Reducing Indirect Function Call
Overhead In C++ Programs

Brad Calder and Dirk Grunwald*
(Email:{cal der, grunwal d}@s. col or ado. edu)
Department of Computer Science,

Campus Box 430, University of Colorado,
Boulder, CO 80309-0430

Abstract

Modern computer architectures increasingly depend on mecha-
nismsthat estimate future control flow decisionsto increase perfor-
mance. Mechanisms such as speculative execution and prefetching
are becoming standard architectural mechanismsthat rely on control
flow prediction to prefetch and speculatively execute future instruc-
tions. At the same time, computer programmers are increasingly
turning to object-oriented languagesto increase their productivity.
These languagescommonly userun time dispatching to implement
object polymorphism. Dispatchingisusually implemented usingan
indirect function call, which presents challengesto existing control
flow prediction techniques.

We have measured the occurrence of indirect function callsin a
collection of C++ programs. We show that, although it is more im-
portant to predict branchesaccurately, indirect call predictionisalso
an important factor in some programs and will grow in importance
with the growth of object-oriented programming. We examine the
improvement offered by compile-time optimizations and static and
dynamic prediction techniques, and demonstratehow compilers can
use existing branch prediction mechanismsto improve performance
in C++ programs. Using these methods with the programs we ex-
amined, the number of instructions between mispredicted breaksin
control can be doubled on existing computers.

Keywords: Object oriented programming, optimization, profile-
based optimization, customization

1 Introduction

The design of computer architectures and languagesare tightly en-
twined. For example, theadvent of register displacement addressing
enabled efficient implementation of Algol and the increased use of
COBOL emphasized the use of BCD arithmetic. Likewise, the C

*This paper appeared in the ACM Principles and Practice of Programming Lan-
guages, Portland, Oregon 1994.

and FORTRAN languages have become ubiquitous, strongly influ-
enced RISC processor design. Object-oriented programming has
recently gained popularity, illustrated by the wide-spread popular-
ity of C++. Object-oriented languages exercise different aspects
of computer architectures to support the object-oriented program-
ming style. In this paper, we examine how indirect function calls,
used to support object polymorphism, influence the performance
of an efficient object oriented language. Modern architectures us-
ing deep instruction pipelines and speculative execution rely on
predictable control flow changes, and indirect function calls cause
unpredictable changes in program control flow. For example, the
DEC Alpha AXP 21064 processor, one of thefirst widely-available
deeply pipelined superscalar microprocessors, stalls for 10 instruc-
tionsif the processor mispredictstheflow of control. Thisincreases
if the mispredicted target is not in the instruction cache and must
be fetched. As systemsincreasingly rely on speculative execution
[19, 16], theimportance of control flow prediction will increase.

In most programs, conditional branchesintroduce the main un-
certainty in program flow, and architectures use avariety of branch
prediction techniques to reduce instruction cache misses and to
insure instructions are available for the processor pipeline. Most
function calls specify explicit call targets, and thus most function
calls can be trivialy predicted. Control flow prediction is just as
important in object-oriented programs, but these languagestend to
use indirect function calls, where the address of the call target is
loaded frommemory. Fisher etal [12] said indirectionfunctioncalls
“. .. are unavoidable breaksin control and there are few compiler
or hardware tricks that could allow instruction-level parallelism to
advance past them”. By accurately predicting the calling address,
the processor can reduceinstruction stallsand prefetch instructions.

Our results show that accurately predicting the behavior of indi-
rect function calls can largely eliminate the control-flow mispredic-
tion penalty for using static-typed object-oriented languages such
as C++. Figure 1 showsthe normalized execution time for avariety
of C++ programs. We measured the number of instructions exe-
cuted by each program, and collected information concerning the
conditional branches and indirect function calls executed by each
program. Although we measured the programs on a DECstation-
5000, we simulated the branch misprediction characteristics of a
deeply pipelined superscalar architecture, similar to the DEC Al-
pha AXP 21064.

For each program, each bar indicates the number of machine
cyclesspent executing instructions and suffering from thedelay im-

posed by mispredicting control flow under different assumptions.
A valueof ‘1’ indicates the program spendsno additional time due
to delays, whileavalue of ‘2’ indicatesthe program would execute
twice as slowly. The left-most bar indicates the delay that would
be incurred if every control flow change was incorrectly predicted
or there was no prediction. The next bar indicates the increase in
execution if only conditional branches are predicted, using static
profile based prediction. The next three bars indicate the decrease
in execution time if branches and indirect function calls are cor-
rectly predicted, using three different techniques described in this
paper. For the programs we measured, we found we could improve
performance 2%-24% using these simple techniques; the final im-
provement depends on the number of indirect function calls, how
program libraries are used and the underlying architecture. Archi-
tectures that have deeper pipelines or that issue more instructions
per cycle would evince greater improvement.

We areinterested in reducing the cost of indirect function calls
(I-calls) for modern architectures. If a compiler can determine a
uniqueor likely call target, indirect function calls can be converted
to direct calls for unique call targets. Likewise, compilers may
choose to inline likely or unique call targets. Inlining I-calls not
only reducesthe number of function calls, it exposes opportunities
for other optimizations such as better register allocation, constant
folding, code scheduling and the like. However, type inferencing
for C++ programsis an NP-hard problem [22], and will be difficult
tointegrate into existing compilers, becauseaccuratetypeinference
requiresinformation about the entire type hierarchy. Thisinforma
tion is typically not available until programs are linked, implying
that type-determination algorithmswill require link-time optimiza-
tion.

We areinterested in more subtle optimizationsthat have amod-
est, albeit respectable, performance improvement. Many of the
optimizations and code transforms rely on modifying an existing
program executable and the possibility of assisting the compiler
with profile-based optimizations. When we began this study, we
asked the following questions:

e Could we predict how frequently compiler-based methods
could eliminate indirect function calls?

