # documents # data guides
Google Base snapshot8 10000 88
Mondial 9 5563 86
RecipeML10 10988 3
World Factbook 200711 1600 500

these cases asfalse positives. There are two reasons: First, the ac-
tual hits in the query result are further restricted by keyword search
terms. However, the dataguide contains all connections, irrespec-
tive of content values. Second, merging similar dataguides intro-
duces some false connections. Hence the higher the overlap thresh-
old, the fewer the false positive connections because there will be
fewer dataguide merges.

The dataguide summary is precomputed on the entire data graph
G. At query time,SEDA optimizes the use of the dataguide index
by loading it into memory only once from disk. Each timeSEDA
runs the top-k algorithm, it also passes the result set to the connec-
tion summary computation algorithm, which maps nodes from the
top-k resultRtop−k(q) onto nodes in the dataguide setDG based
on matching root-to-leaf paths. If there are multiple paths between
two dataguide nodes, the algorithm chooses the one with the short-
est path inDG. As an optimization, we cache the connections we
discover so that we can leverage the cache for later query hits. Fi-
nally, we compute the connections between the matching dataguide
nodes.

7. CONSTRUCTING DATA CUBES
We facilitate further analysis of the query results by deriving and

populating a star schema that is directly usable by an off-the-shelf
OLAP engine. But first, we need to materialize the complete set of
results for a user query, not just the top-k results. For each connec-
tion chosen by the user, thecomplete result generatorin Figure 4
computes the complete result set that satisfies the query and the
connection constraints.

For each connection chosen by the user, the nodes and all con-
nections together form a connection graph. We partition each con-
nection graph intotwigs. Each twig is a query pattern tree [4],
which includes the connection nodes and parent/child edges within
the same document. The remaining edges are calledcross-twig
joins, which combine the results from different twigs. The input
to a leaf node in a twig are generated from its full-text search. We
retrieve the data nodes from the full-text search results in Dewey
ID [19] order, which can be directly used by the XML twig pro-
cessing [4]. After we compute the results of each twig query, we
join the results from different twigs according to thecross-twigjoin
edges to produce the complete result tuples, which is similar to a
join in an RDBMS.

Once the system computes the complete result set of a query, the
user has an option to compute one or more data cubes from the
results for further analysis.SEDA automatically maps the com-
ponents of the result tuples onto the set of known dimensions and
facts, and, after optional manual adjustments to the mapping, com-
putes an instantiation of the corresponding star schema.

To facilitate cube computation,SEDA maintains a set of facts,
denoted byF , and a set of dimensions, denoted byD, known to the
system. These sets are initially provided by a system administrator
and are expanded by users during query processing, i.e. any user
can define new facts and dimensions based on their query results.
SEDA could also take advantage of automated discovery of facts
and dimensions.

SEDA requires every dimension table to have a key in order
to have meaningful aggregates. We employrelative XML keys
[5]. A relative key for an XML noden is defined as a list of
paths(P1, P2, . . . , Pm), where eachPi, 1 ≤ i ≤ m, is either
an absolute path expression, which starts at the root of the doc-
ument, or a relative path expression, which starts at the noden.
If we consider thepercentagechild of import partnersin Figure
1, we see that there are multiple instances of thepercentageel-
ement, and we need to make sure that we pair China with 15%
and Canada with 16.9%. Thus, the key for thepercentagefact
is (/country, /country/year, ../trade country). The first two
components of this key are absolute and last one is relative to the
/country/economy/import partners/item/percentage con-
text. I.e. for everypercentagethe key contains itstrade country
sibling. This assumes that everypercentagein the result will have
exactly one such sibling, as well as that every document in the result
will have exactly one/country and/country/year elements.

The set of facts,F is defined as a nested relation, with the fol-
lowing schema:< name, ContextList >, wherename is the
name of the fact, and theContextList is another relation and
has the schema< context, key >. The first component of the
ContextList relation identifies the context of the fact (i.e. root-
to-leaf path), and the second component is the relative key w.r.t. the
node identified by the context. The reason whyContextList is a
relation is because the underlying data collection may be heteroge-
neous, with documents having no schema or conforming to many
different schemas. This heterogeneity may arise from schema evo-
lution or from data integration if the data was collected from many
different sources. For the data in Figure 2, the GDP fact is defined
by two paths, “/country/economy/GDP ” and “/country
/economy/GDP ppp”. In the case of World Factbook data, the
schema has evolved over time and documents created before 2005
have the GDP value in an element called “GDP ”, whereas doc-
uments created after 2005 have the corresponding value in an el-
ement called “GDP ppp”. The set of dimensions,D, is defined
similarly. Figure 3 shows an instance ofF andD for the World
Factbook data set. It is important to note thatF andD contain path
information defining the facts and dimensions, and do not contain
any instance values.

We are now ready to describe howSEDA computes the fact and
dimension tables from a query result. There are three major steps:
(1) matching the query results to facts and dimensions, (2) aug-
menting the result set, and (3) generation of SQL/XML queries to
extract the values from the database to compute the fact and dimen-
sion tables. In the following, we will denote a single fact inF with
f , and a single dimension inD with d.

