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Abstract.

Significant timeis spent by companiesin trying to reproduce and fix bugsin their
software. The process of testing and debugging can immensely benefit from atool
that supports Deterministic Replay Debugging (DRD). A tool that supports DRD
will alow a user to record a program’s execution in alog, and to deterministically
replay every single instruction executed as part of the application using the log.

In this paper, we present the BugNet software tool which can support DRD. It
can handle al forms of non-determinism, including the non-determinism due to
thread interactions in a multi-threaded application. Since the BugNet tool is oper-
ating system independent, a program execution that fails in a particular user’s en-
vironment can be easily captured by the user in alog, and later reproduced by a
developer working in acompletely different environment.

We also empirically quantify certain variables relevant to the DRD process. This
includes an empirical analysis, that quantifies how much of aprogram execution has
to belogged and replayed in order to understand the root cause of abug. Further, we
examine the potential benefit of using dynamic slicing along with our deterministic
replay debugger.
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1. Introduction

Tracking down and fixing bugs in software can be a nightmare, costing a significant amount of
time and money. These software bugs account for nearly 40% of computer system failures [15] and
according to NIST [19] they cost the U.S. economy an estimated $59.5 billion annually.

When a program execution fails due to a software bug, the programmer should have the ability
to deterministically replay the execution as many times as needed, in order to understand and fix
the bug. By deterministic replay, we mean the ability to re-execute exactly the same seguence of
instructions with exactly the same input like in the original execution that exposed the bug. We call
this method of debugging as Deterministic Replay Debugging(DRD). DRD enables the programmer
to go back to any instant during the program execution and start replaying from thereon to understand
the bug.

We recently proposed a hardware logging mechanism called BugNet [17] to support building
DRD tools. In this paper, we adapt some of the techniques introduced in our hardware logging
mechanism to build a BugNet profiling tool completely in software without assuming any hardware
support. The BugNet profiling tool can continuously log information pertaining to the program ex-



ecution, which can be used by a developer to deterministically replay the program. One important
feature of our mechanism is that it can support deterministic replay of program execution in the
presence of all forms of non-determinism, including non-determinism due to system interactions
(eg: 1/0), and a so thread interactionsin multi-threaded applications. The ability to deterministically
replay a program execution is vital to reproduce non-deterministic bugs.

A mgjority of application level bugs can be debugged by just replaying the instructions executed
in the user code and the shared libraries. Therefore, our BugNet mechanism focuses on determinis-
tically replaying only the instructions executed in the user code and the shared libraries. While our
BugNet tool can profile user mode execution across various system events, it does not attempt to
profile the instructions executed as part of the system in the kernel mode. To enable deterministic
replay of only the user code and the shared libraries, BugNet logs the values of the load instruc-
tions executed by the application. This logging approach is different from the copy-on-write check-
pointing technique used in the earlier works [7,25,8,12]. Along with a copy-on-write checkpoint
technique, these earlier systems explicitly logged 1/0 events and other interrupts in order to support
deterministic replay of the application across system events, which restricted their toolsto be depen-
dent on the operating system and also added significant complexity in developing and maintaining
such toals. Unlike these tools, BugNet's load val ue logging approach makesit completely operating
system independent, which makes it easier to develop and maintain. Because of the same reason, a
program execution that fails in a particular user’s environment can be captured by the user in alog
using BugNet, and easily reproduced by a developer working in acompletely different environment.

In this paper, we present a software version of BugNet [17], that can be used by the devel opers
and quality assurance engineers to efficiently track down bugs. We have implemented our logger
and replayer using the Pin dynamic instrumentation tool [14]. The contribution of this paper over
our hardware proposal [17] is that the prior work focused on the hardware support for logging with
very little performance overhead, and not an efficient software implementation. A naive software
version of BugNet is prone to incur a heavy performance overhead. In this paper, we discuss a soft-
ware implementation that mitigates the performanceissues. The previous hardware approach logged
shared memory dependencies for multi-threaded programs by observing the coherence messagesin
hardware. Here, in this paper, we describe a software logging algorithm to capture shared memory
dependenciesin order to deterministically replay multi-threaded programs.

We empirically quantify two metrics relevant to Deterministic Replay Debugging by analyzing
the bugs in some of the popular open source programs and in the Siemens[11] benchmark suite. We
improve the analysis presented in our prior work [17] to quantify what we call the replay window
length, whichis thelength of program execution (in terms of instructions) that need to be logged and
replayed in order to understand and fix a bug. We also study the size of the dynamic dice [27,30]
of areplay window. The first metric corresponds to how much state needs to be logged in order to
capture the bug. The second metric correspondsto how much state a devel oper may need to examine
in order to track down and fix the bug.

2. Related Work

There have been a few debugging tools proposed in the past which can enable replay of program
execution. Before discussing these tools, we first summarize the checkpoint mechanisms used in
these tools, which is central to any tool that can support replay.



2.1. Checkpoint Schemes

At the core of any system that enables replaying program execution is a checkpoint mechanism. A
checkpoint is created at regular intervals of program execution and these intervals are usualy re-
ferred to as checkpoint intervals. At the beginning of a checkpoint interval, a snapshot of the pro-
gram’s execution state is logged. This snapshot includes information such as CPU registers, mem-
ory, and also kernel states corresponding to the process such asfile descriptor tables, signal handlers,
etc. A commonly employed technique to reduce the log size is the copy-on-write policy. Instead of
logging al the state values at the beginning of a checkpoint interval, a state value is logged only
when the state gets modified for thefirst time within the checkpoint interval. The state of the process
at the beginning of a checkpoint interval can be rebuilt, during replay, by starting with the current
process's state and restoring the values from the log. Henceforth, we will refer to a log collected
using this checkpoint mechanism as an undo-log [12].