¢ How accurateis profile-based prediction? Are dynamic pre-
diction methods more accurate?

e Can we use existing branch prediction hardware to predict
indirect function calls?

¢ How effective are combinations of prediction techniques?

e What type of other compiler optimizations can be applied
towardsindirect function calls, in order to improve their per-
formance?

To date, our experimentation hasdemonstrated that although object-
oriented libraries support object polymorphism, the target of most
indirect function calls can be accurately predicted, either from prior
runs of the program or during aprogram’s execution. Furthermore,
many existing C++ programs can be optimized naively by alinker,
using information about the C++ type system. The optimization
we examine involves converting an indirect function call that only
calls aunique function name into a direct function call. For more

sophisticated compilers with link-time code generation, significant
optimization opportunities exist. Lastly, a compiler optimization
that we term I-call if conversion can be used to increase the perfor-
mance of indirect function calls. This information can be used by
asimple profile-based binary modification to improve execution on
existing C++ programs by 2-24% on modern architectures.

We measured the behavior of avariety of publicly available C++
programs, collecting information on instruction countsand function
cals. Thisinformation isalso part of alarger study to quantify the
differences between C++ and conventional C programs [7]. In
this study, we show that call prediction isimportant for many C++
programs and show to what extent static, dynamic and compile-
directed methods can reduce indirect function call overhead. We
also demonstrate the opportunity for profile-based optimization in
the C++ programswe measured. Theseoptimizationscan profitably
be applied to existing architectures that incur significant control-
flow misprediction penalties.

The results we present are divided into two portions; the first
considers applying hardware branch prediction mechanismsto ex-
isting C++ programs, while the second considers additional profile
based optimizations that can be applied to C++ programs. In §2,
we discuss some relevant prior work. In §3, we describe the ex-
perimental methodology we used and describe the programs we
instrumented and measured. In §4 we compare the various |-call
predi ction mechanismswe studied and summarize how we canim-
prove the performance of existing C++ programs.

2 Prior Work

A considerableamount of research has been conducted in reducing
the overhead of method callsin dynamically typed object-oriented
languages. Many of the solutions relevant in that domain apply to
the optimization of compiledlanguagesusing |-cals, asin C++. We
will discussthese shortly. Furthermore, numerousresearchershave
examined the similar issue of reducing branch overhead. Since
both function calls and branches dlter the control flow, there is
considerable overlap in our work, yet substantial differences as
well. One such differenceisthat aconditional branch hasonly two
possible targets, while an indirect function cal can have a large
number of potential targets. We have measured programs with 191
different subroutinescalled from asingleindirect functioncal. This
makes brancheseasier to predict. Some dynamic branch prediction
mechanismsachieve ~ 95%— 97% prediction accuracy [21, 27, 29].
Thislevel of accuracy is needed for super-scalar processorsissuing
several instructions per cycle[28].

The most relevant prior work was on predicting the destina-
tion of indirect function calls with hardware conducted by David
Wall [26] whileexamining limitstoinstructionlevel parallelism. He
states “ Little work has been done on predicting the destinations of
indirect jJumps, but it might pay off in instruction-level parallelism.”
He simulates static profile based prediction and infinite and finite
dynamiclast call prediction, and findsthey accurately predict I-call
destinations; however, the benefit of I-call prediction was minimal
because he only examined C and Fortran programs. We go beyond
his research by (1) showing that I-call prediction is important for
C++ programs, (2) that compile-time optimizations can be com-
bined with static profile based prediction to increase a programs

Branches, I-calls, Unique & IF Conv
2.23) (2.32) (1.97) (2.09) (2.32) (2.35) (1.70)

No Prediction

Branches Only

Branches & Icalls
Branches, I-calls & Unique

12— —1B—— |- — g1

Normalized Number of Instructions

0.8 - — — — — — =
Congress Doc [o] Idraw Groff Morpher Rtsh

Figure 1: Normalized Execution Time of Various C++ Programs, Including Expected Instructions and Stalls Due to Mispredicted Control
Flow, For A Computer Similar to DEC Alpha AXP 21064.

performance, (3) that simple techniques yield very accurate I-call
prediction ratesand, (4) we do amorein-depth comparison between
different static and dynamicmechanismsfor doing I-call prediction.

2.1 Compiler Optimizations

Two classesof compiler-oriented optimizations are most relevant to
our research. A large body of research exists in dataflow analysis
to determine the set of possible call targets for a given call site.
Ryder[24] presented a method for computing the call-graph, or set
of functions, that may be called by each call site using dataflow
equations. More recent work by Burke[4] and Hall[13] has refined
this technique. All of this work characterized programs where
procedure values may be passed as function parameters. Others,
including Hall [13], also examine functional programs. More re-
cently, Pande and Ryder[22] have shown that inferring the set of
call targetsfor call sitesin languageswith the C++ type systemisa
NP-hard problem.

In this paper, we seek to minimize pipeline stallsusing informa-
tion concerning the frequency of calling specific call sites. Unless
the previous agorithms can determine a unique call target, more
information is needed for I-call prediction. However, the results
of this study indicatesthat single call targets occur frequently, and
the techniquesin e.g., Ryder [22] may be very successful in prac-
tice. To our knowledge, there has been little work in specifying
the probability of specific call targets being called using dataflow
techniques.

By comparison, there has been considerable work in adaptive
runtime systems to reduce the cost of polymorphism in dynami-
cally typed languages. Most recent, and foremost, in these efforts
is the work by the SELF project [8, 9, 14] on customization of
method dispatches and extensive optimization of method lookup.
SELF is a dynamicly-typed language, providing a rich set of ca-
pabilities not present in statically-typed languages such as C++.
However, statically-typed languagessuch as C++ are very efficient,
using a constant-time method dispatch mechanism. Statically-type
obj ect-oriented languagesare popul ar becauselesscompiler effortis
needed to achieve reasonabl e performance and the object-oriented
programming style encourages software resources and structured
software libraries.