Step 1: Matching: The input to this step is the query resultR(q)
and the setsF andD. Recall that the resultR(q) of a user queryq
is a set of tuples. Let< cn1, cp1, cn2, cp2, . . . , cnm, cpm > denote
the schema ofR(q), where eachcni represents the dewey ids of the
nodes that satisfy a query termqti, andcpi denotes the contexts of
those nodes. Figure 3 shows an instance ofR(q) for Query 1.

We say that a pair(cni, cpi) matches a factf iff πcpi
(R) ⊆

πcontext(f.ContextList). In other words, a pair(cni, cpi) matches
a factf if the set of paths that satisfy the query termqti is a subset
of the paths that definef . A dimension match is defined similarly.
In addition to a complete match, there are two other possible sce-
narios when matching query results to facts and dimensions. In
the first case, a path column of the result setR(q) does not inter-
sect with the context list of any known fact or dimension. In this
case, the user has the option of defining a new dimension or a fact
from that column. The new facts and dimensions can be created in

SEDA by specifying a unique name, whether it is a fact or a dimen-
sion, and a key for each path. The system automatically verifies the
keys by computing them for everycni in R(q) and checking their
uniqueness. Currently, the keys are specified manually, but in the
future we plan to adopt the techniques of GORDIAN [17] to dis-
cover them automatically. In the second case, some but not all paths
in a path column of the result setR(q) intersect with the contexts
of a fact or a dimension. In this case,SEDA issues a warning mes-
sage to the user to make sure that she has chosen the correct context
list. Once again, the user has an option of defining this column as
a new dimension or fact. In both cases, if the user does not create
a new fact or dimension for this column, we simply ignore it while
creating the cube. The rationale is that those values may have been
used only to restrict the data set and are not needed in the data cube
computation.

ForQuery 1, R(q) in Figure 3, the first two columns will match
the country dimension, the third and fourth columns will match
the trade countrydimension, and finally the last two columns will
match thepercentagefact. As a result of the matching process,
SEDA identifiesFq andDq, the set of facts and dimensions in the
result set ofq, respectively.

Step 2: Augmentation: The purpose of this step is to manually
augment the automatically matched sets of facts and dimensions, if
necessary.SEDA allows users to add and remove facts and dimen-
sions toFq andDq sets. The result of this step are final sets of facts
and dimensions:Ffinal andDfinal.

Given the setsFfinal andDfinal, we may need to expandR(q)
to make sure it includes all key and value columns of every fact
and dimension. ConsiderR(q) in Figure 3, and thepercentagefact.
The relative key ofpercentageconsists of(country, year, trade
country), andyear is not in R(q). Without the year values, we
cannot create a well-defined fact table and compute meaningful ag-
gregates.

Step 3: Extraction: Once we compute the setsFfinal andDfinal,
we generate database queries to compute the fact and dimension
tables in the corresponding star schema. Note thatSEDA stores
XML data in a database, and the complete result setR(q) con-
tains only the node-ids for the matching nodes. To compute fact
and dimension tables, we need to get their corresponding data val-
ues. For those facts (dimensions) in the query result, i.e.f ∈ Fq

(d ∈ Dq), we only need to access the database to retrieve the con-
tent of the nodes, whose node-ids are inR(q). For the extra facts
(dimensions) the user has added, i.e.f ∈ Ffinal ∧ f /∈ Fq(d ∈
Dfinal ∧ d /∈ Dq), we also need to access the XML document to
first locate the correct node and then retrieve its content. In gener-
ating those database queries, we use the keys to make sure we pair
up correct values.

We generate one fact table for each factf ∈ Ffinal and create
one dimension table for each dimensiond ∈ Dfinal. For example,
for the percentagefact of Query 1, we generate the fact table in
Figure 3. Note that all the components of the key of thepercentage
fact are in the fact table, including the additionalyearcolumn. As
an optimization, we merge fact tables if they have the same keys.
Therefore, the outcome of this phase is a set of fact and dimension
tables. It is also important to note that each user query may identify
different sets of facts and dimensions, resulting in a different star
schema. This is in contrast with traditional data warehouses, where
there is one fixed star schema. This dynamic computation of a dif-
ferent star schema instance for each user query allows the users to
analyze their data on-demand.

Finally, we feed these tables into an OLAP-tool to compute the

data cubes, one per fact table, and the desired aggregation functions
for further analysis.

8. CONCLUSION AND FUTURE WORK
In this paper, we described a prototype system,SEDA, which is

based on a paradigm of search and user interactions to help users
start with simple keyword style querying and perform rich analysis
of XML data. We envision it to be used as a tool to explore and an-
alyze an XML data set to discover interesting properties, facts and
dimensions, enabling the creation of a full-fledged OLAP solution.
By dynamically computing a star schema and its instantiation for
each query,SEDA allows on-demand analysis of XML data.