In addition to the undo-log, the above checkpoint mechanism also requires that sufficient in-
formation related to the occurrence of non-deterministic events such as interrupts, OS calls, DMA
transfers and also data races in multi-threaded programs are logged. This log, which is referred to
as redo-log [12], is required to reproduce these non-deterministic events to achieve deterministic

replay.
2.2. Replay Debugging

We will now discuss systems that enable logging and replaying a program execution. All of these
system employ some form of copy-on-write checkpoint mechanism.

Many previously proposed systems[8,5,4,1] focus on replaying programsthat have only deter-
ministic system interactions. Hence they do not have the compl exity of logging the non-determinism
during program execution. These systems cannot aid in debugging programs whose execution are
affected by non-determinism due to system interactions or races in multi-threaded programs.

Bugs due to data races in multi-threaded programs are difficult to debug and there have be
studiesto statically detect dataraces[22]. There have also been somework in building deterministic
replayers to support debugging multi-threaded applications. InstantReplay [13] is a software based
deterministic replayer that records the memory access order, and a hardware-assisted version was
presented by Bacon and Goldstein [2]. Netzer [18] proposed an optimization to reduce the amount
of shared memory dependency information that needs to be logged. If one assumes that the multi-
threaded application is running on a single processor, then one can limit the amount of recording
to just the scheduler decisions [6,20]. The above schemes tackle the non-determinism specifically
for data races in multi-threaded programs, but they do not focus on handling other forms of non-
determinism such as I/O interactions.

Flashback [25] provides lightweight operating system support for fine grained rollback by im-
plementing a copy-on-write checkpoint scheme. It can aso support replaying of the program’s exe-
cution. It can handle non-determinism due I/O interactions, such as input and output from file opera-
tions by collecting logs similar to the redo logs that we described earlier. However, it hasalimitation
in that, it cannot handle asynchronous 1/0. For example, 1/0 interactions with external devices such
as network drivers cannot be deterministically replayed. Thisis because in their replay system, the
OS cannot control the state of the external devices and induce the exact same behavior in them.

ReVirt [7] and TTVM [12] uses virtual machine support to enable deterministic replay. They
both support deterministic replay of 1/0 interactions, by creating redo logs that contain input infor-
mation from 1/O calls and timestamps for the interrupts. While the goal of ReVirt was to enable



detailed intrusion analysis by supporting deterministic replay, TTVM focused on debugging just
the operating system code. ReVirt does not provide support for deterministically replaying multi-
threaded applications on a chip multi-processor.

Flight Data Recorder [29] uses hardware support to enable deterministic replay debugging. It
uses a copy-on-write hardware checkpointing scheme to create an undo-log. The FDR hardware
aso collects aredo-log to capture 1/0 and interrupts explicitly. Using the logs one can deterministic
replay the fully system.

Unlike al of the above mechanisms, the BugNet software profiling tool employs a different
type of checkpoint mechanism that is based on logging the output of load values. Our load-based
checkpoint mechanism is operating system independent and hence it is relatively easy to develop
and maintain. Also, it naturally handles I/O and other such system interactions. Further, our tool
can deterministically replay multi-threaded programs as well. We describe software algorithms to
implement the BugNet logger and replayer using a dynamic instrumentation tool.

In parallel with our devel opment of BugNet, Bhansali et. a. [3] have developed atool to support
Deterministic Replay Debugging using a load-based checkpointing scheme. However, they did not
focus on precisely capturing the shared memory dependencies, which we can capture using our
BugNet software tool.

3. BugNet Overview

In this section we provide an overview of the BugNet checkpointing approach and describeits ability
to rollback execution and support deterministic replay debugging.

3.1. BugNet Overview

Our software implementation of BugNet consists of both a logger and replay debugger provided
as two binary instrumentation tools, built using Pin [14]. Pin is a dynamic instrumentation infras-
tructure, which uses dynamic compilation to instrument binaries dynamically as the program exe-
cutes. It allows users to instrument specific functions and instructions to embed call-backs at these
places to the analysis routines. The analysis routines can examine, log and replay the execution of
an instrumented program.

BugNet is built on the observation that a program’s execution is essentialy driven by the values
read when executing |oad instructions. We can therefore deterministically replay a program’s execu-
tion starting from an arbitrary point if we are given the starting PC and register state at that point in
execution, and al of the load values from that point on until the end of execution. Thisinformation
is what we refer to as a checkpoint. To maintain these checkpoints we break a program’s execution
into checkpoint intervals. A checkpoint interval represents a window of committed instructions that
is captured by the checkpoint being logged.

In BugNet, a new checkpoint is created at the beginning of each checkpoint interval to allow
execution to be replayed starting at the first instruction of the interval. When using the BugNet
logger, a maximum size (number of committed instructions) is specified for the checkpoint interval.
When this limit is reached, a new checkpoint interval isinitiated. For a checkpoint interval, enough
information is recorded in a log to start the replay of the program’s execution at the start of that
checkpoint interval.

At the start of a checkpoint interval, a snapshot of the architectural state is recorded. The
recorded architectural state includes the program counter and register values. After initialization,



whenever aload instruction is executed the address of the load and the value that is loaded iswritten
into the checkpoint log.

