
Reducing the Overhead of Dynamic Compilation

Chandra Krintzy David Grovez Derek Lieberz Vivek Sarkarz Brad Caldery

yDepartment of Computer Science and Engineering, University of California, San Diego
zIBM T. J. Watson Research Center

UCSD Technical Report
CSE2000-0648, March 2000

Abstract

The execution model for mobile, dynamically-linked, object–oriented programs has evolved from fast
interpretation to a mix of interpreted and dynamically compiled execution. The primary motivation for
dynamic compilation is that compiled code executes significantly faster than interpreted code. However,
dynamic compilation, which is performed while the application is running, introduces execution delay. In
this paper we present two dynamic compilation techniques that enable high performance execution while
reducing the effect of this compilation overhead. These techniques can be classified as: 1) decreasing
the amount of compilation performed (Lazy Compilation), and 2) overlapping compilation with execution
(Background Compilation).

We first evaluate the effectiveness of lazy compilation. In lazy compilation, individual methods are com-
piled on demand upon their first invocation. This is in contrast toEager Compilation, in which all methods
in a class are compiled when a new class is loaded. Our experimental results (obtained by executing the
SpecJVM Java programs on the Jalapeño JVM) show that, compared to eager compilation, lazy compilation
results in57% fewer methods being compiled and reductions in total time (compilation plus execution time)
of 14% to26%.

Next, we present profile-driven, background compilation, a technique that augments lazy compilation
by using idle cycles in multiprocessor systems to overlap compilation with application execution. Profile
information is used to prioritize methods as candidates for background compilation. Our results show that
background compilation can deliver significant reductions in total time (26% to 79%), compared to eager
compilation.

1 Introduction

The execution model for mobile, dynamically-linked, object–oriented programs has evolved from fast inter-
pretation to a mix of interpreted and dynamically compiled execution [21, 15, 26]. The primary motivation
for dynamic compilation is significantly faster execution time of compiled code over interpreted code. Many
implementations of object–oriented languages (such as Java [12], Smalltalk [11], and Self [27]) use dy-
namic compilation to improve interpreted execution time. Dynamic compilation also offers the potential for
further performance improvements over static compilation since runtime information can be exploited for

1

optimization and specialization. Several dynamic, optimizing compiler systems have been built in industry
and academia [2, 15, 24, 16, 17, 13, 6, 20].

Dynamic compilation is performed while the application is running and, therefore, introduces com-
pilation overhead in the form of intermittent execution delay. The primary challenge in using dynamic
compilation is to enable high performance execution with minimal compilation overhead. Unfortunately, a
common practice thus far in the evaluation of dynamic compilers for Java, has been to omit measurements
of compilation overhead and to report only execution time [26, 9, 24, 8]. Hence, it is difficult for users to
evaluate the tradeoff between compilation overhead and execution speedup.

In this paper we present two dynamic compilation techniques that enable high performance execution
while reducing the effect of compilation overhead. These techniques can be classified as (1) decreasing the
amount of compilation performed (Lazy Compilation); and (2) overlapping compilation with useful work
(Background Compilation).

We first examine the benefits of lazy compilation, in which individual methods are compiled on demand
upon first invocation. This is in contrast to what we termEager Compilation, in which all methods in a
class are compiled when a new class file is loaded. Most Just-In-Time (JIT) compilers for Java1 perform
lazy compilation [24, 16, 17, 26]. We first evaluate the effectiveness of lazy compilation by performing
a quantitative comparison with eager compilation. To the best of our knowledge, this is the first study to
provide such an evaluation. We detail our experiences with lazy compilation and describe its implementa-
tion in the Jalape˜no JVM, as well as its implications for compiler optimizations (some of which may have
been overlooked in prior work). Our experimental results obtained for the SpecJVM Java programs show
that, compared to eager compilation, lazy compilation results in57% fewer methods being compiled and
reductions intotal time(compilation plus execution time) of14% to 26%.

We then present profile-driven background compilation, a technique that augments lazy compilation
by using idle cycles in multiprocessor systems to overlap compilation with application execution. Profile
information is used to prioritize methods as candidates for background compilation. Our background com-
pilation technique is designed for use in symmetric multiprocessor (SMP) systems in which one or more
idle processors might be available to perform dynamic compilation concurrently with application threads.
We believe that such systems will become more prevalent in the future, especially with the availability of
systems built using single-chip SMPs. Our results using Jalape˜no, show that background compilation can
deliver significant reductions in total time (26% to 79%), compared to eager compilation.

The infrastructure used to perform our measurements of compilation overhead is Jalape˜no, a new JVM
(Java Virtual Machine) built at the IBM T. J. Watson Research Center. Jalape˜no [2] is a multiple–compiler,
compile–only JVM (no interpretor is used). Therefore, it is important to consider compilation overhead in
the overall performance of the applications executed. Prior to the work reported in this paper, the default
compilation mode in Jalape˜no was eager compilation. After the results reported in this paper were obtained,
the default compilation mode for Jalape˜no was changed to lazy compilation.

The two main contributions of this paper can be summarized as follows:

1. An evaluation of the effectiveness of lazy compilation in reducing the overhead of dynamic compila-
tion, compared to eager compilation, including a study of its impact on execution time.

2. Profile-driven background compilation, a new technique for reducing dynamic compilation overhead
by overlapping compilation with application execution. Background compilation delivers the exe-

1The implementation results described in this paper are for Java, but the techniques are relevant to any dynamic compilation
environment.

2

cution speed of optimized code while incurring very little overhead (similar to that of a fast, non-
optimizing compiler) by exploiting idle cycles.

In the following section we provide an overview of the Jalape˜no JVM, the infrastructure we use for this
research. We also describe the general methodology we used to collect the experimental results in the paper.
In Section 3, we present the implementation of lazy compilation in Jalape˜no. The methodology specific to
lazy compilation and the performance improvements we achieve using it are detailed in Sections?? and 3.3.
We then present an extension to the lazy compilation approach, background compilation, in Section 4.1, and
describe the methodology specific to it as well as the performance results achieved using it in Sections??
and 4.2. We then discuss related (Section 5) and future work (Section 6) and conclude in Section 7.