Customization and other optimizations have produced consid-
erable performance improvement in the SELF implementation. In
many ways, we are extending some of the optimizations explored
by the SELF project to the C++ language. However, we must rely
on hardware for “customization” (e.g., prediction hardware) rather
than software, becausemost C++ implementations are already very
efficient. For example, an indirect function call in C++ takes seven
instructions on a DECstation—reducing this cost to greatly improve
the performance of an applicationis difficult. We also feel that the
results of our research will benefit prototyping languages such as
SELF and SmallTalk as those languages are further optimized for
modern architectures. There are also secondary effects to these
optimizations. In certain cases, our codetransformationswill allow
function inlining, facilitating further optimization.

SELF usesan“inline cache” to speedindirect function calls. The
inline cache recordsthe last target addressfor each cal site; when
amethod is called, the jump target is recovered from the software

cache. In [14], Holzle et al found that they could improve per-
formance by converting an inline cache accessinto a polymorphic

inline cache (PIC) lookup. The PIC encodesa data-dependent type
check in a*“stub” procedure, dynamically modifying the program;

this reduces searching for the appropriate method for a given data
type. We use a similar technique we termed “if-conversion,” de-

scribed later in this paper. We convert an indirect call into atype
check and a direct method call when trying to optimize an indirect

cal site. The main differences between our two methods is that
weare compiling for a staticly-type object oriented language (C++)

and Holzle et al. are compiling for the dynamicly typed language
SELF. We use static profiling to gather our dataand use an instruc-

tion cost model to decide whether a call site could benifit from ‘if
conversion’. Our method also benifitsfrom indirect jump hardware
predicition. The SELF system buildsthe PIC stub tablesat run-time,
adding all method typesfor acall site to the ‘stub’ function. Indi-
rect jump hardware prediction is of little benifit for SELF because
the dynamic method lookups are not implemented asindirect jump
instructions.

2.2 Branch Prediction

Thereareanumber of mechanismsto amelioratethe effect of uncer-
tain control flow changes, including static and dynamic branch pre-
diction, branch target buffers, delayed branches, prefetching both
targets, early branch resolution, branch bypassing and prepare-to-
branch mechanisms [18]. Conventional branch prediction studies
typically assume there are two possible branch targets for a given
branch point, because multi-target branches occur infrequently in
most programs. Rather than present a comprehensive overview of
thefield, wefocuson methodsrel ated to the techniqueswe consider
in this paper.

Some architectures employ static prediction hints using either
profile-derived information, information derived from compiletime
analysis or information about the branch direction or branch op-
code [25, 20, 2]. Wall[26] found profile-driven static prediction
to be reasonably accurate for indirect function calls. Fisher and
Freudenberger [12] found profile-derived static prediction to be ef-
fective for conditional branches, but they hypothesizethat inter-run
variations occurred because prior input did not cover sufficient ex-
ecution paths, and our results provide support for their hypothesis.
In general, profile based prediction techniquesoutperform compile-
time prediction techniques or techniques that use hueristics based
on branch prediction or instruction opcodes.

Some architectures use dynamic prediction, either using tables
or explicit branch registers. A branch target buffer (BTB) [17, 23]
isasmall cache holding the address of branch sites and the address
of branch targets. There are myriad variations on the general idea.
Typically, the cache contains from 32 to 512 entries and may be 2
or 4-way associative. The address of a branch site isused as atag
in the BTB, and matching datais used to predict the branch. Some
designs include decoded instructions as well as the branch target.
Other designs eliminate the branch target address, observing that
most branchesonly go one of two ways (taken/not taken).

Still other designseliminate the tag, or branch site addressfrom
the table. These designs use the branch site address as an index
into a table of prediction bits. This information can actually be

the prediction information for another branch. However, there's
at least a 50% chance the prediction information is correct, and
this can be improved somewhat [5]. The most common variants of
table-based designs are 1-bit techniques that indicate the direction
of the most recent branch mapping to a given prediction bit, and
2-bit techniques that yield much better performance for programs
with loops[25, 17, 20]. Theadvantageof thesebit-table techniques
isthat they keep track of very little information per branch site and
are very effective in practice.

Lastly, somecomputersuseexplicit branchtarget addressregis-
ters(BTARs) to specify thebranch target [11, 1]. Thishasnumerous
advantages, because branch instructions are very compact and eas-
ily decoded. BTARs can be applied to both conditional branches
and function calls, and the instructions loading branch targets can
be moved out of loops or optimized in other ways. Furthermore,
addresses specified by explicit branch target registers provide ad-
ditional hints to instruction caches, and those instructions can be
prefetched and decoded early. However, most proposed implemen-
tations provide only 4-8 BTARS[1]. The contentsof theseregisters
will probably not be saved acrossfunction calls. Thus, instructions
mani pulating the BTARs must occur early in theinstruction stream
to effectively use BTARS.

At first glance, some of thesetechniques, such asbit-table tech-
niques, do not appear applicableto I-call prediction, because indi-
rect function calls can jump to a number of call targets. Later, we
show how profile-based I-call if conversion can use these mecha-
nisms.

3 Experimental Design

Our comparison used trace-based simulation. Weinstrumented
anumber of C++ programs, listed in Table 1, using a modified ver-
sion of the QPT[3] program tracing tool. We emphasized programs
using existing C++ classlibraries or that structured the application
in amodular, extensible fashion normally associated with object-
oriented design. A more extensive comparison between the char-
acteristics of C and C++ programs can be found in [7]. Empirical
computer scienceis alabour-intensive undertaking. The programs
were compiled and processed on DECstation 5000's. Three C++
compilers(Gnu G++, DEC C++, AT& T C++ V3.0.2) wererequired
to successfully compileall programs, much of thisoccurred because
the C++ languageis not standardized. This collection of programs,
when instrumented, consumed ~ 1Gb of disk space. Despite the
good performance of the QPT tracing tool for conventional pro-
grams, it offers little trace compression in programs using indirect
cals.

