Automatic Logging of Operating System Effects to
Guide Application-Level Architecture Simulation

Satish Narayanasamyy+, Cristiano Pereirat, Harish Patilt, Robert Cohnt, and Brad Caldert

Computer Science and Engineering, University of California, San Diego
‘Intel Corporation

Abstract

Modern architecture research relies heavily on application-
level detailed pipeline simulation. A time consuming part of
building a simulator is correctly emulating the operating sys-
tem effects, which is required even if the goal is to simulate
just the application code, in order to achieve functional cor-
rectness of the application’s execution. Existing application-
level simulators require manually hand coding the emulation
of each and every possible system effect (e.g., system call,
wnterrupt, DMA transfer) that can impact the application’s
execution. Developing such an emulator for a given oper-
ating system is a tedious exercise, and it can also be costly
to maintain it to support mewer versions of that operating
system. Furthermore, porting the emulator to a completely
different operating system might involve building it all to-
gether from scratch.

In this paper, we describe a tool that can automatically
log operating system effects to guide architecture simulation
of application code. The benefits of our approach are: (a)
we do not have to build or maintain any infrastructure for
emulating the operating system effects, (b) we can support
simulation of more complex applications on our application-
level simulator, including those applications that use asyn-
chronous interrupts, DMA transfers, etc., and (c) using the
system effects logs collected by our tool, we can determinis-
tically re-execute the application to guide architecture simu-
lation that has reproducible results.

Categories and Subject Descriptors: 1.6.7 [Simulation
and Modeling]: Simulation Support Systems

General Terms: Experimentation, Measurement and Per-
formance

Keywords: Architecture Simulation, Emulating System
Calls, and Checkpoints

1. INTRODUCTION

Modern computer architecture research relies heavily on
cycle-accurate simulation to help evaluate new architectural

features. Our focus is on building and maintaining application-

level simulators. These are simulators that perform cycle
level simulation of the application code and system libraries,

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

S GMetrics/Performance’ 06, June 26-30, 2006, Saint Malo, France.
Copyright 2006 ACM 1-59593-320-4/06/0006 ...$5.00.

but do not simulate what happens while handling an oper-
ating system call or interrupt. A time consuming part of
building such a simulator is correctly emulating the system
effects executed as part of the workload under study. For
example, the traditional solution [4, 19, 17] to emulate sys-
tem calls for these simulators is by gathering the required
input values from simulated registers and memory state and
using them to invoke the call natively. In addition, most
of these simulators do not support system effects such as
DMA transfers or asynchronous interrupts because of their
emulation complexity.

Emulating operating system effects, even just the system
calls, can be a tedious exercise. For system calls, the pro-
grammer has to be aware of the input and output semantics
of every call that needs to be emulated. Apart from having
to handle the complexity of an emulator, porting the simula-
tor to run on a different operating system is labor intensive.
Even maintaining a simulator with system emulation can be
quite expensive, since the emulator can break when the sim-
ulator is run on newer versions of the same operating system.
Problems arise when there are changes to the operating sys-
tem interface used by the application being simulated, since
this can also require changes to the emulation system. In ad-
dition to all these problems, a good number of system effects
are non-deterministic in nature, and as a result emulating
them using native system calls during simulation can cause
small variations across different simulations of the same pro-
gram with the same input. Hence, simulation results may
not be completely reproducible.

In this paper, we present a tool that can automatically
capture the side effects of all the operating system interac-
tions to support application-level simulation. We call our
tool pinSEL (Pin-System Effect Logger), which is built us-
ing the Pin [9] instrumentation tool. We capture system
effects by executing an instrumented version of the binary
natively on the operating system for which the workload bi-
nary was compiled for. The instrumented code creates the
System Effect Log (SEL) when executed. For each system
call executed, the log contains the changes to the register
state effected by the system call. The log also contains the
values of memory locations accessed by load instructions ex-
ecuted after the system call, if those memory locations were
modified by the system call. Our algorithm to identify the
registers and memory locations modified by a system call is
independent of the semantics of the system call and hence
it is easy to implement and is portable across operating sys-
tems. The SEL also contains memory values modified by
other system interactions such as asynchronous interrupts
or DMA, if those modified memory values are accessed by
the program being simulated. Thus the SEL enables deter-
ministic simulation of a program-input pair across system

calls, interrupts and DMA transfers. Deterministic simula-
tion is important to accurately compare different alterna-
tives during design space exploration. In addition, pinSEL
can also support simulation of multi-threaded applications
on uniprocessor systems, which we discuss in Section 5.6.

Using pinSEL, an application-level simulator can avoid
the emulation of system effects and the associated complex-
ity. As a result, we can easily simulate real applications from
standard operating systems. For example, SimpleScalar [4],
which has been widely used for over a decade, emulates
just enough number of systems calls to support the simu-
lation of SPEC and similar applications, and cannot sup-
port simulation of many real world programs. Using our ap-
proach, we can now simulate real world Linux applications
on our x86 version of SimpleScalar [4] without having to
emulate any system calls or complex interactions with asyn-
chronous interrupts or DMA transfers. At Intel, engineers
were successful in using pinSEL to quickly and easily sup-
port application-level architecture simulation of MAC OS
and Windows applications. Without pinSEL it would not
have been practical to port pinLIT to these operating sys-
tems for architecture simulator. PinLIT (Pin-Long Instruc-
tion Trace) is a tool used at Intel to gather checkpoints to
support architecture simulation.

Using our approach, we can simulate only the execution
of application code and the user level libraries. This is
useful for studying applications like desktop and scientific
programs, which spend a significant amount of execution
time in the user level code. Even interactive applications
like acroread and powerpoint, spend 80% and 76% of ex-
ecution time respectively in application code and user level
libraries [1], which will be captured by our approach. How-
ever, our approach has limitations in that it cannot be used
to study applications that are heavily dependent on system
interaction (e.g., I/O bound applications like TPC-C [6],
web servers like DSS that spend significant amount of exe-
cution time in the kernel code).

This paper makes the following contributions:

e We examine how current popular simulators handle
system effects through emulation. The discussion in-
cludes Intel’s pinLIT and our x86 version of
SimpleScalar [4].

e We present a technique to automatically log system
effects for user-level architecture simulation. The ben-
efits of our automated logging are (a) we do not have
to build or support any infrastructure for emulating
system effects, (b) our approach allows us to log and
simulate more complex programs, including those that
use asynchronous interrupts and DMA transfers, and
(c) the system effect logs provide deterministic simu-
lation across all kinds of system effects.

e We describe our tool called pinSEL (System Effect
Logger) that is built using the Pin [9] instrumenta-
tion infrastructure. A user level architectural simula-
tor built with pinSEL support can simulate programs
that have complex interactions with the operation sys-
tem and is also portable across different operating sys-
tems.

The rest of this paper is organized as follows. Section 2
discusses prior work. Sections 3 explains the application-
level simulation technique used in a couple of widely used
simulators. The complexity of manually emulating system
calls in those simulators is discussed in Section 4. Section

5 presents our solution to automatically log system effects.
Section 6 analyzes the time and space logging overhead. Sec-
tion 7 summarizes.

2. PRIOR WORK
This section discusses existing solutions to handle system
effects.

2.1 Handling system effects for Application
Level Simulation

Many popularly used cycle accurate simulators [4, 19, 17]
simulate just the user code and this is sufficient for study-
ing many micro-architecture level optimizations and design
choices using workloads like SPEC. However, even though
their goal is to simulate only the user code, they still have to
emulate the system calls to obtain correct execution of the
program. The conventional solution to emulate system calls
is to decode the system call and obtain the arguments. Then
using those arguments the simulator invokes an equivalent
system call that can be executed natively on the host ma-
chine on which the simulator is executing. The result values
obtained from this native execution are then used to mod-
ify appropriate simulated registers and memory locations.
The output of the system call can be stored in a trace (e.g.,
EIO trace in SimpleScalar) so that future simulations can
use those traces instead of emulating the system call again.
Using system call traces like EIO traces ensures determinis-
tic simulation, and we describe this approach in more detail
in Section 4.