2 Methodology

The infrastructure in which we evaluate our compilation approaches is Jalape˜no, a Java virtual machine
(JVM) being developed at the IBM T. J. Watson Research Center [1, 2]. We first describe this infrastructure
then detail our general experimental methodology.

2.1 Jalapeño

Jalape˜no is written in Java and designed to address the special requirements of SMP servers: performance
and scalability. Extensive runtime services such as concurrent garbage collectors, thread management, dy-
namic compilation, synchronization, and exception handling are provided by Jalape˜no.

Jalape˜no uses a compile–only execution strategy, i.e., there is no interpretation of Java programs. Cur-
rently there are two fully–functional compilers in Jalape˜no, a fastbaselinecompiler and theoptimizing
compiler. The baseline compiler provides a near-direct translation of Java class files thereby compiling very
quickly and producing code with execution speeds similar to that of interpreted code. The second compiler
is highly optimizing and builds upon extensive compiler technology to perform various levels of optimiza-
tion [8]. The compilation time using the optimizing compiler is much slower than the baseline (50 times
on average in the programs studied), but produces code that executes 3–4 times faster. To warrant its use,
compilation overhead must be recovered by the overall performance of the programs. All results were gen-
erated using a December, 1999 build of the Jalape˜no infrastructure. We report results for both the baseline
and optimizing compiler. The optimization levels we use in the latter include many simple transformations,
inlining, scalar replacement, static single assignment optimizations, global value numbering, and null check
elimination.

As shown in Figure 1, a Jalape˜no compiler can be invoked in four ways. First, when an unresolved
reference made by the executing code causes a new class to be loaded, the class loader invokes a compiler
to compile the class initializer (if one exists). In eager compilation, the class loader also invokes a com-
piler to compile all of the class method’s as part of the class loading process. In lazy compilation, instead
of invoking a compiler, the class loader simply initializes all methods of the newly loaded class to alazy
compilation stub. When a stub is executed, a compiler is invoked to compile the method (denoted by the
arrow from the executing code to the compiler). The implementation of lazy compilation in Jalape˜no is a
contribution of this paper, and is discussed in Section 3. A third compilation path involves a background
compilation thread (denoted OCT in Figure 1) that uses off-line profile data to schedule pre-emptive opti-
mizing compilations of performance-critical methods. The class loader notifies the OCT of class loading
events, but the actions taken by the OCT are otherwise decoupled from the application’s execution (they

3

Access

ClassLoader

Dynamic
Linker

Compilers
[Base,Opt,...]

Machine
Code

Stub Invoked
Lazy CompilationCode

Executing
Data

Off-line Profile

Background

Unresolved

OCT

New Class Loaded

Background

Compilation

Resolution

Events

Class Load Request

(Re)Compilation Plan

Eager

Compilation

Adaptive
Optimization

System

Figure 1: Compilation Scenarios in the Jalape˜no JVM

occur in the background). Background compilation is a contribution of this paper, and is discussed in Sec-
tion 4.1. Another potential compilation path is shown by the dashed lines in Figure 1). This represents an
adaptive optimization system, which uses on-line profile data to selectively recompile performance critical
methods using an optimizing compiler. The adaptive optimization system is currently being developed by
Arnold et. al. [4]. The main contribution of that work is their development of low-impact on-line profil-
ing techniques to guide which methods to optimize, and a controller that dynamically selects routines for
optimization. In comparison, our approach in this paper uses off-line profiles to choose which methods to
optimize for background compilation. In addition, we evaluate and compare background compilation to our
lazy compilation implementation.

Jalape˜no is invoked using a boot image [1]. A subset of the runtime and compiler classes are fully opti-
mized prior to Jalape˜no startup (and placed into the boot image); these class files are not dynamically loaded
during execution. Including a class in the boot image, requires that the class file does not change between
boot-image creation and Jalape˜no startup. This is a reasonable assumption for Jalape˜no core classes. This
idea can be extended to also include application classes in the boot image to avoid runtime compilation of
such classes, provided the class does not change prior to runtime. This topic is further described in [22]. In-
frequently used, specialized, and supportive (library), Jalape˜no class files are excluded from the boot image
to reduce the size of the JVM memory footprint and to take advantage of dynamic class file loading. When a
Jalape˜no compiler encounters an unresolved reference, i.e., an access to a field or method from an unloaded
class file, it emits code that when executed invokes Jalape˜no runtime services to dynamically load the class
file. This process consists of loading, resolution, compilation, and initialization of the class. If, during
execution, Jalape˜no requires additional Jalape˜no system or compiler classes not found in the boot image,
then they are dynamically loaded: there is no differentiation in this context between Jalape˜no classes and
application classes once execution begins. To ensure that our results are repeatable in other infrastructures,
we isolate the impact of our approaches to just the benchmark applications by placing all of the Jalape˜no
class files required for execution into the boot image.

2.2 Experimental Methodology

We present results gathered by repeatedly executing applications on a dedicated, 4–processor (each 166Mhz)
PowerPC-based machine running AIX v4.3. The applications we examine are the SpecJVM programs [23].
We report numbers using inputs of size 10 and size 100. According to Spec, input 100 is full execution of

4

Optimized Baseline–Compiled
Used Time (Secs) Time (Secs)

Total Total Class Count (Used Classes) (Used Classes)
Size Count small large small large small large

Benchmark in KB Classes ET CT ET CT ET CT ET CT
Compress 17 12 11 12 7.4 8.2 84.0 8.1 47.0 0.1 525.1 0.1
DB 9 3 3 3 1.9 8.2 102.7 8.0 2.9 0.3 162.6 0.3
Jack 129 57 46 46 9.9 16.0 84.3 16.0 10.9 0.4 93.2 0.4
Javac 548 176 132 139 2.0 38.6 66.3 38.5 3.0 0.6 103.5 0.6
Jess 387 151 133 134 2.5 27.2 45.2 27.6 6.4 0.3 109.8 0.3
Mpeg 117 55 42 37 7.3 15.9 71.3 15.9 47.6 0.4 452.1 0.4
Average 201 78 61 62 5.2 19.0 75.6 19.0 19.6 0.4 241.1 0.4

Table 1:Benchmark characteristics. The first column of data provides benchmark sizes in kilobytes. The
second column is the total number of classes in each application. The third and fourth columns show the
dynamic class file counts for each input (classes used during execution). The middle four columns contain
the execution (ET) and compile (CT) times when the Jalape˜no optimizing compiler is used. The last four
columns are the execution and compile times when the Jalape˜no baseline compiler is used. Times for both
input sizes are given. The small input is the SpecJVM 10% input and the large is the 100% input.

an example application and input 10 is execution that is10% of the full execution. Spec also includes a size
1 (1% of full execution time) which we exclude here since size 10 and 100 better represent execution times
of existing Java programs. Throughout this study we refer to size 10 as the small input and size 100 as the
large.