However, recording the result value of every load instruction would clearly be expensive. One
of the optimizationsin the BugNet logger isthat aload valueis recorded only if it isthe first access
to the memory location in the checkpoint interval or if the memory location has been modified by
another thread or due to any system effects. The result value of the other loads can be trivialy
and deterministically regenerated during replay. In order to determine which load values need to
be logged, our software BugNet logger keeps track of the values of each memory location that has
aready been logged for the current checkpoint interval in a profiling data structure. While executing
aload, if the memory address has already been logged, and if the value in the data structure is same
asthe valuein the application’smemory (which will betrue only if the memory location has not been
modified by the system or a remote thread), then the logger does not log the load value. Otherwise,
it logs the load value and the data structure is updated to keep track of the address and value so that,
in future, it can avoid logging when a load accesses the same memory location. The details about
this optimization are described in Section 4.

In the case of multi-threaded programs, if we log al the load values for a thread, then it can
enable us to replay each thread individually. Even when we apply the above optimization, since we
make sure to log the memory locations modified by the remote threads, we can still replay each
thread individually. However, in order to debug a multi-threaded program, we need to additionally
record shared memory dependencies across the threads. If we can precisely capture these depen-
dencies, then a replayer using these logs can support powerful debugging features such as single
stepping through the multi-threaded program execution in both directions. We explain an algorithm
to achievethisin Section 5.

3.2. Ability to Replay a Checkpoint

Our checkpointing approach alows a user to instantly start execution at any given checkpoint for
debugging. The main steps consist of setting the PC to the logged PC and restoring the logged
register state. We can then start to deterministically re-execute the instructions one at a time, and
each load value that was logged will get its value from the checkpoint.

3.3. Focus on Debugging Only User Code

We limit our focus on supporting deterministic replay for only the user code and the dynamic shared
libraries. This provides the ability to debug application level bugs. Note, we can till replay the ap-
plication across the system events. The main benefit of limiting ourselvesto focusjust on application
level replay isthat it simplifies our logger and replayer implementation. This is because, we do not
have to trace the kernel mode execution, and by using our load value based checkpoint approach,
we can easily capture a program’s execution across interrupts and system calls, and replay it. Also,
our implementation and our approach is aimost completely independent of the operating system.
This is an advantage, because we would not have to release new versions of our tool when there
are operating system patches or updates. |ndependence from the system environment also enables
co-operative devel opment among users working in different environments. For example, a devel oper
can replay a program execution that was traced in the customer’s environment.



3.4. BugNet Use Cases

Our BugNet software tool is useful during development and testing to capture and reproduce the
bugs, including the notorious non-deterministic bugs. The program under test is executed under the
BugNet logger, which uses Pin [14] to dynamically instrument the binary and produces the logs. If
the program crashes, or if the tester observes an incorrect program behavior, the generated logs can
be used to repeatedly replay the program deterministically, as many times as required to characterize
and fix the bug. The program execution can be replayed from the beginning of any checkpoint
interval. Based on this replay mechanism, one can easily build an interactive debugger that allows
oneto go backwardsin time[5,8].

In addition to the above uses related to fixing a bug, the ability to deterministic replay a pro-
gram’s execution aso allows one to perform more sophisticated dynamic analysis offline over that
program execution to automatically detect bugs [23,9,21]. Many of these dynamic analysistools are
limited in their use due to their runtime overhead. Especially, programs with significant user inter-
action cannot be analyzed, since the dynamic analysis results in intolerable performance overhead.
However, using atool like BugNet profiler, one can collect just the necessary information to replay
a program execution and use the collected logs to repeatedly replay and perform many different
time consuming dynamic analysis to detect bugs such as memory access bugs [23,9] and data race
bugs[21].

4. BugNet Logger and Replayer

In this section we will describe the implementation of our logger and replayer. The logger is used
to collect checkpoint logs during testing for an input. On observing a bug, the collected checkpoint
logs can be used by the developer to deterministically replay and debug the program’s execution
leading up to the bug.

4.1. Logger

The logger is implemented using the Pin dynamic instrumentation tool [14]. The purpose of the
logger is to collect enough information about the execution of the program that can then be used to
deterministically replay the program execution.

When running the logger, a user can choose a checkpoint interval length, which determines a
limit on the total number of instructions executed in a checkpoint interval. A new checkpoint is
created if the number of instructions executed in the current checkpoint interval reaches the limit.
Each checkpoint interval can be replayed completely by itself. During replay, the replayer can start
executing from the beginning of any of the checkpoints that were collected, as well as work their
way backward through execution. In the case of a multi-threaded program, there exists a separate
checkpoint log file for each thread that is executed. We will later describein Section 5 how to capture
shared memory dependencies for multi-threaded programs so that we can deterministic replay them.

4.1.1. Checkpoint Header

We use Pin [14] to instrument the binary being examined at the basic block granularity to keep
track of the number of instructionsthat are executed. When the number of instructions executed in a
checkpoint interval reaches the checkpoint interval limit, we start a new checkpoint.

Figure 1 illustrates the working of our software BugNet logger. We will use this as an example
to explain our logger implementation. The vertical arrow in the figure representsthe time of program



execution. The two shaded boxes represent the creation of two checkpoints, and the instructions
executed between these two checkpoints belong to a checkpoint interval.
For a new checkpoint the following initial header information is logged:

Process|D and Thread ID - arerequired to associate the checkpoint log with the thread of
execution for which it was created.

Program Counter and Register File contents - are needed to represent the architectural
state at the beginning of the checkpoint interval. This information will later be used by the
replayer to initialize the architectural states before replaying the program execution using the
recorded |oad values.

Timestamp - isused to synchronize between multiple threads in a multi-threaded program.
This time stamp is nothing but a globa counter value that represents the total number of
checkpoints created at any instant of time.