The above approach is not desirable for a number of rea-
sons. First, the programmer writing the emulator needs to
explicitly handle each system call to find the registers and
memory locations that contain the input/output operands.
This code is then only valid for a given operating system.
To use the simulator on multiple operating systems would
require the emulation of the simulated system calls for each
of these systems. Even maintaining the simulator to run on
the same operating system requires changes over time to sup-
port newer versions of the operating system. Similarly, if the
user desires to run a workload compiled for different versions
of an operating system, the emulation may need to change
if the operating system interface has changed. To top it
all, complex system interactions due to asynchronous inter-
rupts and DMA transfers cannot be handled easily with this
form of emulation, which is required to correctly execute real
world desktop applications like acroread and powerpoint.

In this paper we describe a simple binary instrumentation
solution to capture the effects of all types of system interac-
tions without having to explicitly emulate each system call
or interrupt. Since our solution is independent of the oper-
ating system, it is very easy to provide simulator support to
execute binaries compiled for various operating systems, as
well as to allow the simulator to be compiled and executed
in any operating system.

2.2 Full system simulation

There exist full system functional simulators like Sim-
ics [10], SimOS [15] and SoftSDV [20] that can emulate the
full system including the operating system and all interac-
tion with the external devices. Therefore, one option for
building performance simulators would be to execute the bi-
nary inside a functional full system simulator and use that
as a front end to feed traces of instructions executed to the
cycle accurate performance simulator [7, 11, 5].

However, building and maintaining full system simulators

is very expensive. It requires multiple person-years of effort
to develop them. Also, they need to be modified constantly
to support newer systems. In addition, the execution envi-
ronment required for running real applications on full system
simulators can be hard to reproduce, because of dependen-
cies on specific kernel or device drivers versions, run-time
license checking, elaborate installation procedures and high
storage requirements. Therefore having a full system simu-
lator in the front-end incurs higher runtime overhead during
simulation. Moreover, if the goal is to analyze the perfor-
mance of just the user code then it is an unwarranted com-
plexity to have a full system simulator as a front end.

It is highly desirable to have a way of handling all forms
of system effects to correctly execute the application during
simulation, but still preserve the simplicity of application-
level simulators. Our solution in the paper is targeted to-
ward achieving this goal.

2.3 Checkpoint Mechanisms

Detailed cycle accurate simulation of the full program ex-
ecution is very time consuming. Sampling techniques like
SimPoint [16] and SMARTS [21] are used to find repre-
sentative samples of program execution. Simulating only
these samples have been shown to provide accurate simula-
tion results. The Sample Starting Image (SSI) is the state
needed to accurately emulate and simulate the sample’s exe-
cution to achieve the correct output for that sample. Various
checkpoint mechanisms have been proposed to capture the
SSI [14, 2, 18] with minimal checkpoint size. In this section
we describe those checkpoint mechanisms as they are related
to the technique we use to collect our logs to capture system
effects.

Szwed et.al. [18] proposed SimSnap, which instruments
the application’s binary, with the SSI corresponding to a
sample and necessary code to restore it. Thus, during sim-
ulation, the simulated application’s binary can itself restore
the SSI for the sample to be simulated. To create such a
binary, they first obtain the SSI of the application’s state at
the beginning of a sample by natively executing the instru-
mented binary of the application.

Ringenberg et al. [14] proposed an Intrinsic Checkpoint-
ing mechanism which also embeds SSI into the binaries and
lets the application restore itself during simulation. Their
focus is to create one binary, that restores the SSI for all
of the simulation points needed to simulate the execution of
that binary, for a specific input. In doing this, they make
an observation that to create the SSI for a simulation point
they can take the ending memory image of the last simu-
lation point, and just update it with all of the stores that
occurred between the end of the last simulation point and
the start of the current simulation point. In addition, they
optimize the restoration process by choosing to restore only
those locations that are read at least once inside the simula-
tion interval. The intrinsic checkpointing approach achieves
the purpose of checkpointing the SSI at the beginning of a
simulation interval by having a list of memory stores that
need to be executed to get the memory image up to date for
the start of the new simulation interval. This saves a signif-
icant amount of space over storing the full memory image
state for each simulation point. Note that the simulator us-
ing this binary with intrinsic checkpoints still needs to have
support for emulating the system call and other system in-
teractions. This is because the only thing that the intrinsic
checkpoint scheme ensures is that the simulation point has
the correct SSI. Thus, intrinsic checkpointing does not ad-
dress the problems of handling system effects, which is the

focus of our paper.

Van Biesbrouck et.al. [2] also proposed an algorithm to
reduce the size of SSI. Their technique assumes the EIO
trace generation mechanism used in SimpleScalar to handle
system calls. In the EIO traces generated by the default
SimpleScalar, the SSI is the full memory image of the appli-
cation at the beginning of the simulation interval along with
a trace of result values of all the system calls executed (EIO
trace) within the simulation interval. Instead of having the
full memory image for SSI, they log initial memory values
only for the locations that are accessed within the simu-
lation interval. They also consider representing the same
information in a different format in the form of Load Value
Sequence (LVS) which is essentially a trace of all the load
instructions. Their approach focuses on reducing the size of
the SSI, and not upon providing system call logging. They
still rely upon the EIO traces and system call emulation in
SimpleScalar for that. Our focus is to not have to provide
any system emulation for SimpleScalar, while at the same
time enabling the simulation of real (non SPEC) programs
on SimpleScalar.

3. BASELINE APPLICATION-LEVEL SIM-
ULATION APPROACHES

In this section, we describe two system call logging infras-
tructures — pinLLIT, which is used at Intel, and SimpleScalar,
which is commonly used in academia.

31 pinLIT

An approach used at Intel for simulation is to first use
SimPoint [16] to determine representative samples in a pro-
gram’s execution. Then a tool called pinLIT is used to create
a checkpoint for each sample. A sample’s checkpoint con-
tains everything needed by their simulator to simulate the
sample. In this section, we summarize this baseline tech-
nique used to create a sample’s checkpoint.

3.1.1 SmPoint

The first step is to choose for a program-input pair where
the execution interval for detailed simulation. SimPoint is
used to choose the samples to be simulated. Note that other
methods can be used to choose the simulation samples; the
selection algorithm is not the focus of this study.

The SimPoint [16] sampling approach picks a small num-
ber of samples, that accurately creates a representation of
the complete execution of the program. It breaks a pro-
gram’s execution into intervals, and for each interval creates
a code signature. It then performs clustering on the code
signatures, grouping intervals with similar code signatures
into phases. The notion is that intervals of execution with
similar code signatures have similar architectural behavior,
and this has been shown to be the case in [16, 8, 13, 22].
Therefore, only one interval from each phase needs to be
simulated in order to recreate a complete picture of the pro-
gram’s execution. SimPoint then chooses a representative
from each phase and performs detailed simulation on that
interval. Taken together, these samples can represent the
complete execution of a program. The set of chosen samples
are called simulation points, and each simulation point is an
interval on the order of millions of instructions.

3.1.2 Creating Checkpoint Image

Once the simulation points are chosen, the next step is to
create checkpoints for each simulation point using pinLIT
(Pin-Long Instruction Trace) tool that is built using the

Pin [9] dynamic binary instrumentation tool. The check-
point and system call tracing mechanism used in pinLIT
provides the logs used to guide simulation as described in
the Intel’s UserLIT [17] simulation infrastructure.