We constructed asimulator to analyzethe program traces. Typ-
ically the simulator wasrun onceto collect information on call and
branchtargets, and asecondtimeto use predictioninformation from
the prior run. For one program (GROFF), we compared predictions
using input from differing runsto better assessthe robustnessof our
results.

We modified QPT to indicate what caused a basic-block tran-
sition (a direct branch, indirect branch or fall-through) and record
whether a function call was caused by adirect or indirect call. For
most programs, we were also able to indicate what functions were

C++ methods. ! We classified unpredictable breaksin control into
three classes: a2Brsis aconditional branch, a >2Brsis abranch
with multiple destinations, usualy arising from swi t ch or case
statements, and an |-call is an indirect function call. Table 2 lists
the number of occurrencesfor each type of unpredictable break in
control for the different programs. We show three entriesfor GROFF
because we use these three executions for coverage analysis later.

Entriesin the column* SitesFrom Trace' lists the number of branch
or call sites of that type encountered during the program execution.
For example, Doc actually has 2,367 indirect function calls, but
we only encountered 1,544 of those calls during the program ex-

ecution. The heading “ Occurrences During Execution’ lists the
number of times breaks of that type appear during program execu-
tion. Thus, there were 5, 310, 059 indirect function calls when we
traced Doc. Approximately 99% of theindirect calls wereto C++
methods, except in GROFF, where 95% were to methods.

4 Performance comparison

There are many metrics that can be used to compare I-call
prediction and combined I-call and branch prediction techniques.
Table 3 shows the number of instructions between breaks (NIBBs)
without branch or I-call prediction. We tracked only breaks in
control flow that will cause a long pipeline delay. These breaks
are conditional branches and indirect calls. Returns also cause a
long pipeline stall, but returns can be accurately predicted by using
areturn stack [15], and we did not track these. We assume that
unconditional branches, procedure calls and assigned gotos are ac-
curately predicted. These control-transfer instructions, conditional
branches and I-calls can aso cause an instruction misfetch penalty
becausethey must be decoded before the instruction stream knows
the instruction type. Thus, the instruction fetch unit may incor-
rectly fetch the next instruction, rather than the target destination.
In another paper [6], we show how these misfetch penalties can be
avoided using extrainstruction type bits and/or asimpleinstruction
type prediction table, coupled with the techniques discussedin this
paper.

If we are only considering conditional branches and indirect
calls. Wewould expect the parametersin Table3to besimilar for C
and C++ programs. To the contrary, we found that our sample C++
programs had ahigher number of instructions between breaks, indi-
cating that C++ programstend to either be more predictablethan C
programsor, they useadifferent linguistic construct for conditional
logic. For example, consider a balanced-treeimplementation in C
and C++. A C programmer might implement a single procedure
to balance a tree, passing in severa flagsto control the actual bal-
ancing. A C++ programmer, on the other hand, would tend to use
inheritance and the object model to provide similar functionality.
Thus, it is not surprising that C++ programs tend to have more
procedure calls and fewer conditional operations|[7].

In the remaining tables, we only show the mean NIBB for each
program and usethe harmonic mean of the NIBB asasummary. We
also use the percent of breaks predicted (%BP) to understand how
well various techniques predict bresks. This metric, or the more
common misprediction rate, is commonly used to compare branch
prediction mechanisms. However, note that the %BP metric does

We could not extract this informationfor IbL, which was compiled by DEC C++

| Name

Description

CONGRESS | Interpreter for a PROLOG-like language. Input was one of the exampl es distributed with CONGRESS
for configuration management.

Doc Interactive text formatter, based on the InterViews 3.1 library. Input was briefly editing a 10 page
document.

GROFF Groff Version 1.7 — A version of the “ditroff” text formatter. Oneinput was a collection of manual
pages, another input was a 10-page paper.

IDL Sample backend for the I nterface Definition Language system distributed by the Object Management
Group. Input was asample IDL specification for the Fresco graphicslibrary.

IDRAW Interactive structured graphics editor, based on the InterViews 2.6 library. Example wasdrawing and
editing afigure.

MORPHER | Structured graphics“morphing” demonstration, based on the InterViews 2.6 library. Example was a
morphed “running man” example distributed with the program.

RTsH Ray Tracing Shell — An interactive ray tracing environment, with aTCL/TK user interface and a C++
graphicslibrary. Example wasasmall ray traced image distributed with the program.

Table 1: C++ Programs I nstrumented

not account for the density of breaksin a program. For example,
there may be a single conditional branch in a 100,000,000 instruc-
tion program. While the the branch may always be mispredicted,
the number of instructions between bresks remains high. There-
fore, itisuseful tolook at both the NIBB and %BP when comparing
prediction techniques across different programs.

4.1 Bounds on Compile-time I-Call Prediction

We were interested in determining how well interprocedural
dataflow analysis could predict indirect method calls [22] and we
compared these results to profile-based static prediction methods.
Method namesin C++ are encoded with auniquetype signature. If
alinker knew the intended type signature at a call site,? and there
was a single function with that signature, then no other function
could be appropriate for that call site and the indirect call could be
replaced by adirect call. Wecall thisthe Unique Name measure, and
feel it representsalower bound on what could be accomplished by
adataflow optimization algorithm —in practice, a dataflow method
should be more accurate, because a symbol table in UNIX system
typically includes methods from classesthat are never invoked. At
the other extreme, we recorded the number of Single Target |-call
sites, or I-call sites that record a single call target during a trace.
Compiler directed I-call prediction is most useful if asingle target
can be selected. In the number of traces we recorded, the Sngle
Target measure represents an upper bound on the target predic-
tion we could expect from dataflow-based prediction algorithms.
Both Unique Name and Single Target values measure the number
of dynamic occurrences. In general, our resultsindicate significant
promise from static analysis of C++ programs. In particular, be-
causeit is so effective and simple to implement, we feel the Unique
Name measure should be integrated into existing compilers and
linkers.