As future work, we plan to investigate automatic discovery of
facts and dimensions from the data, as well as improvements to our
summarization algorithms. Another interesting avenue of research
is defining proper metrics to evaluate a system likeSEDA in terms
of its effectiveness.

9. ACKNOWLEDGEMENTS
We would like to thank Zografoula Vagena for her contributions

to the top-k search algorithm and some other aspects of the system.

10. REFERENCES
[1] A. Balmin, L. Colby, E. Curtmola, Q. Li, F.̈Ozcan,

S. Srinivas, and Z. Vagena. SEDA: A System for Search,
Exploration, Discovery, and Analysis of XML Data. InProc.
of VLDB, pages 1408–1411, 2008. Demo paper.

[2] Ben-Yizhak et al. Beyond Basic Faceted Search. InProc. of
WWW, 2007.

[3] K. Beyer, D. Chamberlin, L. Colby, F.̈Ozcan, H. Pirahesh,
and Y. Xu. Extending xquery for analytics. InProc. of
SIGMOD, pages 503–514, 2005.

[4] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins:
optimal XML pattern matching. InProc. of SIGMOD, pages
310–321, 2002.

[5] P. Buneman, Susan B. Davidson, W. Fan, Carmem S. Hara,
and Wang Chiew Tan. Keys for xml. InProc. of WWW, pages
201–210, 2001.

[6] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A
Semantic Search Engine for XML. InProc. of VLDB, pages
45–56, Berlin, Germany, 2003.

[7] W. Dakka, R. Dayal, and P. Ipeirotis. Automatic Discovery
of Useful Facet Terms. InProc. of SIGIR Workshop on
Faceted Search, pages 768–775, 2006.

[8] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation
Algorithms for Middleware. InProc. of PODS, 2001.

[9] R. Goldman and J. Widom. Dataguides: Enabling query
formulation and optimization in semistructured databases. In
Proc. of VLDB, pages 436–445, 1997.

[10] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.
XRANK: ranked keyword search over XML documents. In
Proc. of SIGMOD, pages 16–27, San Diego, USA, 2003.

[11] C. A. Hurtado and A. O. Mendelzon. Reasoning about
summarizability in heterogeneous multidimensional
schemas.Lecture Notes in Computer Science, 1973, 2001.

[12] Y. Li, C. Yu, and H. Jagadish. Schema-Free XQuery. InProc.
of VLDB, pages 72–83, Toronto, Canada, 2004.

[13] Z. Liu and Y. Chen. Identifying Meaningful Return
Information for XML Keyword Search. InProc. of
SIGMOD, Beijing, China, 2007.

[14] J. Madhavan et al. Web-Scale Data Integration: You can
afford to Pay as You Go. InProc. of CIDR, 2007.

[15] S. Nestorov, J. Ullman, J. Wiener, and S. Chawatbe.
Representative Objects: Concise Representations of
Semistructured Hierarchical Data. InProc. of ICDE, 1997.

[16] T. Saito and S. Morishita. Amoeba Join: Overcoming
Structural Fluctuations in XML Data. InProc. of WebDB,
pages 38–43, Chicago, USA, 2006.

[17] Y. Sismanis, P. Brown, Peter J. Haas, and B. Reinwald.
GORDIAN: Efficient and Scalable Discovery of Composite
Keys. InProc. of VLDB, pages 691–702, 2006.

[18] C. Sun, C.-Y. Chan, and A. K. Goenka. Multiway
SLCA-based Keyword Search in XML Data. InProc. of
WWW, Singapore, Singapore, 2007.

[19] I. Tatarinov et al. Storing and Querying Ordered XML Using
a Relational Database System. InProc. of SIGMOD, 2002.

[20] M. Theobald, R. Schenkel, and G. Weikum. An Efficient and
Versatile Query Engine for TopX Search. InProc. of VLDB,
pages 625–636, Trondheim, Norway, 2005.

[21] D. Tunkelang. Dynamic Category Sets: An Approach for
Faceted Search. InProc. of SIGIR Workshop on Faceted
Search, 2006.

[22] Z. Vagena, L. Colby, F.̈Ozcan, A. Balmin, and Q. Li. On the
Effectiveness of Flexible Querying Heuristics for XML Data.
In XSym, pages 77–91, 2007.

[23] H. Wang, J. Li, Z. He, and H. Gao. OLAP for XML Data. In
CIT, pages 233–237, 2005.

[24] N. Wiwatwattana, H. Jagadish, L. Lakshmanan, and

D. Srivastava. X3: A Cube Operator for XML OLAP. In
Proc. of ICDE, 2007.

[25] XQuery 1.0: An XML Query Language, January 2007. W3C
Recommendation, See
http://www.w3.org/TR/xquery.

[26] Y. Xu and Y. Papakonstantinou. Efficient Keyword Search
for Smallest LCAs in XML Databases. InProc. of SIGMOD,
pages 537–538, Baltimore, USA, 2005.

[27] C. Yu and H.V. Jagadish. Efficient Discovery of XML Data
Redundancies. InProc. of VLDB, pages 103–114, 2006.