A checkpoint image for a simulation interval contains all
the necessary code and data information that is required for
simulating the interval that it represents. This includes a
trace of all the input and output values for the system calls
executed within the simulation interval.

A checkpoint image for a simulation point is created as
follows. The instrumented binary is executed natively and
once the execution reaches the simulation point, the proces-
sor’s architectural register state is copied to the checkpoint.
In addition, pinLIT copies all the pages that contain appli-
cation code and shared libraries to the checkpoint.

For the code and data pages, pinLIT tries to avoid check-
pointing the entire data image of the process that exists
at the beginning of the simulation point. Instead, pinLIT
copies the pages lazily to the checkpoint when they are first
used during the simulation interval. This approach avoids
logging those data and code pages that are never accessed
inside the simulation point and thus reduces the size of the
checkpoint. The address locations inside the checkpoint im-
age where the code and data pages are copied to are stored
in a table at a particular location in the checkpoint image.
This table, which we call as CheckpointPageTable, is re-
quired during simulation to restore the code and data pages.

In addition to copying pages accessed by the program to
the checkpoint, pinLIT also logs enough information about
the execution of system calls so that they can be handled
during simulation. pinLIT has code specific to each system
call that determines the inputs and outputs for every one
of them. Before executing a system call, the analysis code
in pinLIT logs information about the input values to the
system call along with their address location (for memory
operands) or the register name. After the return from the
system call, the return value and any memory location and
values modified by the system call are logged. When the
system calls are encountered during simulation, the control
is transferred to a special system call handler that verifies
the arguments and writes the output in the proper memory
and register locations. If the input arguments are different,
then simulation is halted, since the simulation environment
requires and only supports deterministic simulation.

3.1.3 Smulation Using pinLIT’'s Checkpoint Image

We now describe how the simulator uses the checkpoints.
The simulator first loads the checkpoint image into its ad-
dress space and starts the program’s execution from address
0, which contains a specially inserted (by pinLIT) minimal
operating system code or mini-OS. The mini-OS initializes
the real page table using CheckpointPageTable to map the
virtual addresses of the application to the physical addresses
where the code and data pages from the checkpoint image
are loaded. The mini-OS also registers a system call handler
which is invoked whenever a system call is encountered dur-
ing the program’s execution inside the simulator. Finally,
the architectural register’s contents are read from the check-
point image and written to the registers. Note that this sets
the PC to the first instruction executed at the beginning of
the simulation interval.

When a system call is encountered the system call handler
verifies if the system call input values match the checkpoint
image values and writes the outputs to the simulated regis-
ters and memory. The system call itself is ignored.

3.2 SimpleScalar

SimpleScalar supports a system call checkpoint environ-
ment called EIO (External 1/0) logging, which is a trace
of the output values of system calls. Playing back the sys-
tem calls effects from the log ensures deterministic behavior,
even if the system call has non-reproducible behavior (e.g.
gettimeofday).

An EIO file contains a checkpoint of the initial program
state that includes memory and architectural state that rep-
resents the state of the system at the beginning of the sim-
ulation interval. The rest of the EIO file contains informa-
tion about every system call, including all input and output
values and the name of the registers and memory address
locations where those values should reside.

When the simulator encounters a system call, it restores
the necessary register and memory values by reading them
from the EIO trace. This method enables deterministic pro-
gram execution across all the simulation runs.

4. COMPLEXITY ANDEXAMPLEOFLOG-
GING SYSTEM EFFECTS

User level simulators need to emulate system calls for cor-
rect execution of applications. In this section, we discuss
in more detail the solutions for emulating system calls and
provide some concrete examples to illustrate the complexity
involved in emulating them.

4.1 Emulating System Calls

We describe in more detail how system calls are emulated
in SimpleScalar [4]. SimpleScalar’s instruction decoder can
interpret Alpha, ARM and PISA instruction set architec-
tures. Recently, support for x86 ISA have been provided.
For clarity, here we assume Alpha OSF binary emulated on
a Linux x86 architecture.

4.1.1 Approach

When a system call is invoked by the simulated applica-
tion, a special system call handler in the simulator is called
to emulate it. The system call handler’s operation can be
summarized in three parts.

First, the system call handler has to decode the system
call invoked by the application and obtain the necessary in-
put arguments from the simulated register and memory lo-
cations. Decoding a system call is dependent on the system
call numbers, which are specific to an operating system. For
Linux, these numbers are specified in the header file unistd. h.
This decoding part of emulation should support the operat-
ing system for which the application has been compiled for.

Second, the system call arguments are used to invoke an
equivalent system call, that can be executed natively on the
host machine. This part of the emulation should support the
operating system on which we want to execute the simulator,
because the arguments to the system call are specific to the
system. For example, SimpleScalar can support execution
of Alpha binaries compiled for DEC Alpha Unix systems
(determined by the decoding part of the emulator) on x86
Linux systems (on which the emulator natively executes the
system calls).

Third, result values obtained from the native execution of
the system call are used to modify appropriate registers and
memory locations in the simulator.

4.1.2 Examples

Let us consider how open system call is emulated. For
the open system call, register ECX contains the flag input

and EBX contains the address to the location containing the
filename. The flag input format can change between oper-
ating systems and we personally have experienced problems
while trying to run SimpleScalar on some newer versions
of RedHat Linux, which required changes to the emulation
system.

For open, the filename is copied into a temporary buffer.
The temporary buffer and an integer containing the flag
value are used as arguments to invoke the open system call
natively. The file handle returned from the native system
call is then copied into the EAX register. Note, the emula-
tion of the open system call would be affected if either the
binary is compiled for a different operating system or if the
host on which the simulator is executed change.

Let us consider another example. The read system call
is used to read a specified number of bytes from a file and
copy the values read to a buffer. To emulate this system call,
SimpleScalar invokes the read system call natively using the
contents of register EBX and EDX as arguments, where
EBX contains the file handle and EDX contains the size
of the buffer. The read system call also requires a pointer
to the location where the read contents need to be stored.
To accomplish this, SimpleScalar allocates a buffer of a size
specified by EDX register and passes the pointer to the read
system call. Once the system call returns, the contents of
the buffer are copied to the location whose address can be
found in the ECX register. Finally, the EAX register is writ-
ten with the error code returned from the native execution
of the read system call. Note that, the read call can modify
the memory location pointed to by ECX and the number of
locations modified is dependent on the size specified in the
register EDX. Thus, it is necessary to capture the system
effects on the memory locations.

For this example, EAX, ECX and EDX determine the
memory locations modified by the system call. Other system
calls have different interfaces (e.g. pointers to structures,
etc), and each case must be handled individually. These
memory inputs and outputs are system call specific and this
is why creating these emulation systems is tedious, error
prone, and hard to maintain.

4.1.3 Handling Asynchronousnterrupts and DMA

Emulating more complex interactions with the system
through asynchronous interrupts and DMA are even tougher
to handle in an execution driven simulator. It would require
modeling the full system including the external peripheral
devices, like in Simics [10]. Hence, applications affected by
interrupts and DMA are not supported in the user-level ar-
chitectural simulators [4, 19, 17], but our logging approach
captures the memory effects seen during application level
execution.

4.2 Providing Automated System Effects L og-
ging

The above implementation for logging system effects is not
desirable for a number of reasons. Note that handling sys-
tem calls involves identifying the input and output values of
each system call. This requires decoding and writing code
to handle each system call. This method is not portable
to simulate applications compiled for a different operating
system or even for a different version of the same operat-
ing system. In addition, pinLIT and SimpleScalar do not
support applications that use asynchronous interrupts and
DMA transfers. We solve these issues with our automated
system effect logging to capture all forms of system effects
which we describe next.