4.1.2. Logging of Load Values and System Effects

In order to replay a program’s execution from the beginning of a checkpoint interval al that we
need to log are the results of the load instructions. Hence we instrument all of the load instructions
to capture their output values and some of these are stored as part of the checkpoint log. We also
need to instrument every store so that we know what the memory state of each thread is during its
execution. Thisisrequired in order to capture the system effects. Logging the output of al the load
instructions will clearly be expensive in terms of the log size. To optimize the log size, we make
use of a simple observation that only the first value of each memory address loaded in a checkpoint
needs to be logged. For example, in the Figure 1, we log Loadl asit is the first memory access to
the location A. However, the following Load2 to the same address is not logged. For the memory
location B, Stor el accessesit for the first time in the checkpoint interval. Since all the store values
can be reproduced during the replay, we do not have to log their values. We aso do not log Load3,
even-though it is the first load access to the memory location B. Thisis because, during replay we
know the value in the location B as we can replay the preceding Stor el to thislocation in the same
checkpointinterval. Notethat all the |oad/store addresses can be recal culated during the re-execution
of the checkpoint, so they do not need to be logged.

In order to determineif aload isafirst load to amemory location, we maintain a cache structure
called UserMemCache per thread. This cache structure contains the values loaded from memory as
seen by the application. The UserMemCache is an efficient data structure as it exploits the temporal
and spatial locality of program accesses. When executing a load to an address Addr, if thereis a
miss in the UserMemCache, it is either the first time aload to Addr is executed, or the cache entry
containing the value for the address Addr was kicked out due to a conflict. In either case, we log the
value of the load.

If there is a hit in UserMemCache but the value in the application’s memory differs from the
value in the UserMemCache structure, then it means that the value was changed by some other
entity other than the user thread. This entity could be another thread sharing the same address or the
operating system. We therefore need to log this new value. Thisis an important difference from our
prior hardware approachin [17]. The prior approach had to restart a checkpoint every time a system
call occurred, because it could not keep a per thread shadow copy of the recently used values, which
is effectively what the UserMemCache is. Unlike the hardware approach, here we do not have to
restart a new checkpoint on encountering a system call or an interrupt.

Whenever aload for the same address is executed, its address and value are looked up in the
structure. If there is a miss, we log the value and insert the load into the cache. If there is a hit, we



Events Logger Action

Checkpoint-1 | Log Registersand PC

Load-1 A Log Valug[A]; Update UserMemCache

Load-2 A Not Logged

Store-1B Update UserMemCache

Load-3B Not Logged

Program Execution

Interrupt . . )
! (Modifies[B]) } Log Modified Registers and PC
Load-4 B L og Value[B]; Update UserMemCache

Store-2 A Update UserMemCache

Load-5 A Not Logged

Checkpoint-2 | Log Registers and PC

Load-6 A Log Value[A]; Update UserMemCache

T

Figure 1. Example illustrating the working of the BugNet software logger.

compare the value in the cache with the actual value in memory. If the values mismatch, we again
log the value because the memory state as maintained in UserMemCache is not up to date with
application’s memory because the application’s memory should have been modified by an external
entity as described above. The UserMemCache will be up to date with application’s memory aslong
as it is modified only by the application through store instructions. To achieve this, we instrument
every store and make sure that we update UserMemCache with the store’s output val ues.

For example, in the Figure 1, when an interrupt occurs, we do not restart a new checkpoint.
In this example, the interrupt modifies the location B. When the program executes Load4 to the
location B, the logger compares the value in the UserMemCache with the value in the program’s
memory. Since the two values mismatch, the logger correctly logsthe current value in the program’s
memory. Thereby, it correctly logs al the modifications done by the system. Note, the value of the
Load5 to the location A is not logged as the value for the location A has already been logged, and
also because it has not been maodified by the interrupt. We can determine the second condition only
because we correctly keep track of the values updated by the application through the stores (in this
example, Stor e2).

The aboveload logging techniquewill be especially effectivefor long checkpointintervals. This
is becausethe greater the number of |oads executed, the higher the probability that amemory location
has already been logged. As a result, the amount of information recorded to replay an instruction
will decrease with longer checkpoint intervals.



4.1.3. Reducing Log Sze with a Hash Table

The UserMemCache is an efficient data structure as it exploits the tempora and spatial locality of
program accesses. However, whenever a new block of memory needs to be brought in, an old block
needs to be evicted. If the evicted block is accessed in the future, its values are redundantly logged.
In order to reduce the log sizes, we use a hash structure called UserMemHash to back up the values
that get evicted from UserMemCache. The UserMemHash is a globa structure shared among all
threads, whereas there is a UserMemCache per thread during logging.

At the beginning of a checkpoint interval, like the UserMemCache, the UserMemHash is also
cleared. When aload misses in the UserMemCache, we look it up in the UserMemHash. If the load
address is found then in the UserMemHash, then we use it to determine if we need to log the load
valueor not. If theload addressis not found in the User MemHash, then we assume the value for that
address location is zero. Thisis valid, because during replay, we initialize all the memory locations
to zeroes as well. If the value in UserMemHash is same as the value in the application’s memory,
then we do not generate alog entry for theload. Otherwise, we generatealog entry. The valuesin the
UserMemHash are used to update the UserMemCache for the cache line corresponding to theload's
address. Every time a cache lineis evicted from UserMemCache, we store it in the UserMemHash
structure. Compared to BugNet hardware support [17], it eliminates those logs that are redundantly
logged due to cache capacity constraints. The pseudo-code in Figure 4.1.3 summarizes the logging
algorithm.