Table 1, shows various characteristics of the benchmarks used in this study. Total size and static class
count are given as well as dynamic counts (classes used) of class files for each input (small and large). In
addition, compilation time (CT) and execution time (ET), in seconds, using the Jalape˜no optimizing and the
fast baseline compilers are shown for each input. The compilation time includes the time to compile only
the class files that were used. Despite repeated execution, some noise occurs in the collected results. For
example, the DB data shows that the compile time for the small input is0:2 seconds slower than that for the
large, even though both inputs compile the same classes. The variance is due to system side–effects, e.g.,
files system service interruptions.

3 Lazy Compilation

Dynamic class loading in Java loads class files as they are required by the execution (on demand). One
approach to dynamic compilation isEager Compilation: compile the entire class file as soon as it is loaded.
Eager compilation enables analysis and optimization across methods within the same class. Interprocedural
optimization can exploit spatial locality within the Java class file to improve performance. In addition, eager
compilation reduces the overhead caused by switching between execution and compilation and it simplifies
verification. The time required by class file loading, however, increases with eager compilation since the
entire class files must be compiled before execution continues. This delay is experienced the first time each
class is referenced. In some cases, it may take seconds to compile a class if high optimization levels are used,
affecting a user’s perception of the application performance. In addition, many methods may be compiled

5

and optimized but never invoked, leading to unnecessary compilation time and code bloat.
We first examineLazy Compilation. Lazy (method–level) compilation, is commonly used in Dynamic

Java compilers [19, 26, 15, 17]. We compare this compilation alternative with that of eager compilation and
describe the implementation of lazy compilation in Jalape˜no, which prior to this work had only used eager
compilation.

3.1 Implementation

As part of loading a class file in Jalape˜no, entries for each method declared by the class are created in
the class’ virtual function table and/or a static method table. These entries are the code addresses that
should be jumped to when one of the class’s methods is invoked. In eager compilation, these addresses are
simply the first instruction of the machine code produced by compiling each method. To implement lazy
compilation, we instead initialize all virtual function table and static method table entries for the class to
refer to a single, globally shared stub. When invoked, the stub will identify the method the caller is actually
trying to invoke, initiate compilation of the target method (if necessary)2 , update the table through which
the stub was invoked to refer to the real compiled method, and finally, resume execution by invoking the
target method. Our implementation of lazy compilation is somewhat similar to the backpatching done by
the Jalape˜no baseline compiler to implement dynamic linking [3] and shares some of the same low-level
implementation mechanisms. After the stub method execution completes, all future invocations of the same
class and method pair will jump directly to the actual, compiled method.

3.2 Results

To gather our results using this lazy approach, we time the compilation using internal Jalape˜no performance
timers. Whenever a compiler is invoked the timer is started; the timer is stopped once compilation com-
pletes. To measure the execution time of the program, we use the time reported by a wrapper program
(SpecApplication.class) distributed with the Spec JVM98 programs [23]. Programs are executed repeatedly
in succession, and timings of the execution are made separately.

To analyze the effectiveness of lazy compilation we first compare the total number of methods com-
piled with and without lazy compilation. Figure 2 depicts the percent reduction in the number of methods
compiled using the large input. The numbers are very similar for the small input since the total number of
methods used is similar in both inputs. Above each bar is the number of methods compiled lazily (left of
slash) and eagerly (right of slash). On average, lazy compilation compiles57% fewer methods than eager
compilation.

To understand the impact of lazy compilation in terms of reduction in compilation overhead, we mea-
sured compilation time in Jalape˜no with and without lazy compilation. Figure 3 shows the percent reduction
in compilation time due to lazy compilation in relationship to eager compilation for both the optimizing
(left graph) and baseline (right graph) compiler for the large input. The data shows that lazy compilation
substantially reduces compilation time for either compiler. On average, for the optimizing compiler,29% of
the compilation overhead is eliminated. Using the baseline compiler, on average50%, is eliminated.

Table 2 provides the raw execution and compilation times with and without lazy compilation using the
optimizing compiler for both inputs. The data in this table includes compilation times used in Figure 3 as
well as execution times. Data for the baseline compiler is not shown because compilation overhead is a very

2Because we lazily update virtual function tables on a per-class basis, it is possible that the target method has already been
compiled but that some virtual function tables have not yet been updated to remove the stub method.

6

Compress DB Jack Javac Jess Mpeg Average
0

20

40

60

80

100

Pe
rc

en
t R

ed
uc

tio
n

in
 N

um
be

r
of

 M
et

ho
ds

 C
om

pi
le

d Method Count Reduction
Optimizing compiler / Large Input

(132/279)(127/268)
(267/525)

(806/1266)
(521/859)

(266/501)
(353/616)

Figure 2:Percent reduction in the number of methods required for eager compilation using lazy com-
pilation. We only include data for the large input since the number of used methods is similar across
inputs for the Spec JVM98 benchmarks. In addition these numbers are typical regardless of which compiler
(optimizing or baseline) is used.

Compress DB Jack Javac Jess Mpeg Average
0

20

40

60

80

100

P
er

ce
nt

 R
ed

uc
ti

on
 in

 E
ag

er
 C

om
pi

le
 T

im
e Compile Time Reduction

Optimizing compiler / Large Input

33
39

26

16

45

27 29

Compress DB Jack Javac Jess Mpeg Average
0

20

40

60

80

100

P
er

ce
nt

 R
ed

uc
ti

on
 in

 E
ag

er
 C

om
pi

le
 T

im
e Compile Time Reduction

Baseline compiler / Large Input

10

70

45

33
27

40

50

Figure 3:Reduction in compilation time due to lazy compilation. The left graph shows the reduction in
compilation time over eager compilation for the optimizing compiler and the right graph shows the reduction
for the baseline compiler. Since the results are similar for the small and large inputs, we only report data for
the large input here.