5. AUTOMATICLOGGING OF SYSTEM EF-
FECTS

In the previous sections, we described how popular cycle
accurate simulators [4, 19, 17] need to emulate system calls
to achieve correct program execution. For example, Sim-
pleScalar emulates 81 unique system calls to support simu-
lation of SPEC and similar programs. In comparison, the
pinLIT simulation tool used at Intel emulates 258 system
calls to support a much more wider range of applications
compiled for the most popular Linux kernels. Emulating
these system effects is tedious to implement, hard to main-
tain, and error prone.

In this section, we discuss an instrumentation tool that
can automatically capture system effects in a log, which
can then be used to guide architecture simulation. The
tool that we describe here can also support simulation of
multi-threaded programs on a time-shared uniprocessor sys-
tem, which is discussed in detail in Section 5.6. It can also
be extended to support deterministic simulation of multi-
threaded programs on multi-processor systems, but we leave
that for future work.

51 Overview

Our goal is to automatically capture all the system effects
to a program’s execution in a System Effect Log (SEL) which
can be used to replay the program’s execution and simulate
it without having to emulate any system effects. The SEL
replaces the system effect logging approach used for pinLIT
and the SimpleScalar EIO checkpoint trace described in Sec-
tion 3. Our logging approach is much easier to implement
and maintain, and it provides support for asynchronous in-
terrupts and DMA transfers, which are supported neither in
the pinLIT nor the SimpleScalar EIO tracing mechanism.

We built our system effect logger called pinSEL using the
Pin [9] dynamic instrumentation tool. We briefly describe
the key concept that allows us to automatically capture sys-
tem effects. Our algorithm is inspired by the checkpoint
scheme used in BugNet [12]. A straight-forward way to cap-
ture the system effects to a program execution is to log the
value of every single load instruction executed by the pro-
gram, and to log the register states and the PC value af-
ter handling a system call or an interrupt. However, this
method is clearly too expensive in terms of runtime and log
size overhead. Instead, we need to log a load value, only
if (a) the load is the first memory operation to access the
memory location or (b) the memory location accessed by
the load has been modified due to a system effect. We de-
termine the second condition by keeping track of a user-level
copy of the memory space that is read and written by the
application during execution. The redundant copy is called
the user-level copy, because it is maintained in the pinSEL’s
address space, and is updated by pinSEL for load and store
operations executed by the application. The user-level copy
is not updated when the system modifies the correspond-
ing application’s memory state while it is handling system
calls, interrupts or DMA transfers. Hence, if an applica-
tion’s memory location is modified due to a system effect,
and later if a load accesses the same location, pinSEL detects
a mismatch between its user-level copy and the correspond-
ing value in the application’s address space. When pinSEL
detects such a mismatch for a load, it can determine that the
program’s memory value has been changed by some system
event external to the program being profiled, and hence it
knows that the load value needs to be logged. We use a sim-
ilar mechanism to capture the system effects to the register

states before and after a system call or interrupt. Thus, for
a program’s execution, we are able to automatically log ex-
ternal system effects to its execution state, without having
to explicitly model and emulate the system interactions.

The SELs can then be used to deterministically replay
a program’s execution to guide architecture simulation and
avoid the need to emulate the system interactions. The sim-
ulation of application level execution is accurate as SELs en-
ables deterministic replay of program execution. However,
there can be slight inaccuracies (less than 1% error) while
simulating mis-speculated paths if those execution paths ac-
cess memory locations that have not been logged. We dis-
cuss this limitation in more detail in Section 5.8.2.

5.2 Introducing pinSEL

Our goal is to collect a System Effect Log (SEL) to guide
reproducible architecture simulation. The SEL contains the
initial register, program counter and memory (code and data)
values accessed by the program execution and all the system
effects to those memory and register states. In addition, for
multi-threaded programs executing on time shared unipro-
cessor systems, it also contains information about thread
interleaving which is discussed in Section 5.6. The SEL can
be for the complete execution of a program or just for a
sample of program execution. The sample could be hand
picked, or chosen using tools like SimPoint [16].

The SELSs are collected by dynamically profiling the pro-
gram execution using Pin. PinSEL is similar to pinLIT in
that it is used to collect checkpoint traces for simulation.
The difference is that in pinSEL, the system effects to both
memory and register states are captured using a generic al-
gorithm that is completely independent of the operating sys-
tem. As a result, unlike pinLIT, it can also easily capture
system effects due to interrupts and DMA transfers.

5.3 Dynamic Instrumentation

To profile a program using pinSEL, we execute the pro-
gram natively on the system that it was compiled for. Pin-
SEL then dynamically instruments the program binary, and
the SELs are gathered as the program executes. Pin [9]
provides interfaces that allows us to instrument classes of
instructions, specific functions, system calls and interrupt
events, allowing us to register call-backs to our analysis rou-
tines at those instrumentation points. When a pinSEL’s
analysis routine is invoked for an instrumentation event, pin-
SEL can examine the program’s architectural register and
memory states, update its internal data structures, and log
information to the SEL files if necessary. Then after we
are done with the analysis for an instrumentation event, the
program’s execution continues until the next instrumenta-
tion point before invoking an analysis routine again.

We use Pin’s interface in our pinSEL tool to instrument
every load and store instruction, so that the analysis routines
can keep track of user-level memory state of application’s
data sections and capture its initial state and subsequent
system effects to them. We also instrument every basic block
to log the initial state and system effects to code regions in
an application’s memory.

Finally, we instrument every system call and the interrupt
handlers. Pin allows us to register call-backs to our analy-
sis routines that are invoked before and after the execution
of system call and interrupt handlers, allowing pinSEL to
capture system effects to the register state.

54 Timestamps

Every log entry in SEL contains a timestamp that tells us

when that entry has to be used during simulation.

We use two types of timestamps in our logs - memory
operation count and instruction count. The current mem-
ory operation count of a program execution is the number
of dynamic load and store instructions executed since the
start of the logging, whereas instruction count is the total
number of instructions executed since the start of the log-
ging. Tracking instruction count at the granularity of every
instruction incurs high instrumentation overhead. Instead,
we update the instruction count only after executing a basic
block, where a basic block is a sequence of instructions with
a single entry and a single exit point.

The above two counts are tracked only for the applica-
tion’s execution (user code and user level libraries) and are
not updated during the execution of the system kernel code.
Hence, while simulating the application’s execution, we can
accurately keep track of these timestamps and determine
when to use a log entry. To reduce the size of the times-
tamp being logged, instead of logging the full memory and
instruction counts as the timestamp, we optimize the size
by just logging the difference between the prior count and
the new count for the current log entry.

55 System EffectsLog Files

A SEL for a program’s execution is composed of the fol-
lowing three log files, at a minimum.

5.5.1 CodeUpdate Log

The purpose of this log is to record the initial memory val-
ues of the code regions and the system effects to them. This
ensures that we can handle programs using self-modifying
code and dynamically loaded libraries. Each entry contains
(a) an instruction count and (b) the code contents of a basic
block and its size. During simulation, when the number of
instructions simulated is equal to the instruction count of
the next log entry to be used, we restore the logged code for
the basic block to the simulated memory before executing
the next instruction. The effective address for restoring the
code log entry is the simulated program counter (PC) value.
We therefore do not need to log the starting address for the
code block.

55.2 Data Update Log

The purpose of this log is to record the initial memory
values of the data regions and the system effects to them.
Each entry contains (a) a memory operation count, and (b)
the value of a load operation. During simulation, before ex-
ecuting a load operation, if the simulated memory operation
count is equal to the memory count of the next entry in the
log, the logged value is restored to the simulated memory.
The effective address which we should use to restore the log
value is the effective address of the simulated load, which
can be determined during simulation and hence need not be
logged.