2Currently, compilers don’t providethisinformation at call sites, but this informa-
tion is easy to capture.

4.2 Static vs. Dynamic Prediction

Although compiler techniques appear promising, we found that
profile-based and dynamic predictiontechniqueswereclearly better.
Weimplemented asimple majority profile-based technique. Weran
the programs, recorded the most likely target for each call site and
used that to predict call targetsin future runs. Theresults are shown
in the column labeled “Satic” in Table 4. This simple technique
accurately predicted a surprisingly large number of [-Cdls. In
each of these runs, we used the same program input to generate
the prediction trace and the measurements shown. To determine
how accurate these prediction rates are for different inputs, we ran
GRoFF with two other inputs. Table 5 shows the percentage of
I-Calls predicted using all combinations of the different input files.
We found a small number of “prediction sets’ appear sufficient to
provide accurate predictions. In some cases, profile-based methods
have poor performance. In our experience, this usualy occurs
because the inputs, that were used to establish the profile used to
predict the branchesand I-calls, did not provide adequate coverage
of al the branches and indirect function calls. This problem has
been mentioned by others[26, 12], but has not be studied in detail.

Table 4 also shows the effectiveness of idealized dynamic pre-
diction techniques. We simulated two infinitely large Branch Target
Buffers. The first BTB (“1-bit") simply used the previous |-Call
target as the prediction for future I-calls, much like the method
caching used in Self, where the most recent method is saved. The
second (“2-bit") used a 2-bit strategy that avoids changing the pre-
diction information until the previous prediction is incorrect twice
in arow. |-Calls were considered unpredicted when first encoun-
tered. Surprisingly, the 1-bit mechanism has worse performance
than static prediction; however, it does not require profiling runs.
The improvement shown by the 2-bit technique illustrates that the
1-bit technique changes prediction too rapidly. For example, if
a call site calls the sequence of methods A::X(), B::X(), A::X(),
the 1-bit method would miss three times, while the 2-bit method
would miss only once. Thisinformation isimportant for designers
of wide-issue processors. For example, some recent design pro-
posals consider using up to 16KB of memory for such BTB’s. In
another paper, we show how to eliminate the need for most of those

Sites From Trace Occurences During Execution
Program || 2Brs [ICdlls | > 2Brs 2Brs | ICalls [>2Brs| Instructions
congress || 1,817 309 4 || 18,352,179 342,266 | 43,593 | 152,658,312
doc 5398 | 1,544 6 || 48,536,165 | 5,310,059 | 13,585 | 406,673,898
groff-1 1,974 671 9 4,525,946 214,219 | 63,116 37,655,949
groff-2 2,110 722 9 6,047,864 205,487 | 70,759 46,416,495
groff-3 2,370 759 10 7,977,220 304,948 | 94,298 63,641,709
idl 1,011 525 6 || 11,809,125 | 2,991,355 | 38,157 | 151,419,127
idraw 6,473 | 2,279 12 || 18,699,046 | 1,490,460 | 51,664 | 184,930,700
morpher || 4,050 | 1,200 6 6,613,548 425,072 7,807 52,131,648
rtsh 1,390 59 3 || 52,357,435 | 5,547,705 489 | 822,054,191

Table 2: Detailed statistics on number of instructions and breaksin control for each program measured.

[Metric || congress | doc [groff-3 | idl [idraw | morpher [rtsh |
Mean 815 | 7.55 760 | 10.20 | 9.14 7.40 | 14.20
Median 6.00 | 6.00 500 | 9.00 | 5.00 400 | 7.00
StdDev 7.57 | 5.99 719 | 6.06 | 15.94 8.76 | 30.94

Table 3: Number of instructions between breaksin the absence of any control flow prediction.

Program]| UniqueNames | Single Target | Static | Inf 1-Bit BTB | Inf 2-Bit BTB |

CONGRESS 185 295 73.7 76.7 88.8
Doc 56.2 76.7 93.2 922 96.5
GROFF-3 6.6 31.2 86.4 79.0 95.3
IDL t 99.9 99.9 99.9 99.9
IDRAW 34.9 835 94.6 95.6 98.0
MORPHER 70.3 92.0 96.7 96.6 97.7
RTsH 29 51.1 93.6 96.0 98.0
| Mean || 31.6 | 66.3 | 91.2 | 90.9 | 96.3 |

Table 4: Percentage of indirect function calls predicted using compile-time, profile-based and dynamic prediction.
(1 could not be computed)

Using Using Using Using All
Program || GROFF-1 | GROFF-2 | GROFF-3 | Combined

GROFF-1 87.4 84.4 86.6 86.6
GROFF-2 825 86.4 85.6 86.4
GROFF-3 79.6 85.6 86.4 86.3

Table 5: Percentage of |-calls predicted for GROFF when using static prediction with different input files.

| Metric]| CongRess | Doc | GRoFF | IpL [IDRAW | MORPHER | RTSH |

Break
Cal

9.02
14.45

8.36
14.62

8.42
14.57

9.04
11.27

9.86
18.92

11.17
15.16

9.12
14.30

Table 6: Mean number of instructions abovethe I-call in the instruction stream before hitting a bresk or another function call. Both of these

include the start of a procedure as break point.