We found that we benefited from using the UserMemCache with the UserMemHash structure
becausefor some programsthelogging overheadis much lower by using a UserMemCache structure.
This is because we only access the UserMemHash when we get a miss in UserMemCache. Part of
the overhead of the UserMemHash comes from the fact that if it growstoo large, the logger can start
having alot of capacity missing. In addition, there is additional overhead for shared memory multi-
threaded programs from having to use a lock when accessing the UserMemHash, whereas accesses
to the per thread UserMemCache requires no locking during logging.

Note, the benefit of the UserMemHash is that it can significantly reduce the log size, but at the
sametimeif it is not managed correctly during logging it can significantly slow down the program’s
execution for the above reasons. Therefore, during logging we monitor the size of this performance
sensitive UserMemHash structure and make sure that the structure is cleared when it exceeds a
critical size to avoid it from adversely impacting the performance of the logger.

4.1.4. Format of Load Value Record

Each log entry in the checkpoint for alogged load contains the effective address of the load instruc-
tion and the result value of the load instruction. The following is the format of alog entry:

(sV-Type, Reduced / Full Stride-Value,
LV-Type, Reduced / Full Load-Value )

Thefirst two fields are used to log the load stride value. Theload stride represents the number of
load operations that should be executed before restoring the next |oad value to memory. Since most
stride values can be represented with fewer than 32 bits, we use only 5 bits to represent it. If that is
not enough, then we use the full 32 bit value to represent it. The bit SV-Type is used to distinguish
the two cases.

The last two fields are used to log the result of the load instruction. Similarly to the stride, most
of the load values can be represented using fewer bits than 32 bits. Hence we use 5 bits to represent
the load value, and use the additional bit LV-Type to distinguish between these two cases as we did
with the strides.



EE SRR R RS S EE S SRR RS RS EEEEE R SRR R EEEEEEEEEEEEEEEESEEEEERESESERS]
Beginning of Checkpoint Interval({

Initialize header with Thread ID, Process 1D,

Program Counter and Register Values;

Clear UserMemCache and UserMemHash;

}

LR SRR R RS SRR S S EEEERE SRR SRR R R RS R R R R R EEREEEEEEEEEEEEEESEEERERESESERSE]
For every LOAD accessing the address Addr{
If (Addr is found in UserMemCache) {
If (Value for Addr in UserMemCache !=
Value for Addr in application’s memory) {
Log <Ld-Stride, Ld-Value> in thread’s load log;
Update UserMemCache with (Addr, Value);

}
}

elsef
Update UserMemCache with (Addr, Value);
If (Miss in UserMemHash OR
(Value for Addr in UserMemHash !=
Value for Addr in application’s memory)

) {
Log <Ld-Stride, Ld-Value> in thread’s load log;
Update UserMemHash with (Addr, Value) ;

}

R R SRR SRR EE SRS SR SRR SR SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEESEEES]

For every STORE accessing the address Addr:

Update UserMemCache with (Addr, Value);
R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R EEREEEE RS

While replacing an Addr in UserMemCache:

Update UserMemHash with values in replaced block;
LR SRR R RS SRR S S EEE R SRR S EREEE RS REEEEEEEREEEEEEEEEEEEEESEEEEEREES SRS

Figure 2. Pseudo-code for the per-thread BugNet L ogger

4.1.5. Logging of System Call and Interrupt Effects

With the approach described above we are able to capture al the memory side effects from system
calls and interrupts. If a system event modifies an aready logged memory value, then when that
valueis loaded again we will see that it differs from the value in UserMemCache (or we will have
amiss), and the load will be logged again. Since we are able to mirror the copy of the application’s
memory value in UserMemCache structure, we do not have to restart checkpoint intervals on en-
countering a system call or an interrupt like in the BugNet hardware scheme [17]. But at the same
time our mechanism aso ensures that our tool is easily portable across different operating systems
as it captures the system effects transparently unlike existing deterministic replay debuggers that
require redo-logs.

In addition to memory side effects, system calls and interrupts can also modify registers and we
need a mechanism to log these changes. To address this, every single time a system call or interrupt
occurswetemporarily record all of the register values and the current program counter for the thread.



Upon returning from the system call or interrupt, we then check to seeif al of the registers are the
same. If any of them are different we log them in a per thread Register Update Log.

Thereis aregister update log per thread. Each entry consists of (a) a memory operation count,
(b) register number, and (c) register value. The memory operation count refers to the last memory
operation executed in the thread before the system call occurred. Therefore, during replay, when the
memory operation count is reached, we will restore the log entries. When this occurs we restore the
registers which were modified, along with the PC if it was one of the logged registers. This will
effectively skip the execution of the system call, and will deterministically replay execution the same
way it occurred during logging.

4.1.6. Logging of Code To Support Self-Modifying Code

In addition to logging the output of the load values, it is aso desirable to log information about
the code being executed. The advantage of logging the code is that it enables replaying of self-
modifying code, which was not supported in our hardware approach [17]. Our logging approach
alows us to start executing the program from the beginning of any checkpoint. Therefore, if any
code was dynamically generated before that, in a different checkpoint interval, this code would not
be available for replay if only the original binaries were used during replay. For this reason in this
paper, we also log the code which is executed during a checkpoint interval.

To log the executed code, we use a structure identical to the UserMemCache (backed by User-
MemHash), but instead of keeping track of the load values, it keeps track of the code executed,
similar to an instruction cache. It therefore allows us to keep track of the code as it is seen by the
application. Before executing a branch target, we look up the cache structure. If there is a miss, the
branch target is logged along with a branch stride value. The branch stride represents the number of
branches executed since the last logged code block, similar to the load stride. If there is a cache hit
and the contents of the basic blocks mismatch, this means that the code was modified since the last
time it was executed and therefore needs to be logged again.