55.3 Register Update Log

The purpose of this log is to record the initial states of the
architectural register values and the program counter values,
and capture subsequent updates to them due to the execu-
tion of both synchronous interrupts (system calls) and asyn-
chronous interrupts. At the beginning of execution, we log
the initial values of all the registers and the program counter
in this log. Then an entry in the log is created whenever we
encounter an interrupt with the following information: (a)
the instruction count, (b) the value in the program counter
before the execution of the interrupt, (c) the sequence of reg-

ister values modified by the interrupt handler along with the
name of the modified registers, and (d) the program counter
value after the execution of the interrupt, if it had been mod-
ified. The instruction count along with the PC value, before
the execution of the interrupt, together accurately capture
the time at which the interrupt was executed during the pro-
gram’s execution. During simulation, when it is time to use
an entry from this log, we restore the logged register values
in the corresponding simulated registers. Also, we restore
the logged PC value to the simulated program counter if it
was also logged. Note, any memory value updated by the
interrupt is logged in the Code and Data Update Log.

In addition to the above logs, SEL also records neces-
sary information to simulate multi-threaded programs on a
uniprocessor system which is described in Section 5.6. We
describe now how each of the above logs is created in more
detail.

5.5.4 Codeand Data Update Log

To capture changes in memory due to system interaction,
we maintain a data structure called the UserMemState in
pinSEL. The UserMemState keeps track of the values for
every memory location accessed by the application. The
values in UserMemState are updated only for the load and
store instructions executed by the application and not by the
system code. Thus, it keeps track of what we call user-level
memory state. It is essentially a hash map table, indexed
by the address. Each entry in the table mirrors 4KB of ap-
plication’s address space. The initial value for each address
location in the table is set to zero.

We instrument each load and store to keep track of data
values in UserMemState. To keep track of code regions in
the application’s address space, we instrument each basic
block.

Analysis for Store - Whenever the application executes
a store to an address in its address space, we update the
value in UserMemState for that address with the store’s out-
put value.

Analysis for Load - When executing a load, we check
if the value in the application’s memory for the load’s ef-
fective address differs from the corresponding value in the
UserMemState. If they differ, then it implies that, (a) it is
first time we are accessing that memory location or (b) the
accessed memory location has been modified by the system
while handling a system event. Note, if it is the first access
to the data address and the value loaded is zero, we do not
need to log it, because we initialize all of memory to zero
in our simulator. In addition, if the application’s store in-
struction modifies a memory location, then we would have
correctly updated the UserMemState when the store was ex-
ecuted. Therefore, whenever the load value is different from
the corresponding value in the UserMemState, we log the
value in the Data Update Log along with the current mem-
ory count. This ensures that we capture the initial memory
data values as well as system effects to them in the Data
Update Log.

If we have to log the value for the load because it differs
from the value in UserMemState, we also update the User-
MemState’s value for the load’s address with the new value
observed in the application’s memory. This is required to
make UserMemState consistent with the new value we found
in the application’s memory state, so that future loads to the
same location will not result in additional logs, unless it gets
modified due to a system effect.

During simulation, we initialize all the memory locations
to zero. Thereafter, before simulating a load instruction, if

the simulated application’s memory count is equal to the
memory count value of the next log entry, then we restore
the logged memory value to the simulated memory. To re-
store the value, we need to know the effective address of the
load instruction, which we would not have logged. However,
during simulation, we know the input operands for all the
instructions, including the load instruction, and hence we
are be able to compute its effective address and use it to
restore the value from the log.

Analysis for Basic Block - The Data Update Log cre-
ated by analyzing load and store instructions captures the
initial memory values and system effects to only the data
values accessed by the application. It does not contain the
instructions fetched for execution, unless they are loaded by
some load instruction.

For our analysis, an instruction fetch can essentially be
treated as a load from the address specified by the program
counter value. To capture the code, we instrument every
basic block in the program to register a call-back routine
that is invoked before the execution of each basic block. A
basic block is a sequence of instructions with a single entry
and a single exit point. This means, if the program control
reaches the beginning of a basic block, we can be assured
that all the instructions in the basic block are going to be
executed.

When our analysis routine is invoked just before the ex-
ecution of a basic block, we compare the N bytes of ap-
plication’s memory values at the location specified by the
program counter value with the corresponding values in the
UserMemState. If the comparison fails for any of the bytes,
then we log the value in the Code Update Log along with the
instruction count. Also, we update the value in UserMem-
State with the up-to-date value in application’s memory in
order to make them consistent.

During simulation, when the simulated instruction count
equals the instruction count in the next code log entry to be
consumed, we restore the code from the log to the simulated
memory using the address in the simulated program counter.

Handling Self~-Modifying Code and DLLs - Our mech-
anism ensures that we are able to handle applications using
self-modifying code. The Code Update Log captures the ini-
tial values in the code regions during execution. An appli-
cation using self-modifying code modifies itself by executing
store instructions, which will be deterministically replayed
during simulation. That is, we know the exact input and
output values for each store instruction and hence handling
self-modifying code is not an issue.

We can also handle applications using dynamically loaded
libraries (DLLs). A dynamic library can be loaded during
a program sample’s execution through the invocation of a
system call (eg: mmap system call in Linux). Since the Code
Update Log captures any changes to the code regions, it will
also capture the contents of the dynamically linked libraries
when they are fetched from memory for execution.

Note, a more light weight approach (in terms of run-time
overhead) for logging code is to integrate the code logging
with the run-time system used to execute the program, in-
stead of instrumenting every basic block. Using this type of
run-time system, no code can execute until it has first been
pre-processed. The first time it is executed, it will be ana-
lyzed once and the code to be executed will be logged. Then
the code will not have to be analyzed for logging again, un-
less it is modified. If there is self-modifying code, then the
code would be invalidated by the run-time system. It will
then be re-analyzed before it can execute again, and when it
is, it will be re-logged. The run-time system to support this

type of approach could be a virtual machine or a dynamic
binary instrumentation system like Pin. Since the code is
analyzed for logging only once before it is first executed, the
run-time overhead will be minimal compared to instrument-
ing every basic block.

5.5.5 Register Update Log

The Code and Data Update logs described in the previous
section can capture initial memory values and the system
effects to them. In addition, we also need to log the initial
register and program counter (PC) values, and system effects
to them due to the execution of a system call or an interrupt
handler.

At the beginning of the execution of a sample (chosen us-
ing sampling techniques like SimPoint [16]), we log the initial
values of the architectural registers and the program counter
in the Register Update Log. Thereafter, we create an en-
try in the log whenever the program execution encounters a
system call or an interrupt.

Pin [9] provides us APIs, SIGNAL_AFTER_CALLBACK
and SIGNAL_BEFORE_CALLBACK, to register call-backs
to our analysis routines before and after the execution of sys-
tem call (synchronous interrupt) and signal (asynchronous
interrupt) handlers.

Before the execution of a system call or an interrupt, we
record the state of all the application’s architectural register
values and the program counter value (which are accessible
through Pin’s interface) in pinSEL’s internal data structure.
Then right after the execution of the system call or the in-
terrupt, we compare the current register and PC states with
the recorded values. The values of the registers and PC for
which the comparison fail are logged in the log entry.

Each log entry also contains the instruction count and the
program counter value before the execution of the system
call or the interrupt. These two values, together constitute
a timestamp that tells us when the log entry should be used
during simulation. During simulation, we use the next log
entry from this log, if the simulated instruction count is
greater than or equal to the logged instruction count, and if
the simulated program counter value matches with that of
the logged PC value.