2Bit 2Brs UniqueName || SingleTarget | StaticICals

Program || NIBB | %BP || NIBB [%BP || NIBB | %BP || NIBB | %BP
congress || 67.7 | 880 [697] 883 709 85 [762 | 89.3
doc 56.0 | 865 || 952 | 921 | 127.6 | 94.1 || 1764 | 95.7
groff-3 740 | 897 | 758 | 900 | 832 | 90.9 | 106.7 | 929
idl 457 | 77.7 || 457 | 77.7 | 467.3 | 97.8 || 4680 | 97.8
idraw 710 | 871 | 887 | 897 || 1360 | 933 || 1548 | 94.1
morpher 519 | 858 | 740 | 90| 851 | 91.3 | 879 | 916
rtsh 716 | 802 | 726 | 804 | 950 | 851 | 1305 | 89.1

|HM/Avg] 60.7] 8.0 71.1] 869]| 1065 | 916 [| 1255 | 92.9 |

Table 7: Measurementsof breaksthat can be predicted using compile-time and static I-call prediction with 2-Bit branch prediction.

resources[6]. Itislikely that our prediction architecture would ben-
efit from a small 2-bit prediction mechanism for indirect function
cals.

The last prediction mechanism we considered was branch tar-
get addressregisters (BTAR's). We assumed architectures would
implement a small number of BTAR's, and they would likely not
be saved across procedurecalls. Thus, there aretwo limits onusing
BTAR's to indicate intended branch targets. We assumed that the
BTAR could be loaded anywhere in the previous basic block, pro-
viding alower bound on theinterval when the BTAR isloaded and
the branch taken. Likewise, we assumea clever compiler might be
able to load the BTAR immediately following the previous proce-
durecall or return (becausewe assumed BTARsare not saved across
function calls). Table 6 shows these two values (instructions since
beginning of basic block and instructions since last call/return). In
generd, there are very few instructions in which to schedule the
“prepare to jump” information before the first target instruction is
needed.

For simple prediction of targets for indirect function calls, we
found:

¢ Dynamic methods using the 2-bit branch target buffer were
the most effective technique we considered. However, this
style of prediction may be expensive to implement.

¢ By combining a simpler branch prediction technique with
BTB’s for indirect function calls, the resource demands be-
come more realistic.

e Static profile-driven prediction wasvery accurate, andisused
in the remainder of this paper.

4.3 Using Profiles to Eliminate Indirect Function Calls

Our prior measurements have shown the percentage of 1-calls pre-
dicted using these different techniques. By comparison, Table 7
showsthe percent of total breakspredicted. Using static prediction
with prior profilesfor I-calls accurately predicts half of theremain-
ing breaksin control, doubling the number of instructions between
breaks (assuming that the breaks are evenly distributed). Recall

Figure 1. In thisfigure conditional branches and indirect function
calls are predicted using the static profile-based technique just de-
scribed. The second bar for each program indicates the additional

delaysincurred by breaksfrom indirect function calls and mispre-
dicted conditional branches. While the third bar, eliminates delays
from statically predicted indirect function calls. For architectures
providing BTB'’s, the delay would be dightly smaller. Clearly,
predicting branchesis the foremost priority, but predicting indirect
calls removes a substantial number of bresks.

The successof profile-based static prediction alsoindicatesthat
many methods could be successfully compiled inline, even without
compile-time type analysis. We can convert an indirect function
cal, eg..object -> foo(); to a conditiona procedure call
with arun-time type check:

if (typeof (object) A)
object -> A :foo();
el se
obj ect

-> foo();

This transformation is useful for three reasons. First, once this
code transformation has been performed, functioncall A: : f oo()

can beinlined. Secondly, If there is a high likelyhood of calling
A : foo(), this code sequenceis less expensive on most RISC
architectures, using on 4-5 instructions rather than 5-8. Lastly,
if an architecture provides branch prediction but does not support

predictionfor indirect function calls, thetransformed code can avoid
many misprediction penalties. Existing branch prediction hardware
may be ableto improve on strictly profile-based prediction because
it can accommodate bursts of callsto asecondary call target.

Although inlining functionsis useful, it does not alwaysreduce
program execution time [10]. However, many indirect function
callsin C++ tend to be very short, because programmers are more
likely to employ proper data encapsulation techniques. We believe
automatic inlining will be more useful for C++ than C. Further,
on most architectures, the converted indirect-function call is more
efficient if there is a high likelyhood of calling the most common
function (A: : f oo() above).

We constructed the following cost models for handling I-calls
and used this to optimize I-calls in more detail. Assume the cost
of adirect method call, C4,,c, is 2 instructions. This comes from
an extra instruction needed to compute the object pointer which
is passed to the call instruction. The cost of an indirect method
call, Cime, 1s7 instructions, and is becauseof the extrainstructions
needed to compute the pointer addresses and future branch target.
The cost of an “if,” C;;, as shown in the previous example, is 3
instructions, including anindirect load for the object pointer, aload
of a constant and the comparison. The penalty for mispredicting
a conditional branch or an indirect function call, C,qss, is 10
instruction times. Thisis because we assume mispredicted breaks
can cause a 10 cycle pipeline delay. From this we get the cost for
indirect method calls with no prediction to be

Cnopredict = Cimc + Cmiss .

Since the indirect call is not predicted, it is considered to be mis-
predicted. By comparison, with the static profile-based prediction
mechanism as discussed in the previous section, the cost becomes

Cp'redict(P) = Cime + (1 - P)Cmiss .

if thereis a P% probability of accurately predicting the call target
for acall site. The cost for converting an indirect method call to an
‘if, asdone above, would be

Cuse—i_f(P) = sz + PCdmc + (1 - P)(szss + Cnopredict) 3

however, we can usethe existing profileinformation to compute‘ Q’,
the percentage of the second most likely call target being selected.
Notethat Q hasto belessthan or equal to min(P,(1-P)), elseit would
be the most likely target selected. It is interesting to note that Q
might be a high percentage of the remaining I-calls. For example,
we may have P = 40%, with the next most likely branch occurring
Q =35% of thetime. Thismeansthat 35/(100 — 40), or 58% of the
remaining 60% of |-calls are correctly predicted. Thus, the cost for
converting an indirect function call to an ‘if’ construct is actually

Cuse—i_f(Pa Q) = C‘Lf + PCdmc +
(1= P)(Cmiss + Cpreaict(Q/(1— P))).