4.1.7. Special Cases

On some processors there are additiona instructions that need to be logged, in addition to load
values, in order to provide deterministic re-execution. For example, on x86 we also log the output of
the Read Time Stamp Counter (RTDSC) instruction, which reads the processor’ stime stamp counter
value into a register. Then during replay, instead of executing this instruction we just set the register
to the logged value.

4.2. Replayer Basics

The BugNet logger is used to collect the checkpoint logs for a program and input that has a bug. To
provide adebugging tool for users, we also built adeterministic replay debugger tool using Pin[14].

To start debugging an application, the user starts up their program’s execution under Pin. For
that we still need the original program main image and the dynamic library loader so that pin can
start its execution. We a so use Pin to reservethe region of memory that was used by the application’s
dynamic data during logging. We then provide the ability for a user to start replaying the program’s
execution from any checkpoint. To start execution at acheckpoint, the replayer first initializesthe PC
and register contents found in the header of the checkpoint log. It then reads the first entry from the
code log and initializes a branch count. When the branch count matches the branch stride specified
in thelog, the code from thelog is copied into memory. The branch count is reset and starts counting
again from zero.



At the same time the replayer also reads the first entry from the load log and initializes a load
count. When theload count matcheswith the stride value read from thel og, the load valueis restored
to memory, the load count is reset and start counting again from zero. The replayer also maintains a
memory count that is used to restore the register state from the Register update log. By repeating the
process described, the replayer reads through the checkpoint logs to replay the program.

To start the execution of a checkpoint we use the ExecuteAt API provided by Pin, which allows
us to start execution at a specific PC given the current register state. This is useful to restore the
checkpoint headers as well as the register updates. The user can then step through the program’s
re-execution examining the source lines touched and the variables used. If the user is single stepping
through the program’ s re-execution, when they cometo the end of acheckpoint, wejust start execut-
ing the next checkpoint. Thiswill occur when the user comes to an end of a checkpoint interval. In
addition, from a users perspective during debugging, the user will just step (skip) over the execution
of the system calls and interrupts.

Note that each checkpoint is independent of other checkpoints. Therefore, a user can arbitrarily
pick any checkpoint and instantly start the program’s re-execution corresponding to that checkpoint.
In addition to providing the ability to replay from the beginning of a checkpoint, it is also desirable
to step back N instructions at any instant of time. We provide this functionality similarly to how
prior work providesthe ahility to step back N instructions[4].

To summarize, atypical scenario for using BugNet to track down and solve a bug isto first use
the BugNet logger to record onto disk the last few percent of the program’s execution leading up to
the crash or the deviation in program behavior (e.g., wrong answer). The user may then choose to
run the program under the BugNet replayer starting at the end of the program’s execution to examine
the current state when the program ended its execution under the logger. To get to this point the
BugNet replayer will quickly deterministically replay the last N checkpoints. The user can then see
where in the code and the state of memory and stack that was touched during the last few percent
of execution. The user can then work their way backward to debug the problem setting backward
watchpointsor stepping back N instructions[4], aswell as stepping and setting forward watchpoints.

4.3. The Limits of BugNet

We now finish our discussion with the limitations of our BugNet approach.

The focus of BugNet is to assist debugging bugs that do not have complex interactions with
operating system routines. Therefore, our approach would not be useful to debug problemsin drivers
or the operating system, or complex interactions between these and user code.

Even though BugNet cannot replay the system code, it still provides deterministic replay of
program execution before and after servicing interrupts and context switches. Hence, the user can
examine the values of the parameters passed to the interrupts, and the values loaded and consumed
by the user code after servicing the interrupt. This, along with the replay trace, can allow the user
to debug some bugs that have interrupt and operating system interactions. Also, we replay al of the
operating system shared library code that executes in user space, and the user code aong with the
OSllibrary code consist of asignificant portion of the program’s execution. Thisis sufficient to track
down application-level bugs.

5. Support for Multi-threaded programs

The data and code logs collected using our user cache optimization are useful for deterministically
replaying any single threaded application. In this section, we describe support for deterministically
replaying multi-threaded applications.



Our BugNet checkpoint scheme has an important property: The code and data log for a check-
point of athread contains sufficient information to replay that thread independent of other threads.
The data logs were collected using the UserMemCache and UserMemHash data structures, which
ensure that we have the right values for all the load instructions for each thread, even in the pres-
ence of shared memory updates by remote threads. This is because if a remote thread modifies a
memory location, then that location’s value is going to be inconsistent with the value in UserMem-
Cache/UserMemHash and hence we would log the value updated by the remote thread in the local
thread's datalog.

Thus, for a multi-threaded program we can still replay each individual thread. However, this
ability aloneisinsufficient to track down race conditions because the programmer needs to know the
ordering of the memory operations executed across al the threads. For example, to have the ability
to single step through the execution of the multi-threaded program, we need to know the ordering of
the memory operations executed across al the threads.

5.1. Logging Multithreaded Shared Memory Dependencies

There are two sub-problems that we need to solve in order to record shared memory dependencies.
Thefirst problemis related to detecting these shared memory dependencies during logging. Thisis
especialy non-trivial in a software logging tool. The second problem is related to efficiently logging
thisinformation in order to reduce the log size.

Previous hardware proposals [29,17] observed that shared memory dependencies can be de-
tected by just observing the coherence messages in a multi-processor system. They used the Net-
zer transitive reduction algorithm [18] to reduce the log size. In our recent work [16], we observed
that we do not have to log all the shared memory dependencies but instead we have to log only the
RAW/(Read-After-Write) shared memory dependencies. Other forms of dependencies (WAW, WAR)
can be inferred using an offline algorithm [16]. Hence, in our software tool, we choose to log only
the RAW dependencies, and determine shared WAW and WAR misses offline. Do to space limita-
tions, we only describe how to detect RAW dependenciesin software. More details on how to infer
WAW and WAR dependencies offline can be found in our other published work [16].