7

Small (in seconds) Large (in seconds)
Eager Lazy Ideal Eager Lazy Ideal

Benchmark ET CT ET CT ET ET CT ET CT ET
Compress 7.4 8.2 5.3 5.4 5.3 84.0 8.1 58.3 5.4 58.3
DB 1.9 8.2 1.9 5.0 1.7 102.7 8.0 98.8 4.9 98.8
Jack 9.9 16.0 9.4 11.6 9.1 84.3 16.0 80.1 11.8 77.6
Javac 2.0 38.6 2.0 31.2 1.9 66.3 38.5 68.1 32.3 62.6
Jess 2.5 27.2 1.8 14.7 1.8 45.2 27.6 38.4 15.1 37.9
Mpeg 7.3 15.9 6.7 11.7 5.4 71.3 15.9 61.7 11.6 51.3
Average 5.2 19.0 4.5 13.3 4.2 75.6 19.0 67.6 13.5 64.4

Table 2:Raw data: Execution (ET) and compile (CT) times in seconds with and without lazy compi-
lation using the optimizing compiler. The sixth and eleventh columns contains the benchmark execution
time when the application is batch compiled off-line. Batch compilation (Ideal) eliminates dynamic linking
code from the compiled application and enables more effective inlining. Columns 2 through 6 are execution
and compile times for the small input and columns 7 through 11 are for the large input. For each input, times
for both the eager and lazy approaches are given.

small percentage of total execution time and thus, the50% reduction in compilation time only results in a
1% reduction in total (execution plus compilation) time. Columns 2 through 6 are for the small input and
7 through 11 are for the large. The sixth and eleventh columns, labeled “Ideal” contain the execution time
alone for batch–compiled applications.Batch Compilationis off–line compilation of applications in their
entirety. We include this number as a reference to a lower–bound on the execution time of programs (given
the current implementation of the Jalape˜no optimizing compiler). Batch compilation is not restricted by the
semantics of dynamic class file loading; information about the entire program can be exploited at compile
time. In particular all methods are available for inlining and all offsets are known at compile time.

Columns 2 and 3, and 7 and 8, are the respective execution and compile times for eager compilation.
Columns 4 and 5, and 9 and 10, show the same for the lazy approach. In addition to reducing compilation
overhead, the data shows that lazy compilation also significantly reduces execution time when compared to
eager compilation. This reduction in execution time was caused by the direct and indirect costs of dynamic
linking. In the following section, we provide background on dynamic linking and explain the unexpected
improvement in optimized execution time enabled by lazy compilation.

3.3 The Impact of Dynamic Linking

Generating the compiled code sequences for certain Java bytecodes, e.g.invokevirtualorputfield,
requires that certain key constants, such as the offset of a method in the virtual function table or the offset
of a field in an object, be available at compile time. However, due to dynamic class loading, these constants
may be unknown at compile time: this occurs when the method being compiled refers to a method or field
of a class that has not yet been loaded. When this happens, the compiler is forced to emit code that when
executed, performs any necessary class loading (thus making the needed offsets available) and then performs
the desired method invocation or field access. Furthermore, if a call site is dynamically linked because the
callee method belongs to an unloaded class, optimizations such as inlining cannot be performed. In some
cases, this indirect cost of missed optimization opportunities can be quite substantial.

8

Dynamic linking can also directly impact program performance. A well-known approach for dynamic
linking [7, 10] is to introduce a level of indirection by using lookup tables to maintain offset information.
This table-based approach is used by the Jalape˜no optimizing compiler. When it compiles a dynamically
linked site, the optimizing compiler emits a code sequence that, when executed, loads the missing offset
from a table maintained by the Jalape˜no class loader.3 The loaded offset is checked for validity; if it is valid
it can be used to index into the virtual function table or object to complete the desired operation. If the offset
is invalid, then a runtime system routine is invoked to perform the required class loading (updating the offset
table in the process) and execution resumes at the beginning of the dynamically linked site by re-loading
the offset value from the table. The original compiled code is never modified. This scheme is very simple
and, perhaps more importantly, avoids the need for self-modifying code that entails complex and expensive
synchronization sequences on SMP’s with relaxed memory models (such as the PowerPC machine used
in our experiments). The tradeoff of simplicity is the cost of validity checking: subsequent executions of
dynamically linked sites incur a four-instruction overhead.4

If dynamically linked sites are expected to be very frequently executed, then this per-execution overhead
may be unacceptable. Therefore, an alternative approach based on backpatching (self-modifying code) can
be used. In this scheme, the compiler emits a code sequence that when executed invokes a runtime system
routine that performs any necessary class loading, overwrites the dynamically linked sites with the machine
code the compiler would have originally emitted if the offsets had been available, and resumes execution
with the first instruction of the backpatched (overwritten) code. Using backpatching there is an extremely
high cost the first time each dynamically linked site is executed, but the second and all subsequent executions
of the site incur no overhead.

The Jalape˜no optimizing compiler used in this paper uses the dynamic linking approach instead of
backpatching. This design decision was driven by the need to support type-accurate garbage collection
(GC); Jalape˜no relies on GC-safe points. At all GC-safe points, Jalape˜no’s compilers must produce mapping
information detailing which registers and stackframe offsets contain pointers. By definition, all program
points at which an allocation may occur (either directly or indirectly) must be GC safe-points, since the
allocation may trigger a GC. Because allocation will occur during class loading, all dynamically linked sites
must be GC-safe points. It proved to be challenging for the optimizing compiler to provide GC mapping
information if backpatching was used, so dynamic linking was used instead.

When using lazy compilation, we delay compilation and thus increase the probability that an accessed
class will be resolved at the time the referring method is compiled. Table 3 shows the number of times
dynamically linked sites are executed with eager and lazy compilation. On average, code compiled lazily
executes through dynamically linked sites92% fewer times than eager compilation for the small input (99%
fewer times for the large input). Although the reduction in direct dynamic linking overhead can be quite
substantial (e.g. roughly 25 million executed instructions on compress large), the missed inlining oppor-
tunities are even more important. For example, virtually all (greater than99%) executions of dynamically
linked sites in the eager version of compress large are calls to very small methods that are inlined in the lazy
version. Thus, the bulk of the 25 second reduction in large compress execution time (see Table 2) is due
to the direct and indirect benefits of inlining, and not only to the elimination of the direct dynamic linking
overhead. Similar inlining benefits also occur inmpegaudio.