Figure 2 shows the costs for Cropreqict (the horizonta line),
Cpreaict (thelower line) and the boundariesfor Cuse—iz (P, Q) for
Q = min(P, (1 — P)) thebest case, and Q = 0.0 the worst case.
In the worst case, our “if conversion” is the same as Cuse—iz(P).

This is a hypothetical case when there are so many second most
likely targets that @ is approximately equal to zero percent. In
the graph the best case if conversion, Cuse—if(P, Q) for @ =
min(P, (1— P)),isachievedwhenan|-call sitehasonly 2 targets.
Thiscanonly happenwhen P >= 0.5. Sowhen P < 0.5, at best @

canonly equal P,andtheremaining1—(P+@Q) |-call targetscannot
bepredicted. Thisisthereasonthelineinthe graphfor the best case
if conversion changesslopeat P = 0.5. From the graph, one can
seethat it isalwaysabenefit to do static I-call prediction. Giventhe
valuesfor Csz, Cgme, Cmiss and Cim that we used, when P = 0.6,
depending on how accurate one can predict the second most likely

target Q, it can be better to do the if conversion on the |-call rather
than only predicting the most likely target. From the graph, one
canseethat, Cuse—sz(P) eventualy intersects Cpreaict (P), Where
it is aways beneficial to do the if conversion on an architecture
that provides static prediction. With our architecture assumptions,
thisoccurs at P = 0.86. Thelines Crnopredaict and Cuse—iz(P)
(worst case) also eventually intersect, where it is always beneficial
to do the if conversion on an architecture that does not provide
static prediction. With our architecture assumptions, this occurs at
P = 0.52. Thus, doing the if conversion on an architecture that
does not provide static prediction gives the user, in a sense, the
benefit of static prediction. As mentioned, the architecture we've
consideredissimilar totheDigital AXP21064. Other architectures,
including the Intel Pentium, also issue two instructions per clock,
and some newly announced architectures, suchasthel|BM RIOS|

issue up to eight instructions per cycle. On these architectures, the
advantage of “if-conversion” occurswith much lower probabilities
for P.

In general, predictioninformation cangreatly reducethe penalty
for indirect function calls. Asnoticed from the graph it is aways
beneficial to predict the destination for an I-call. Accurate profile-
based measurements expose other optimizations when the accuracy
of predicting the most frequently called function exceeds 80-90%.
Table 4 shows this occursfor many of the programs we measured.
Thistransformation also provides opportunity for inlining the body
of the function, allowing the compiler to customize the parameters
to the function, avoid register spills and the like.

The right-most bar for each program shown in Figure 1 shows
the effect of applying this transformation where appropriate, based
onour model, for eachcall sitein the programs. By comparison, the
second bar from the right shows the benefit of using prediction and
uniquenameelimination, without usingtheif conversion. Although
the advantage is small, similar cost/benefit analysis can be used
to determine the advantage of additional function inlining. Note,
there will be a greater advantage in using the if conversion when
the architecture does not support static prediction.

5 Conclusions and Future Work

As object-oriented programs become more common, there will be
an increasing need to optimize indirect function calls. This will
become even more important as processor pipeline depthsincrease
and superscalar instruction issue and specul ative execution become
more common. Existing branch prediction mechanisms accurately
prediction 95%— 97% of conditional branches. Because branch pre-
diction isso successful, accurate prediction of the remaining breaks

Optimzing an |-Call Site fromthe Static Profile
30 T T T T T T T T T
g
X
e No Prediction —-—
B Static Prediction —+-
25 w8 Using If (Wrst Case) -B8-- o
Using If (Best Case) -x-
X =,
" 20 >< ‘EL\\ -
0] - o
© X ReS
o TR T
5 15 T o = .
= T =N
[} T .
Tkl X =
£ i B
pd %“\j(\
10 | Tf;\\# = E
e \\x;\\\:\
X R
T, B TR
kg
TR,
5F g
0 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Percentage of an I-Calls Site Myst Probable Target (P)

Figure 2: Cost, in instructions and additional delay, for different indirect function call methods

in control-flow becomesincreasingly important as processorsbegin
to issuemore instructions concurrently. Eliminating the mispredic-
tion penalty for indirect function callsin C++ programs can remove
10% of the remaining breaksin control in a C++ program.

We found that static profile-based prediction mechanisms
worked well for the collection of existing C++ programs we ex-
amined. We saw additional improvements by combining compiler
optimization techniques (unique name elimination and ‘if conver-
sion’) with static indirect call prediction. The information from
profile-based prediction is also useful for other code transforma-
tions, such asinlining and better register scheduling. Our results
show that we get an average of 10% improvement in the number
of instructions executed for a program by using our I-call predic-
tion/optimization techniques.

We recommend that compilers for highly pipelined, specula-
tive execution architectures : use profile-based static prediction
methods to optimize C++ programs, use link-time information to
remove indirect function calls, and customize call-sites using ‘if
conversion’ based on profile information. Furthermore, we hope
the architecture and benchmarking community expandsbenchmark
suites to include modern programming languages such as C++,
Modula-3 and the like, because these languages exercise different
architectural featuresthan C or Fortran programs.

Acknowledgements

We would like to thank Ben Zorn, John Feehrer and the reviewers
for comments on the paper. We'd also like to thank James Larus

for developing QPT and helping us solve the various problems
we encountered applying it to such large programs. This work
was funded in part by NSF grant No. ASC-9217394, and is part
of a continued effort to make languages such as C++ suitable for
scientific computing.