5.6 Simulating Multi-threaded Programs on
Uniprocessor Systems

Our approach also allows simulation of multi-threaded
programs on uni-processor systems. For each thread, we
create a SEL consisting of Code, Data and Register Update
log and all the data structures in the pinSEL used to cre-
ate these logs are kept private to each thread. Whenever a
new thread is created within a sample’s execution, we create
a Register Update Log for the thread and log the thread’s
initial register and program counter values. Thereafter, for
each system call or interrupt executed as part of the thread,
a new log entry in the thread’s Register Update Log is cre-
ated.

During simulation, we simulate the thread inter-leavings
just as they would occur on a uni-processor. To achieve this
we need to capture context switches and log sufficient infor-
mation about them in a Context Switch Log. This log file
is shared among all the threads in the program’s execution
and is created as follows. Whenever there is a context switch
from one thread to another, we create an entry in this log.
We detect context switches between the threads of the pro-
filed application as follows. Pin internally keeps track of a
unique thread ID for each thread and these IDs are accessi-
ble from the analysis routines. Inside each analysis routine,

we compare the current thread ID with the thread ID seen
by the last executed analysis routine. If they differ, then it
means that there was a context switch.

On detecting a context switch, we create an entry in the
Context Switch Log. The entry contains the thread IDs
of the thread that is context switched out and the thread
that is context switched in. Also, the log entry contains the
memory count corresponding to the last memory operation
executed by the thread that is context switched out. While
simulating a thread, we keep track of its memory count, and
if it equals to the memory count for an entry in this log,
then we know that the thread needs to be context switched
out. Also, we know which thread we should start simulating
next.

The above mechanism is useful for simulating multi-threaded
programs on uniprocessor systems by reproducing the thread
inter-leavings. Evaluating the utility of this simulation method-
ology and extending this to model multi-processor systems
is left for future work.

5.7 Atomic Analysis

In Section 5.5.4, we described our analysis functions that
can automatically capture the system effects to memory. To
record the Data Update Log, pinSEL’s analysis routine com-
pares the load value with the value in UserMemState when
executing every load. However, between the execution of the
analysis routine and the application’s load, there can be an
interrupt that modifies the memory value accessed by the
load. If so, the value seen by the analysis routine can be dif-
ferent from the value that is actually loaded. Essentially, the
execution of the application’s load and the analysis routine
is not guaranteed to be atomic. In addition to interrupts,
atomicity can also be compromised if a new thread that gets
context switched in, modifies the load’s memory location.

This is not a problem for single threaded SPEC programs,
but it needs to be handled for programs with asynchronous
interrupts, and multi-threaded programs with shared mem-
ory interactions. For those programs, we solve this problem
by keeping track of a bit for each thread, called the interfer-
ence bit. The interference bit is set for a thread when it is
context switched out or when it encounters an asynchronous
interrupt.

The interference bit is cleared before the execution of the
load for the thread. Then, after the execution of the load,
we check to see if the interference bit is still clear. If so, we
determine if we need to log the load’s value as described in
Section 5.5.4. However, if the interference bit is set, then
this means that either a context switch or asynchronous in-
terrupt occurred between executing the load and our logging
analysis code. If this is the case, we log the value of the load’s
output register in the Register Update Log along with the
current timestamp. During simulation, all that we need to
do is restore the logged register value in the simulated reg-
isters, after executing the load instruction corresponding to
the logged timestamp.

It should be noted that the above solution works even
if the “interfered” load operation is a complex x86 CISC
instruction that updates multiple memory locations with
newly computed values (eg: a read-modify-write instruc-
tion). This is because the UserMemState will contain the
value seen only by the analysis routine executed before the
interfered load. When a load accesses the modified memory
location in future, we will detect a mismatch between that
load’s value and the value in the UserMemState and log it
correctly in the Data Update Log.

Our basic block analysis can also be affected by interrupts

and context switches, which can be solved as follows. After
handling an asynchronous interrupt or when a thread gets
context switched back in, we compare the values of the cur-
rent basic block in the application’s memory with the values
in the UserMemState if the interference bit is set. If they
differ, we log it in the Code Update Log entry along with the
current timestamp. The timestamp we use for this log entry
comprises of both the current instruction count and the PC
value before the context switch or the interrupt execution.
Using this timestamp, we can precisely restore the logged
basic block contents during simulation. Note that, register
and PC values modified by the interrupt are logged in the
Register Update Log, as described in Section 5.5.5.

5.8 Architecture Simulation

PinSEL’s logging approach replaces the pinLIT logging
approach for system effects and SimpleScalar EIO traces
to deterministically guide the program’s execution through
simulation. The above sections describe how and when to
use each of the logs to guide simulation. We have imple-
mented a version of SimpleScalar that runs x86 binaries, and
have modified it to consume our logs to guide simulation. At
UCSD, we currently use pinSEL to collect SELs for Linux
applications which can then be used for simulating them in
x86 SimpleScalar. At Intel, we use the pinSEL approach of
logging system effects inside of pinLIT for Linux, Mac OS,
and Windows applications to guide architecture simulation.

5.8.1 Advantagesof PinSEL

The main advantage of using SELs we have described thus
far is our ability to automatically log system effects to avoid
emulation of system calls in simulators. Another advantage
of using our pinSEL approach is that the simulator can eas-
ily support the simulation of applications compiled for any
operating system as long as Pin [9] can support it.

The other advantage of using SELs is that it provides de-
terministic re-execution of the program to guide simulation.
Since the same SEL is used across all simulation runs, the
load instructions read exactly the same values and hence
the execution of the program follows the same path in all
the simulation runs. This is an important property that
helps us to simulate user interactive applications.

5.8.2 Limitation

Simulations based on checkpoints and traces can be af-
fected when it comes to simulating the wrong path (mis-
speculated path) in the program’s execution. When we sim-
ulate using pinSEL logs in SimpleScalar, it is still possible to
model the wrong path execution similar to execution driven
simulation. However, there could be slight inaccuracies in
the simulation, if the wrong path of execution tries to exe-
cute code or data that was neither logged nor is regenerated
during simulation. In such an event, the wrong path execu-
tion can either stop executing down the mis-speculated path
or it can proceed by consuming a null value.

Van Biesbrouck et.al. [2] examined this issue for their tech-
nique to reduce the checkpoint sizes which we described in
Section 2.3. Their simulation uses optimized checkpoints
that contain only the code and data addresses used during
the sampled simulation interval and as a result experience
the same problem as ours. However, they found that the
error in performance metrics due to the above inaccuracy is
less than a 1% on average. Moreover, this inaccuracy is con-
sistently biased in one direction across different simulation
runs for an application while exploring the architecture de-
sign space, enabling a fair comparison across different design

alternatives.

PinSEL’s utility is limited when we want to use it to study
applications whose performance is heavily dependent on sys-
tem interaction. For example, we may only be able to cap-
ture less than half of the execution of I/O bound applica-
tions like TPC-C [6] and other server applications like DSS
(Darwin Streaming Server), since they spend so much time
executing in system code. However, there are many inter-
active desktop applications like acroread and powerpoint,
etc, which spend 76% to 80% of their execution time in ap-
plication code and user level libraries [1] (non-kernel code),
which we will capture with our approach. This makes pin-
SEL useful to evaluate these types of applications.

6. LOGGING RESULTS

In this section we examine the runtime overheads in col-
lecting pinSEL logs along with the log size overheads for
most of the SPEC programs and a handful of desktop in-
teractive programs. We traced the execution of all these
programs using pinSEL, and used the logs in our x86 Sim-
pleScalar to simulate them.

6.1 Benchmarks

For this study we ran all the SPEC programs that we could
compile and run in our environment. We also ran a handful
of desktop interactive Linux programs. We first ran each
one natively for about two minutes, and then replayed the
same actions with the program instrumented with pinSEL
to gather the logs.