The effect of lazy compilation on total time is summarized in Figure 4. The graph shows the relative
effect by lazy compilation both on execution time as well as compilation time using the optimizing compiler.
The left graph is for the small input and the right graph is for the large input. The top, dark-colored portion

3All entries in the table are initialized to 0, since in Jalape˜no all valid offsets will be non-zero
4The four additional instructions executed are two dependent loads, a compare, and a branch.

9

Small Large
x 100,000 Percent x 100,000 Percent

Benchmark Eager Lazy Reduced Eager Lazy Reduced
Compress 492 3 99 6202 3 100
DB 12 3 75 455 4 99
Jack 32 28 13 71 51 28
Javac 27 17 37 480 33 93
Jess 64 7 89 790 8 99
Mpeg 133 5 96 1547 6 100
Average 127 11 92 1591 18 99

Table 3: Dynamic execution count of dynamically linked sites. Columns 2–4 are for the small input
and 5–7 are for the large. Columns 2 and 5 give the counts (in 100,000’s) of executed sites that were
dynamically linked using the optimizing compiler. Columns 3 and 6 are the counts when lazy compilation
is used, (Columns 4 and 7 show the percent reduction).

of each bar represents compilation time, the bottom light-colored portion represents execution time. A
pair of bi-colored bars is given for each benchmark. The first bar of the pair results from using the eager
approach; the second bar from lazy compilation. Lazy compilation reduces both compilation and execution
time significantly when compared to eager compilation. On average, lazy compilation reduces overall time
(execution plus compilation) by26% for the small input and14% for the large. Execution time alone is
reduced by13% and11% on average for each input, respectively, since lazy compilation greatly reduces
both indirect and direct costs of dynamic linking.

4 Background Compilation

We will now describe how to further reduce compilation overhead by overlapping compilation with execu-
tion. Lazy compilation delays method compilation until first invocation, however, the cost of optimizing a
method can still be expensive and the execution characteristics of the method may not warrant optimization.
In addition, on–demand compilation in an interactive environment may lead to inefficiency. In environments
characterized by user interaction, the CPU often remains idle waiting for user input. Furthermore, the future
availability of systems built using single-chip SMPs, makes it even more likely that idle CPU cycles will in-
termittently be available. The goal of background compilation is to extend on–demand and lazy compilation
to further mask compilation overhead by using idle cycles to perform optimization.

4.1 Implementation

Background compilation consists of two parts. The first occurs during application execution: when a method
is first invoked, it is lazily compiled using a fast non–optimizing compiler (or the method is interpreted).
This allows the method to begin executing as soon as possible. However, since this type of compilation can
result in poor execution performance, methods which are vital to overall application performance should be
optimized as soon as possible.

This is achieved with the second part of the background compilation by using an Optimizing Compiler
Thread (OCT). At startup we initiate a system thread that is used solely for optimizing methods. The OCT is

10

Compress DB Jack Javac Jess Mpeg Average
0

10

20

30

40

50

 T
ot

al
 T

im
e

In
 S

ec
on

d
s

Total Time - Small Input
Eager Compilation Time
Eager Execution Time
Lazy Compilation Time
Lazy Execution Time

11

 7

21

33

16
18 18

16

10

26

41

30

23 24

Compress DB Jack Javac Jess Mpeg Average
0

50

100

150

 T
ot

al
 T

im
e

In
 S

ec
on

d
s

Total Time - Large Input
Eager Compilation Time
Eager Execution Time
Lazy Compilation Time
Lazy Execution Time

64

104
92

100

54

73
81

92

111
100 105

73

87
95

Figure 4:Overall impact of lazy compilation application performance. The left bar results from using
eager compilation, the right bar lazy. The top, dark colored, portion of each bar is compilation time, the
bottom (light-colored) execution. The number above each bar is the total time in seconds required for both
execution and compilation time. Lazy compilation reduces both execution time as well as compilation time.

presented with a list of methods that are predicted to be the most important methods to optimize. The OCT
processes one method at a time, checking whether or not the class in which it is defined has been loaded.
If it has, then the method is optimized. Once compiled, the code returned from the optimizing compiler is
used to replace the baseline compiled code (or the stub if the method has not yet been baseline compiled).
Future invocations of this method will then use the optimized version.

In order to predict which methods should be optimized by the OCT, we use profiles of the execution
time spent in a method. To generate these profiles, we execute the application off–line and compute these
times. The profiles accumulate the total execution time spent in each method during execution of the small
input. In many studies, this input is referred to as the training set. This profile is then used to generate results
using the small input and the large input. The numbers we report for the large input then, show how well the
small input predicts the time spent in methods when executing the large input.

Using the profile, each method is assigned a global priority ranking it by execution time with respect
to all other methods executed by the application. Once global priorities are assigned to each method, we
record it with the methods within each class. As each class is loaded, any methods of the class that have
been prioritized are inserted into the OCT’s priority queue for eventual optimization. If the priority queue
becomes empty, the OCT sleeps until class loading causes new methods to be added.

For background compilation, we collect all profile data during prior executions and hence, do not adapt
to execution paths that do not occur during profiling. Background compilation makes use of idle cycles and
available processors. If a class is loaded, a performance-critical method can be optimized in the background
and (the stub) replaced before first invocation of the method. Compilation overhead for such methods is
completely eliminated; a benefit not offered by current adaptive compilation environments [5, 14, 21].

4.2 Results

In this sectiontotal timerefers to the combination of compilation, execution, and all other overheads. The
total time associated with background compilation includes:

� Baseline compilation time of executed methods (fast compiler)

11

� Execution time from methods with baseline-compiled code

� Execution time from methods invoked following code replacement by the optimizing background
thread, and

� Thread management overhead

The examples in Figure 5 illustrate the components that must be measured as part of total time for
a different scenarios involving a method, Method1. In the first scenario, Method1 is invoked, baseline
compiled, and executed. Following its initial execution the OCT encounters Method1 in its list and optimizes
it. By the time it is able to replace Method1’s baseline compiled code, Method1 has executed a second time.
For the third invocation, however, the OCT has replaced the baseline compiled code and Method1 executes
using optimized code. Total time for this scenario includes baseline compilation time of Method1 and
execution time for two Method1 invocations using baseline compiled code and one using optimized code.