References

[1] Robert Alverson, David Callahan, Daniel Cummings, Brian
Koblenz, Allan Porterfield, and Burton Smith. The tera com-
puter system. In Proc. 17th Annual Symposium on Computer
Architecture, Computer Architecture News, pages 1-6, Ams-
terdam, Netherlands, June 1990. ACM, ACM.

[2] T.Bal and J. R. Larus. Branch prediction for free. In 1993
S GPLAN Confernceon Programming Language Design and

Implementation. ACM, June 1993.

[3] T.Bdl and JR. Larus. Optimally profiling and tracing pro-
grams. In ConferenceRecord of the 19th Annual ACM Sympo-
sium on Principles of Programming Languages, pages 5970,

Albuguerque, NM, January 1992.

[4] Michael Burke. Aninterval-based approachto exhcaustiveand
incremental interprocedural analysis. ACM Transactions on
Programming Languages and Systems, 12(3):341-395, July

1990.

[5] Brad Calder and Dirk Grunwald. Branch alignment. Technical

Report (In Preperation), Univ. of Colorado-Boulder, 1993.

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

Brad Calder and Dirk Grunwald. Fast & accurate instruction
fetch and branch prediction. CU-CS xxx, Univ. of Colorado,
October 1993. (In preperation).

Brad Calder, Dirk Grunwald, and Benjamin Zorn. Exploiting
behavioral differencesbetween C and C++ programs. Techni-
cal Report (In Preperation), Univ. of Colorado-Boulder, 1993.

Craig Chambersand David Ungar. Customization: optimizing
compiler technology for SELF, a dynamically-typed object-
oriented programming language. In Proceedings of the ACM
S GPLAN ’'89 Conference on Programming Language De-
sign and Implementation, pages 146-160, Portland, OR, June
1989.

Craig Chambersand David Ungar. Iterative type analysisand
extended message splitting: optimizing dynamically-typed
object-oriented programs. In Proceedings of the ACM S G-
PLAN ' 90 Conferenceon Programming LanguageDesignand
Implementation, pages 150-164, White Plains, NY, June 1990.

Jack W. Davidson and Anne M. Holler. Subprogram inlin-
ing: A study of its effects on program execution time. |EEE
Transactions on Software Engineering, 18(2):89-102, Febru-
ary 1992.

Jack W. Davidson and D.B. Whalley. Reducing the cost of
branchesby using registers. In Proceedingsof the 17th Annual
International Symposium on Computer Architecture, pages
182-191, Los Alamitos, CA, May 1990.

J. A. Fisher and S. M. Freudenberger. Predicting conditional
branch directions from previous runs of a program. In Fifth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 85-95,
Boston, Mass., October 1992. ACM.

Mary W. Hall and Ken Kennedy. Efficient call graph analysis.
Letters on Programming Languages and Systems, 1(3):227—
242, September 1992.

Urs Holzle, Craig Chambers, and David Unger. Optimizating
dynamically-typed object-orientred languages with polymor-
phic inlines caches. In ECCOP '91 Proc. Springer-Verlag,
July 1991.

David R. Kadli and Philip G. Emma. Branch history table
prdiction of moving target branchesdueto subroutinereturns.
In 18th Annual International Symposium of Computer Archi-
tecture, pages 34-42. ACM, May 1991.

M. S. Lam and R. P. Wilson. Limits of control flow on paral-
lelism. In 19th Annual International Symposiumof Computer
Architecture, pages 46-57, Gold Coast, Australia, May 1992.
ACM.

Johnny K. F. Lee and Alan Jay Smith. Branch prediction
strategies and branch target buffer design. IEEE Computer,
?2(??):6-22, January 1984.

David J. Lilja. Reducing the branch penalty in pipelined pro-
cessors. |EEE Computer, pages 47-55, July 1988.

[19]

[20]

[21]

[22]

(23]

[24]

[29]

[26]

[27]

[28]

[29]

M. S. Lam M. D. Smith, M. Horowitz. Efficient superscalar
performance through boosting. In Fifth International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, pages 248-259, Boston, Mass., Oc-
tober 1992. ACM.

Scott McFarling and John Hennessy. Reducing the cost of
branches. In 13th Annual International Symposium of Com-
puter Architecture, pages 396-403. ACM, 1986.

S.-T. Pan, K. So, and J. T. Rahmeh. Improving the accuracy
of dynamic branch prediction using branch correlation. In
Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 76—
84, Boston, Mass., October 1992. ACM.

Hemant D. Pande and Barbera G. Ryder. Static type deter-
mination for C++. Technical Report LCSR-TR-197, Rutgers
Univ., February 1993.

Chris Perleberg and Alan Jay Smith. Branch target buffer
design and optimization. |EEE Transactions on Computers,
42(4):396-412, April 1993.

Barbera G. Ryder. Constructing the call graph of a program.
IEEE Transactions on Software Engineering, SE-5(3):216—
226, May 1979.

J. E. Smith. A study of branch prediction strategies. In 8th
Annual International Symposium of Computer Architecture.
ACM, 1981.

D. W. Wall. Limits of instruction-level parallelism. In Fourth
International Conference on Architectural Support for Pro-
gramming Languagesand Operating Systems, pages 176188,
Boston, Mass., 1991. ACM.

Tse-Yu Yeh and Yale N. Patt. Alternative implementations of
two-level adaptivebranchpredictions. In 19th Annual Interna-
tional Symposium of Computer Architecture, pages 124134,
Gold Coast, Australia, May 1992. ACM.

Tse-Yu Yeh and Yale N. Patt. A comprehensive instruction
fetch mechanism for aprocessor supporting specul ative execu-
tion. In 19th Annual International Symposiumon Microarchi-
tecture, pages 129-139, Portland, Or, December 1992. ACM.

Tse-Yu Yeh and Yae N. Patt. A comparison of dynamic
branch predictorsthat usetwo levels of branch history. In 20th
Annual International Symposium of Computer Architecture,
pages 257-266, San Diego, CA, May 1993. ACM.