The programs we examined were xpdf, acroread, ggv, xv
and rdesktop. The first two are used to read PDF docu-
ments and ggv is used to read Postscript documents. xv is
an image processing application. rdesktop is used to re-
motely access a Windows system. We ran the first three
programs to open and read the files, browsed through them,
enlarged them and exited. We ran xv by using it to open
two JPEG images, zoomed in and out on an image and ran
an image sharpening utility that comes along with the ap-
plication over those images. For the rdesktop program, we
opened a connection to a windows machine, and browsed a
few web-sites using firefox and worked on a power-point
file before logging out.

6.2 Avoiding Software Complexity of System
Effects Emulation

One important result of this paper is that to collect logs
and to simulate a wide variety of applications, including real
interactive programs, and we do not have to provide any
system emulation support. In comparison, Intel’s pinLIT
has a large body of switch-case statements to handle each
of the 258 different system calls and it still can simulate
only a limited variety of applications. x86 SimpleScalar has
support for emulating only 81 different system calls which
is the set of system calls that are sufficient to simulate the
SPEC workload. However, this support is inadequate to
simulate interesting desktop applications.

Using our automated logging approach, we can now sim-
ulate any type of application in our x86 SimpleScalar. Also,
since our application level simulation approach is indepen-
dent of the operating system, it ensures the portability of our
simulator to any version of Linux operating system. The ap-
proach is easily portable to other operating systems, as long
as there is a binary instrumentation tool that can allow us to
collect SEL files, which is why at Intel, pinSEL has enabled
simulation of Windows and MAC OS based applications.

=]
o
‘0
n
S, g %
@QMu L QJ@ o, OW.v\
% @) g Yo
N - R o b 3 B
WO m (D) «0@ + mvmv\\
Q9 % ¥ % % 3 Y T
Ao S | A & & %,
. g |2 &, e %
> S % Y B %, 7
. 7 v | e %, 7 3 2
% \@Q\ 218 eo\,e i « o\,&
% % 519 0§ 4
peo) | 2 <
L. €& ¢ | w8, 2 % @
X @.\ <) Q,\, Z o ¥, o)
>} + Q, W O,
v S | @\@ IS) &
o %, o % i Y 5
z@ & IS %
%, g E) %
Q\. mv\v Q .m QN \vQ - W\Ou 0@ .m
X, D B 2, © ¥ 7 e
X K\mv w i % ® m < ¢ 2
) 2 =
% S @ %, “ g
rﬂQ Q (%) % C OMO b
G @ 3} %, ©) % %
X/ Qo = 5 [} %, x5
‘o > | a o %, It
@ @Q\ %5 %, % g 5 % 2
Y9, ¢ 2|8 Yoy ® = %, E
S, 4 = < S %, & o Y,
"0, %, 83 %, %, S hy,
S, . m %, % S &, 7 &
,\Q “7 g ,\Q +~ 0\ >
A, w n 2y 2 %% ®
Ty - |0 %, 2 %, T B
I o, 1§ %, 0 &
o % &L w0 = ot 5
B Q & = A g
O o, b 2 %, 7 2
ES) = .\w\ e <,
g 2 % .
eo,\ © = N 2 e &)
. = K 2 \ooe 2
D o B o o B . % 2
%) .¢QJ 20 QU <6 m 2N)
% QQ Wc “ 00.. o QOQ, A
2 —_ (S + ,\@.
% = Yo » "%,
m‘O 9 &= % va, m % °
o, Xa %, @ %>.
¢ =i ¢ 80 %
\@,ﬁ ® = Qo %2 %, ®
b, < - “
®, &, o & %
R Nl T A e
S B & ’ & % 9 Q@ © A « o %, .mz 88888¢s8- oenv Q9
QR 9 an R o O « o b a SESBSR-Es! % S g
% & S o o . O\V & 556649 7 (==}
S S % af g8 » 8=
-
V)
aX3 aAlleN J9A0 UMOPMO|S di\ ul azIs 13S 5 a0 s|[e9sAS J0 oIweuAq # gy ulezis 13s
B0 o
o= N
[CT -]

Figure 4: SEL size required to capture a simulation point of 100M instructions for each SPEC program on

average, without compression.

Though our mechanism can enable simulation of any ap-
plication in our x86 SimpleScalar, as we pointed out in Sec-
tion 5.8.2, the evaluation will be meaningful only for those
applications that spend a significant proportion of execution
time in the application and user level shared libraries.

6.3 Log Sizesand L ogging Overhead

We now examine the runtime and space overhead in gener-
ating SEL logs for the full execution of the SPEC programs.
For this, we ran the SPEC programs over the reference in-
puts with the pinSEL tool to generate the logs.

We used a hash map table (UserMemState) indexed by the
address. Each entry in the hash table keeps track of 4KB
of data or code. Figure 1 shows the slowdown for running
the program with our pinSEL tool. The runtime overhead
is with respect to natively executing the workload. We can
see that the worst case runtime overhead is about 163x for
vortex. On average, we experience slowdown of about 89x.
These overheads are for tracking the full execution of the
program. Also, we can notice that the runtime overhead
due to instrumentation for programs that usually have low
IPC (eg: mcf) is only in the order of 10x to 20x. Whereas,
programs with high IPC experience slowdowns in the order
of 150x (crafty, eon and vortex).

Figure 2 shows the log sizes for capturing the SEL for the
full execution of SPEC programs that we studied. The re-
sults show log sizes with and without compressing the logs
using bzip2 using the default compression level. In the worst
case, we require about 866 MB of un-compressed SEL to cap-
ture the full execution of gzip, and we only require 291MB
of SEL after compressing it using bzip2. On average, we re-
quire only about 115MB of uncompressed SEL, which when
compressed requires only 22MB of disk space to capture the
full execution of a SPEC program running the reference in-
put. The sizes of SELs are dependent on the number of
system calls executed and are also heavily dependent on the
amount of data read from the system through those sys-
tem calls. Since gzip reads a large amount of data from
the files through system calls to perform compression and
decompression, it incurs a large log size overhead.

Figure 3 shows the total number of system calls executed
in the SPEC programs that we studied. On average, there
are about 11,400 system calls executed during the full exe-
cution and in the worst case for sixtrack there are about
104,000 system calls being executed.

6.4 Log SizesPer Simulation Point

It is a common practice in computer architecture to choose
representative samples of program execution [16] and per-
form detailed simulation only for those samples to save sim-
ulation time. Hence, we would now like to quantify the SEL
size overhead for capturing an arbitrary sample of program
execution.

To quantify the average SEL size for an arbitrary sample,
we broke each program’s execution into 100 million consecu-
tive intervals (samples). For a program, we collected a SEL
from scratch for each interval. To create a SEL for an inter-
val, we clear all the entries in the pinSEL’s data structures
(e.g., UserMemState, register values, etc) at the beginning
of the interval of execution. This will ensure that the SEL
captured for an interval of execution (sample) has sufficient
information to replay the program’s execution starting at
the beginning of that sample. Thus, using a SEL for a given
sample we can simulate the sample’s 100 million instruc-
tions.

Figure 4 shows the average SEL size (without compres-

SEL Log Size
MB / 100 million Loads

Figure 5: SEL size required to capture 100 million
load instructions for interactive desktop applications
with compression.

1000000
100000
10000
1000
100

10

1

Loads / Interrupt

\.OQ \rbge
< & \4
" &
Figure 6: Average number of loads executed be-
tween two interrupts (including system calls and

asynchronous interrupts).

sion) for 100 million instructions of execution for each pro-
gram. The SEL size shown for a program is an average of
the SEL sizes of all 100 million intervals for the program.
The results show that on average, we require 4 MB of SEL
to capture a program’s 100 million instruction sample. We
can see that in the worst case, for equake, we require 26MB
of SEL to capture a sample of program execution (100 mil-
lion instructions). But as we show in Figure 2, the SEL
size required to capture the full execution of equake is only
0.54MB. We observe similar results for mcf, wupwise, ammp,
art, galgel and lucas.