In the second scenario, the OCT encounters, optimizes, and replaces Method1 before it is first invoked.
This implies that the class containing Method1 has been loaded prior to OCT optimization of Method1. The
OCT replaces a stub that is in place for Method1 with the optimized code. All executions of Method1 use
the optimized code. Total time for this scenario includes only the execution time for three invocations of
Method1 using optimized code. In the final scenario, the OCT replaces Method1 after its first execution so
that the remaining two invocations use the optimized version. Total time for this scenario includes baseline
compilation time of Method1 and execution time for one Method1 invocation using baseline compiled code
and two using optimized code.

To measure the effectiveness of background compilation, we provide results for the total time required
for execution and compilation using this approach. Figures 6 and 7 compare total time with background
compilation to total time for the eager, lazy, and ideal configurations results from Table 2 (for the small
and large input, respectively). Four bars (with absolute total time in seconds above each bar) represent the
total time required for each approach for a given benchmark. The first bar shows results from eager and the
second bar from the lazy approach. The third bar is the total time using background compilation and the
fourth bar is “ideal” execution time alone. Ideal execution time results from a batch-compiled application
(complete information about the application enables more effective optimization and removes all dynamic
linking, and there is no compilation cost).

The summary figures show that background compilation eliminates the effect of almost all of the compi-
lation overhead that remains when using the lazy approach. On average, background compilation provides
an additional71% average reduction in total time over lazy compilation for the small input (14% for the
large). In comparison with eager compilation, background compilation reduces the total time (execution
plus compilation) by79% and26% for the small and large input, respectively. The percentage of total time
due to compilation is79% and20%; hence background compilation reduces total time by more than just
the compilation overhead. This occurs since background compilation extends lazy compilation and thereby
avoids the dynamic linking effects and enables additional optimization (as discussed in Section 3.3).

Most importantly, however, are the similarities between background and “ideal” execution time. Total
time using the background approach is within21% and8% (on average for the small and large inputs,
respectively) of the ideal execution time. Background compilation therefore, achieves the goal of masking
almost all compilation overhead while enabling highly optimized execution times.

12

Background
Thread

Application
Thread

Time

Execute
Method1

BG-Opt
Compile
Method1

BG-Replace
Method1

(A)

(B)

Initially Invoke
and Baseline

Compile
Method1

Background
Thread

Application
Thread

Time

Execute
Method1

BG-Opt
Compile
Method1

BG-Replace
Method1

(B)

Initially
Invoke

Method1

Background
Thread

Application
Thread

Time

Initially Invoke
and Baseline

Compile
Method1

Execute
Method1

BG-Opt
Compile
Method1

BG-Replace
Method1

(A)

(B)

Figure 5: Example scenarios of background compilation. In the first scenario, upon initial invocation of
Method1, execution suspends and Method1 is baseline-compiled (“ (A)” in each figure represents the time
required for baseline compilation). When Method1 is executed the code invoked is the baseline-compiled
version (represented in all figures by the dotted arrow). Next, in the background (below each timeline),
the optimizing compilation thread (OCT) then optimizes Method1. Due to the time required to optimize
Method1 (“ (B)” in each figure represents the time required for optimization), Method1 is invoked and exe-
cuted a second time with the baseline-compiled code before the OCT replaces the baseline-compiled code
with the optimized version. Once replaced, Method1 executes using the optimized version of the code (rep-
resented by a solid line). In the second scenario, the OCT is able to compile and replace Method1 before
any invocations of Method1 occur; therefore, all executions use the optimized code. The third scenario
shows the OCT replacing Method1 between its first and second invocations so that all executions but the
first execute optimized code. 13

Compress DB Jack Javac Jess Mpeg Average
0

10

20

30

40

50

 T
ot

al
 T

im
e

In
 S

ec
on

ds

Total Time - Small InputEager Total Time
Lazy Total Time
Background Total Time
Ideal Execution Time

16

10

26

41

30

23 24

11

 7

21

33

16
18 18

 5
 2

10

 3 2

 8
 5 5

 2

 9

 2 2
 5 4

Figure 6: Summary of total time (in seconds) for all approaches including background compilation
for the small input. Total time includes both compilation and execution time. Four bars are given for
each input. The first three bars show total time using eager compilation, lazy compilation, and background
compilation, respectively. The fourth bar shows “ ideal” execution time alone (from execution of off-line
compiled benchmarks). Absolute total time in seconds appears above each bar.

Compress DB Jack Javac Jess Mpeg Average
0

50

100

150

 T
ot

al
 T

im
e

In
 S

ec
on

ds

Total Time - Large InputEager Total Time
Lazy Total Time
Background Total Time
Ideal Execution Time

92

111

100
105

73

87
95

64

104

92
100

54

73
81

58

99

83
74

42

63
70

58

99

78

63

38

51

64

Figure 7: Summary of total time (in seconds) for all approaches including background compilation
for the large input. Total time includes both compilation and execution time. Four bars are given for
each input. The first three bars show total time using eager compilation, lazy compilation, and background
compilation, respectively. The fourth bar shows “ ideal” execution time alone (from execution of off-line
compiled benchmarks). Absolute total time in seconds appears above each bar.

14

5 Related Work

Our work reduces the compilation overhead associated with dynamic compilation. Much research has gone
into dynamic compilation systems for both object–oriented [8, 15, 27] and non–object–oriented [13, 6, 20]
languages. Our approach is applicable to other dynamic compilation systems, and can be used to reduce
their compilation overhead.

Lazy compilation, as mentioned previously, is used in most Just-In-Time compilers [24, 19, 26, 15, 17]
to reduce the overhead of dynamic compilation. However, a quantitative comparison of the associated
tradeoffs between lazy and eager compilation, to our knowledge, has not yet been presented. In addition, we
provide a detailed description of the implementation and the interesting effects on optimization due to lazy
compilation in the Jalapeño VM.