We employ the following algorithm to detect the RAW shared memory dependencies. Inthe pre-
vious section, we described the use of our two data structures, UserM emCache and UserMemHash.
The purpose of these two data structuresisto keep track of the values seen by the user thread and to
detect and log whenever the user data is modified by the system call or the interrupt. We can adapt
these structures for multi-threaded programs by having a per-thread UserMemCache data structure
and making the UserMemHash structure globally accessible across all the threads. This configura-
tion is similar to the memory hierarchy in a multi-processor system [10]. UserMemCacheis similar
to a private cache in a processor and UserMemHash is similar to the main memory. Just like in a
multi-processor system, we need to keep the UserMemCache of various threads coherent. We simu-
late in the logger the M SI (M odified-Shared-1nvalid) coherency protocol [10] to keep the UserMem-
Cache structures coherent. The UserMemHash structure keeps track of the read or write ownership
for a block of memory (similar to a directory structure in a multi-processor system). In addition,
the UserMemHash structure will have the information about the thread that last wrote to the block
(information about the last writer). At any time, there can be multiple threads with read ownership
but there can be only one thread with write ownership.

If aload is executed by athread, and if the private UserMemCache of the thread has the read or
the write ownership, then we do not have to record any RAW shared memory dependency. However,
if the load address is not found in the private UserMemCache, then UserMemHash needs to be



consulted to find the last writer to the block. If the last writer is different from the thread that executed
the load, then we detect a RAW dependency and log it. The log is optimized by using a transitive
optimization [16].

One of theissues in detecting shared memory dependenciesin softwareisthe performanceissue
due to lock contention to access the shared resource (UserMemHash). This is not a serious issue
in our implementation because the UserMemHash structure is accessed only when we encounter a
miss in a UserMemCache. There is only a small probability for two threads to encounter amissin
the UserMemCache at the same time.

6. Resultsand Analysis

In this section we analyze how many instructions need to be logged to capture the root cause of the
bug, and the time and space overhead of our software BugNet logger implementation.

6.1. Replay Window Length

The premise of deterministic replay debugging support is that in order to fix a bug, one needs to
examine only awindow of program execution that immediately precedes the crash. However, it is
not clear what the size of this window has to be in order to fix the mgjority of the bugs. We now
quantify the replay window size required for fixing bugs, by matching the execution histories of
correct and incorrect program executions corresponding to many open source bugs.

We define the replay window length for abug to be the number of dynamicinstructions executed
between the point in the buggy program’s execution where its output starts to deviate from those of
the correct program’s execution until the point where the buggy program crashes. In our previous
work [17], we provided avery rough estimate of alower bound for the replay window, which turned
out to be too low of abound to have much meaning. Therefore, one of the goals for this work was to
provide a precise measurement of this replay window. One use of this measurement isthat it helpsus
to understand the log space requirements of the BugNet logger and helps us to anayze the efficacy
of deterministic replay debugging technique.

In this paper, we would like to present a precise methodology to quantify the replay window
length for a bug. In order to determine the replay window length for a bug, we take two binaries
corresponding to two versions of the same program. One binary version corresponds to the source
code that contains the bug and another version corresponds to the same source code with the bug
fixed. We execute these two versions with the same input, which exposes the bug in the buggy
program’s execution.

Figure 3 shows the buggy behavior of the gzip program with respect to the correct program
execution. The x-axis represents the buggy program’s execution time. The y-axis represents the
magnitude of the difference in the store output values between the correct program’s output and
buggy program’s output, averaged over intervals of 10,000 instructions.

We found that the two executions will follow similar execution path up until a point. After a
point in the buggy program’s execution, which is really the starting point of the source of the bug,
the buggy program’s execution deviates from the execution of the correct program. We define the
source of the bug to be this deviation point in the buggy program’s execution. In order to fix a bug,
a developer needs to examine what happened at that deviation point and potentially execution of
the program after that point. Therefore, we define our replay window length to be the number of
dynamic instructions executed in the buggy program between this deviation point and the end of
execution or the point of crash.
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Figure 3. Replay Window Length showing buggy program execution behavior relative to correct execution for gzip

In order to find the deviation point, we collected memory traces from the execution of the buggy
program as well as correct program’s execution. The memory trace is a trace of store instruction’s
effective address and the value being stored. We then do alongest subsequence matching between
these two traces to determine where they start to deviate focusing on the store values. Our algorithm
issimilar to the one used by the popular vimdi £ £ utility that is used to compare the textual differ-
ences between two files. Once we have matched between the two traces as much as possible, we can
then determine the deviation point of the buggy program’s execution as follows. We compute the
number of store output values that differ in the two executions for every interval of 10,000 instruc-
tions in the buggy program’s execution. This data if plotted will look like the graph shown in Fig-
ure 3. We can find the point of deviation by finding thefirst point of inflection in the graph wherethe
number of differencesin store values exceed 30. The number of instructions executed after deviation
point till the end of execution of the buggy program will be the replay window length.

Note, our approach for calculating the replay window length is not meant at all to provide a
means to debug the program. It is only used to quantify a bound on how much execution may need
to be logged. Thisis important in order to look at the log sizes that will be needed to capture that
much execution for our approach.