The reason for this difference is that for an arbitrary sam-
ple, we have to log all the data live coming into the sample
which are used (through a load) before getting redefined
(through a store) during the sample’s execution. In the
worst case, this could be potentially be every single load ex-
ecuted in an arbitrary sample of execution. In comparison,
when we start generating a SEL from the start of execution,
the only data that is live to that SEL is the data read from
the global data segment and input data files used during ex-
ecution. All the other data generated by the program itself
during its execution are not logged when we are generat-
ing one SEL starting from the beginning of execution. This
is the reason for the average sample size for a SEL being
larger than the size of a single SEL generated for the full
execution. A similar observation was made by Bronevetsky
et.al. [3] in their design of a checkpoint and recovery system.
They choose to create a checkpoint of the application’s state
during program execution when the amount of live data is
smaller, so that the resulting checkpoint size is also smaller.

6.5 Log Sizesfor Non SPEC Programs

We also gathered logs for a few interactive desktop ap-
plications which we can now simulate easily in x86 Sim-
pleScalar. We executed each of these interactive programs

for a few minutes performing some common tasks. Figure 5
shows the average SEL size (with compression) required to
capture 100 million load instructions. On average, we re-
quire about 4.4MB of compressed SEL to capture 100 mil-
lion load instructions for these interactive applications. We
also show the average number of load instructions executed
between two system calls or interrupts in the Figure 6 for
these applications. It varies from 1000 load instructions for
gv, which incidentally also requires the largest SEL size,
to about 460,000 load instructions for xv, which requires a
smaller SEL size.

7. SUMMARY

One of the primary requirements for an architectural per-
formance simulator is the ability to handle interactions with
the system through system calls, asynchronous interrupts
and DMA transfers. Conventional solutions such as Sim-
pleScalar and pinLIT provide system support by emulating
system calls, and they do not provide support to deal with
asynchronous interrupts nor DMA transfers.

In this paper we presented an automated logging solution
for capturing system effects. We capture the system effects
without the knowledge of the semantics of any system inter-
action. This was accomplished using a binary instrumenta-
tion tool to gather system effect logs, which are then used
to guide architecture simulation. This approach is very easy
to implement and is easy to port to other operating systems
and architectures. Previously, SimpleScalar was capable of
emulating only 81 system calls, which essentially limited its
use to SPEC workloads. But with the help of our pinSEL
logging support, it is now capable of simulating any linux
application. As a result, any application that spends sig-
nificant amount of time in application code and user level
shared libraries can be evaluated using SimpleScalar.

Our pinSEL tool and a version of x86 SimpleScalar that
can consume SEL can be downloaded from:
www.cse.ucsd.edu/users/calder/sims/

Acknowledgments

We would like to thank the anonymous reviewers for provid-
ing helpful comments on this paper. We would also like to
thank Geoff Lowney and the rest of the Pin team for their
support. We thank Steven Wallace and C K Luk for help
with the Windows and MacOS port of pinL.IT, and Mahesh
Madhav for his consultation for the userLIT approach. This
work was funded in part by NSF grant No. CCR-0311710,
NSF grant No. CCF-0342522, UC MICRO grant No. 05-115,
and a grant from Intel.

8. REFERENCES

[1] R. Bhargava, J. Rubio, S. Kannan, L. K. John, D. Christie,
and L. Klaes. Understanding the iimpact of x86/nt
computing on microarchitecture. In Chapter 10. Workload
characterization of emerging computer applications.
Kluwer Academic Publishers, 2001.

[2] M. Van Biesbrouck, L. Eeckhout, and B. Calder. Efficient
sampling startup for sampled processor simulation. In
International Conference on High Performance Embedded
Architectures and Compilers, November 2005.

[3] Greg Bronevetsky, Daniel Marques, Keshav Pingali,

Peter K. Szwed, and Martin Schulz. Application-level
checkpointing for shared memory programs. In Proceedings
of the Symposium on Architectural Support for
Programming Languages and Operating Systems, pages
235-247, 2004.

[4] D. C. Burger and T. M. Austin. The SimpleScalar tool set,
version 2.0. Technical Report CS-TR-97-1342, University of
Wisconsin, Madison, June 1997.

[5] H. Cain, K. Lepak, B. Schwartz, and M. Lipasti. Precise
and accurate processor simulation. In In Proceedings of the
Fifth Workshop on Computer Architecture Evaluation
Using Commercial Workloads (CAECW), 2002.

[6] The Transaction Processing Performance Council. Tpc
benchmark c: Standard specification.
http: //www.tpc.org/tpee/spec/tpec current.pdf, Dec 2003.

[7] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.K. Luk,

S. Manne, S. S. Mukherjee, H. Patil, S. Wallace,
N. Binkert, R. Espasa, and T. Juan. Asim: A performance
model framework. Computer, 35(2):68-76, 2002.

[8] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and
B. Calder. The strong correlation between code signatures
and performance. In ISPASS, March 2005.

[9] C. K Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building customized program analysis tools with
dynamic instrumentation. In Programming Language
Design and Implementation, Chicago, IL, June 2005.

[10] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hllberg, J. Hgberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A full system simulation platform.
Computer, 35(2):50-58, 2002.

[11] C. J. Mauer, M. D. Hill, and D. A. Wood. Full-system
timing-first simulation. SIGMETRICS Perform. Ewval.
Rev., 30(1):108-116, 2002.

[12] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet:
Continuously recording program execution for deterministic
replay debugging. In ISCA, June 2005.

[13] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi. Pinpointing representative portions of
large Intel Itanium programs with dynamic
instrumentation. In MICRO-37, December 2004.

[14] J. Ringenberg, C. Pelosi, D. Oehmke, and T. Mudge.
Intrinsic checkpointing: A methodology for decreasing
simulation time through binary modification. In
ISPASS’05, March 2005.

[15] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod.
Using the simos machine simulator to study complex
computer systems. Modeling and Computer Simulation,
7(1):78-103, 1997.

[16] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behavior.
In ASPLOS-X, October 2002.

[17] R. Singhal, K.S. Venkatraman, E. Cohn, J.G. Holm,

D. Koufaty, M.J. Lin, M. Madhav, M. Mattwandel,

N. Nidhi, J. Pearce, and M. Seshadri. Performance analysis
and validation of the intel pentium 4 processor on 90nm
technology. In Intel Technology Journal, February 2004.

(18] P.K. Szwed, D. Marques, R.M. Buels, S.A. McKee, and
M. Schulz. Simsnap: Fast-forwarding via native execution
and application-level checkpointing. In Proc. HPCA 2004
Interact-8: Workshop on the Interaction between
Compilers and Computer Architectures, February 2004.

[19] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L.
Lo, and R. L. Stamm. Exploiting choice: Instruction fetch
and issue on an implementable simultaneous multithreading
processor. In ISCA, pages 191-202, 1996.

[20] R. Uhlig, R. Fishtein, O. Gershon, I. Hirsh, and H. Wang.
Softsdv: A pre-silicon software development environment
for the ia-64 architecture. In Intel Technology Journal,
December 1999.

[21] Roland E. Wunderlich, Thomas F Wenisch, Babak Falsafi,
and James C. Hoe. SMARTS: Accelerating
microarchitecture simulation via rigorous statistical
sampling. In ISCA-30, June 2003.

[22] J. J. Yi, S. V. Kodakara, R. Sendag, D. J. Lilja, and D. M.
Hawkins. Characterizing and comparing prevailing
simulation techniques. In HPCA-11, February 2005.