Most closely related to our background compilation work, is that by Hölzle and Ungar [14]. They de-
scribe an adaptive compilation system for the Self language that uses a fast, non–optimizing compiler and a
slow, optimizing compiler like those used in Jalapeño. The fast compiler is used for all method invocations
to improve program responsiveness. Program “hotspots” are then recompiled and optimized as discovered.
Hotspots are methods invoked more times than an arbitrary threshold. When hotspots are discovered, ex-
ecution is interrupted and the method (and possibly an entire call chain) is recompiled and replaced with
optimized versions. In comparison, background compilation uses off–line profile information to determine
which methods to optimize and never causes stalls in execution due to optimization. In addition, background
compilation can potentially eliminate all compilation overhead for some methods since method stubs (for
lazy compilation of loaded, but as yet unexecuted, methods) can be replaced with the optimized code prior to
initial invocation of the methods. That is, for methods for which optimization is vital to overall application
performance, no threshold of invocation count or execution time has to be reached for optimization to be
initiated. This is an advantage over all dynamic, adaptive, compilation environments. Another advantage
is that our techniques introduce no runtime overhead due to dynamic measurement. Lastly, we perform
optimization on a separate thread of execution and exploit idle processors; the combination of which, to our
knowledge, has not been examined and published prior.

In other work, Arnold, et. al. [5] uses profiles to guide static compilation. The goal of this project was
to determine the performance potential of dynamic, adaptive compilation based on selective optimization
in a feedback-based system. In comparison, we incorporate similar, off-line profiles but use them to drive
on-line compilation using background compilation.

Another project that attempts to improve program responsiveness in the presence of dynamic loading
and compilation is continuous compilation [21]. Continuous compilation overlaps interpretation with Just–
In–Time (JIT) compilation. A method, when first invoked, is interpreted. At the same time, it is compiled
on a separate thread so that it can be executed on future invocations. They extend this to Smart JIT compi-
lation: on a singlethread, interpret or JIT compile a method upon first invocation. The choice between the
two is made using profile or dynamic information. Our background compilation approach uses a separate
thread and processor to selectively, background compile only methods predicted as important for applica-
tion performance. Only a single processor is used in this prior work (and only a single thread in Smart JIT
compilation). Our infrastructure uses a compile–only approach, so interpretation in our project is replaced
by fast compilation. Interpretation and JIT compilation overlap is also used in the Symantec Visual Cafe JIT
compiler, a Win32 JIT production compiler delivered with some 1.1.x versions of Sun Microsystems Inc.
Java Development Kits [25].

Another form of background compilation is described in the HotSpot compiler specification [15] from
Sun Microsystems. A separate process is used for compilation which is moved to the background when

15

a threshold of time has been spent compiling a single method. A foreground process then interprets the
method to reduce the effect of the compilation overhead for the method. This implementation depends
upon the operating system for process management; in Jalapeño each thread of execution and compilation is
managed by the Jalapeño thread scheduler. In addition, no profile information is used and the documentation
does not provide measurement of the impact of background compilation as a separate process.

Lastly, we previously proposed prefetching class files on separate threads to overlap the overhead asso-
ciated with network transfer in [18] with execution. Network latency increases the delay during class file
loading much like compilation overhead does. In this prior work, we show that by premature access (and
transfer) of a class file by a separate (background) thread during application execution, we are able to mask
the transfer delay and reduce the time the application stalls for class loading of non-local class files. As in
background compilation, we generate profiles off–line but use them to determine the order in which class
files are first accessed. Background compilation differs in that we attempt to overlap compilation with exe-
cution; hence these techniques are complementary and can be used in coordination to reduce both transfer
and compilation overhead.

6 Future Directions

As part of future work, we will extend our background compilation approach to further reduce the effect
compilation overhead. We plan to annotate class files so that when non–local class files are loaded by
Jalapeño, a profile list can be constructed, eliminating the need for the OCT to read in a list from the local
file system. In addition, we plan to extend our single OCT approach to multiple OCTs. That is, we will
include the option of using multiple available processors for background optimization. Currently, Jalapeño’s
optimizing compiler is not re-entrant; only one thread can use the optimizing compiler at a time. Once this
changes, our background optimization will be used to exploit multiple idle processors.

One limitation imposed on background compilation by the current Jalapeño implementation is lack of a
mechanism for setting thread priorities, i.e., on a single processor, we are unable to only compile when the
primary thread(s) of execution is idle. With the current infrastructure, the application thread and the OCT
must contend equivalently for resources restricting potential for improvement on a single processor. Once
thread priorities are implemented as part of future work, we will use background compilation to mask com-
pilation overhead on single processor machines as well. We believe that for interactive programs, execution
on a single processor can benefit from background compilation since optimization can be performed when
the application suspends waiting for user input.

7 Conclusion

In this work, we focus on reducing the effect of compilation overhead imposed by dynamic compilation. We
first quantitatively compare the tradeoffs between eager (class–level) and lazy (method–level) compilation.
Lazy compilation reduces the number of methods compiled, thereby reducing compilation overhead. We
also introduce and evaluate background compilation using an SMP, an approach that optimizes important
methods on a background thread to mask compilation overhead due to optimization.

The infrastructure we use to examine the impact of our compilation strategies is the Jalapeño Virtual
Machine, a compile–only execution environment being developed at IBM T. J. Watson Research Center.
Currently in Jalapeño, two compilers are used, the fast baseline compiler that produces code with execution
speeds of interpreted versions, and the optimizing compiler, a slow but highly optimizing compiler that

16

produces code with execution speeds two to eight times faster than the code produced by the baseline
compiler. Our goal was to design and implement optimizations that enable compilation times of the baseline
compiler and execution speeds of optimized code.

We first empirically quantify the effect of lazy compilation on both compilation time and execution
time. We show that lazy compilation requires 57% fewer methods (than eager) be compiled on average for
each input of the benchmarks studied. In terms of compilation time, this equates to approximately 30%
reduction on average for either input, since the number of methods used between inputs is relatively the
same. In addition to reducing compilation overhead, lazy compilation also improves execution time by
greatly reducing the number of dynamically linked sites, thus avoiding both the direct costs of dynamic
linking and the indirect costs of missed optimization opportunities. Lazy compilation reduces optimized
execution time 13% and 10% on average for the small and large input, respectively. In terms of total time,
lazy compilation enables a 26% and 14% reduction over eager compilation using the optimizing compiler.