Figure 4 presents the replay window length required to analyze the bugs in the Siemens bench-
mark suite[11]. The y-axis shows the number of instructions from the point of deviation until either
the program crashed or it terminated with a wrong result. The x-axis shows the results for each of
the 100s of bugs examined for this benchmark suite. The result shows that the cause of the mgjority
of bugs (inputs) occurred within the last 1 million instructions of execution. These replay window
lengths are for bugs that resulted in the wrong answer when the program finished execution and
those that terminated with a crash.

We also studied the bugs found in some popul ar open source programs. The bugs that we studied
arelisted in Table 1. The second column in the table gives the detail s about the location in the source
code of the applicationsthat needed to be changed in order to fix the bug. The third column describes
the nature of the bug. The set of bugslisted in the Table 1 covers alarge variety of bugs. It includes
memory corruption bugs like dangling pointer accesses (ghostscript), buffer overflow (gzip)
and null pointer dereferences (gnuplot).
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Figure 4. Replay window length required to analyze the bugsin Siemen benchmark suite

Application || Bug Location Bug Description

be 1.06 storagecline 176 L\)/I blJ 2?: of bounds variable corrupts heap
. . . 1024 byte Tong input filename overflows

gzipl.24 gzip.c line 1009 global variable

1024 byte Tong input filename corrupts

stack return address
2048 byte Tong input filename corrupts

stack return address
Incorrect Toop bounds Teads to heap ob-

ncompress- 4.2.4 || compress42.c line 886

polymorph-0.4.0 || polymorph.c lines 193, 200

tar 1.13.25 prepargs.c line 92 .
ject overflow
hostscript-8.12 ttinterp.c line 5108, ttobjs.c | A dangling pointer results in a memory
g prs. line 279 corruption

A butfer overflow corrupts the stack re-

gnuplot-3.7.1 pslatex.trm line 189 b

tidy 34132 istack.c at line 31 Null pointer dereference

xv-3.10a xvbrowse.c Tine 956, xvdir.c | ATong file nameresultsin abuffer over-
line 1200 flow

napster-1.5.2 nap.c line 1391 Dangling pointer corrupts memory

when resizing terminal

Table 1. Open source programs with known bugs. Thefirst 5 programs are from the AccMon study [31], and the rest of the
programs are from sourceforge.net

Replay window lengths for these open source programs are again determined in the same way
as we described earlier. Figure 5 presents the replay window length required to analyze these real
bugs. We can note that in the common case the length of the replay window is less than 10 million
instructions. The worst case is ghostscript for which the replay window length is over 100
million instructions.

6.2. Dynamic Sicing and Touched Memory
Dynamic dlicing [26,30] is a powerful technique to ease the job of debugging. We implemented

dynamic glicing into our replayer, so that the programmer can choose to analyze the execution of only
those instructions that produce the value for the instruction that resulted in a crash or an incorrect
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output. The second bar Figure 5 shows the number of dynamic instructions that are on just the
dynamic slice. Dynamic dlicing results in about one-third reduction in the number of instructions
that are required to be examined within the replay window to potentially fix the bug.

We also study the number of memory locations touched by the programs within the replay
window. Results for this study are shown in Figure 7. This shows the number of unique memory
bytes touched in the replay windows for both the full replay window and just the dynamic slice.
Using the dynamic slice can reduce the amount of memory locations that might need to be examined
by about a half.



6.3. BugNet Log Sze and Performance

In order to analyze the space and time overhead of our software BugNet logger we usethe SPEC [24]
benchmark suite, which is widely used for performance evaluation. Figure 8 shows the checkpoint
log size requirements of the software BugNet logger and the Figure 9 shows the performance over-
head involved in collecting these logs. These results are for a checkpoint interval of size 100 mil-
lion instructions - that is, the data structures UserMemCache and UserMemHash are cleared after
executing a checkpoint interval comprising of 100 million instructions.

Figure 8 shows that on average we require less than 10MB of BugNet checkpoint logs to have
the ability to replay 100 million instructions for SPEC programs. We used a 32 KB UserMemCache
structure. Structures larger than this adversely impacted the overhead of the logger. In addition, we
used a UserM emHash structure, which hel ps reduce the log sizes, but we disabled the UserMemHash
structure whenever we find that the performance of the logger overhead was too high.

We now show the amount of log size (without compression) that needs to be collected in order
to analyze the open source bugsin Figure 6. For the largest replay window needed we required about
10 MB of log size, which is enough to capture and replay 100 million instructions in the case of
ghostscript.

Figure 9 shows the execution time overhead of the software BugNet logger normalized to the
execution time of the program when it is executed natively on the system. The program vortex is
our worst case that incurs about 158x slowdown, but on average the performance overhead of the
logger is 86x.

Figure 10 shows the execution time overhead for multi-threaded applications selected from the
SPLASH benchmark suite [28]. These programs run for only about 10 seconds natively. Due to
the short execution time, the baseline instrumentation overhead itself (without any BugNet logging
support) dominates for these applications as shown in Figure 10. On average, we experience about
250x slowdown, of which about 150x is due to the baseline instrumentation overhead.

7. Conclusion

Program devel opers can benefit greatly from a debugger that would allow them to deterministically
reproduce the execution of programs as many times as required. In this paper we presented our soft-
ware BugNet logger and debugger that allows programmers to deterministically replay application
code and shared libraries in the presence of interrupts, system calls and synchronization operations.

A key mechanismthat we used i s the | oad-val ue based checkpoint scheme. By keeping a shadow
copy (the UserMemCache) of athread’s already logged execution state, we can automatically detect
all the system and shared memory side effects. Thisallows usto capture all the system effectsinalog
without the knowledge of the underlying operating system. The log can be used to deterministically
replay athread’'s execution in any environment, which solves the issues involved with capturing and
reproducing bugs.
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