We also present a compilation approach that extends lazy compilation. Background compilation masks
the overhead incurred by compilation by overlapping it with useful work. With this optimization, we use
the Jalapeño optimizing compiler on a background thread to compile only those methods we predict as
important for optimization. On the primary thread(s) of execution, the Jalapeño baseline compiler is used
so that methods can begin executing much earlier than if they are optimized. The background thread then
replaces the baseline compiled method with an optimized version so that future invocations of the method
call the optimized version. No prior research, to our knowledge, has presented the effect (on compilation
overhead) of utilizing an idle processor for optimization. Our results show that background compilation
achieves execution times of optimized code with compilation overhead of baseline compilation. On aver-
age, background compilation effectively reduces total time (execution plus compilation) by 79% and 26%
for the small and large input, respectively. When compared to lazy compilation, the background optimiza-
tion reduces total time of 71% for the small input and 14% for the large. We also show that background
compilation achieves the runtime performance of applications that are batch compiled (off–line optimization
of the entire application at once).

The Java programming language provides an architecture–independent intermediate representation that
is and will continue to be exploited by the distributed execution of Internet–computing applications. In
order for the execution of these applications to be practical, execution speeds must be fast and overheads
associated with execution, i.e., optimization, must not create performance bottlenecks. Dynamic compi-
lation enables state-of-the-art optimizations to improve the execution speeds of Java programs, but also
introduces compilation overhead due to optimization. Compilation approaches like the ones presented here
are important since they enable optimization while reducing the effect of compilation overhead.

References

[1] B. Alpern, C. Attanasio, J. Barton, A. Cocchi, S. Hummel, D. Lieber, T. Ngo, M. Mergen, J. Shepherd, and
S. Smith. Implementing jalapeño in java. In ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), November 1999.

[2] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,
J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The jalapeño virtual machine. IBM
Systems Journal, 39(1), 2000.

[3] B. Alpern, M. Charney, J. Choi, A. Cocchi, and D. Lieber. Dynamic linking on a shared-memory multiprocessor.
In International Conference on Parallel Architectures and Compilation Techniques (PACT), October 1999.

17

[4] M. Arnold, S.J. Fink, D. Grove, M. Hind, and P. Sweeney. Adaptive optimization in the jalaepeño jvm. Sub-
mitted toACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA) 2000, 2000.

[5] M. Arnold, M. Hind, and B. Ryder. An empirical study of selective optimization. Technical Report RC 21703,
IBM T. J. Watson Research Center, March 2000. Also available as Rutgers Technical Report dcs-tr-411.

[6] V. Bala, E. Duesterwald, and S. Banerjia. Transparent dynamic optimization: The design and
implementation of dynamo. Technical Report HP Laboratories Tech Report HPL-1999-78, 1999.
http://www.hpl.hp.com/techreports/1999/HPL-1999-78.html.

[7] J.L. Bash, E.G. Benjafield, and M.L. Gandy. The Multics operating system-an overview of Multics as it is being
developed. Technical report, 1967. Project MAC, MIT, Cambridge, Mass.

[8] M. Burke, J. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M. Serrano, V. Shreedhar, H. Srinivasan, and J. Whaley.
The jalapeño dynamically optimizing compiler for java. In ACM Java Grande Conference, June 1999.

[9] M. Cierniak and W. Li. Optimizing java bytecodes. In Concurrency: Practice and Experience, volume 9 (6),
pages 427–444, June 1997.

[10] R.C. Daley and J.B. Dennis. Virtual memory, processes, and sharing in MULTICS. Communications of the
ACM, 11(5):306–312, 1968.

[11] A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Implementation. Addison-Wesley, 1983.
ISBN 0-201-11371-6
http://users.ipa.net/˜dwighth/smalltalk/bluebook/bluebook_imp_toc.html% .

[12] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley, 1996.

[13] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. Eggers. Dyc: An expressive annotation–directed dynamic
compiler for c. Technical Report Tech Report UW-CSE-97-03-03, 1997. To appear in Theoretical Computer
Science. http://www.cs.washington.edu/research/projects/unisw/DynComp/www/.

[14] U. Hölzle and D. Ungar. A third–generation self implementation: Reconciling responsiveness with performance.
In ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA), October 1994.

[15] The java hotspot performance engine architecture.
http://java.sun.com/products/hotspot/whitepaper.html.

[16] Kaffe – an opensource java virtual machine. http://www.kaffe.org/.

[17] A. Krall and R. Grafl. Cacao - a 64 bit javavm just-in-time compiler. In Concurrency: Practice and Experi-
ence, volume 9 (11), pages 1017–1030, November 1997.
http://www.complang.tuwien.ac.at/java/cacao/index.html.

[18] C. Krintz, B. Calder, and U. Hölzle. Reducing transfer delay using java class file splitting and prefetching. In
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA), November 1999.

[19] Latte: A fast and efficient java vm just-in-time compiler. http://latte.snu.ac.kr/.

[20] Peter Lee and Mark Leone. Optimizing ML with run-time code generation. In Proceedings of the ACM SIGPLAN
’96 Conference on Programming Language Design and Implementation, pages 137–148, May 1996.

[21] M. Plezbert and R. Cytron. Does just in time = better late than never? In Proceedings of the SIGPLAN’97
Conference on Programming Language Design and Implementation, January 1997.

[22] Mauricio Serrano, Rajesh Bordawekar, Sam Midkiff, and Manish Gupta. Quassi-static compilation in Java. Sub-
mitted toACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA) 2000, April 2000.

18

[23] Spec jvm98 benchmarks. http://www.spec.org/osg/jvm98/.

[24] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki, H. Komatsu, and T. Nakatani.
Overview of the ibm java just-in-time compiler. IBM Systems Journal, 39(1), 2000.

[25] Sun microsystems jit compiler.
http://java.sun.com/products/jdk/1.1.6/download-jdk-windows-006.html.

[26] The symantec just–in–time compiler.
http://www.symantec.com/domain/cafe/rguide_21/closerlook.html.

[27] David Ungar and Randall B. Smith. Self: The power of simplicity. In Proceedings OOPSLA ’87, pages 227–242,
December 1987.

19

