
To appear in the Proc. of the ACM SIGPLAN Conf. on Prog. Language Design and Implementation (PLDI ’95), La Jolla, CA, June 18–21, 1995

Corpus-based Static Branch Prediction

Brad Calder, Dirk Grunwald, Donald Lindsay,
James Martin, Michael Mozer, and Benjamin Zorn

Department of Computer Science
Campus Box 430

University of Colorado
Boulder, CO 80309–0430 USA

Abstract

Correctly predicting the direction that branches will take is
increasingly important in today’s wide-issue computer archi-
tectures. The nameprogram-based branch prediction is given
to static branch prediction techniques that base their predic-
tion on a program’s structure. In this paper, we investigate
a new approach to program-based branch prediction that uses
a body of existing programs to predict the branch behavior
in a new program. We call this approach to program-based
branch prediction,evidence-based static prediction, or ESP.
The main idea of ESP is that the behavior of acorpus of pro-
grams can be used to infer the behavior of new programs. In
this paper, we use a neural network to map static features as-
sociated with each branch to the probabilty that the branch
will be taken. ESP shows significant advantages over other
prediction mechanisms. Specifically, it is a program-based
technique, it is effective across a range of programming lan-
guages and programming styles, and it does not rely on the
use of expert-defined heuristics. In this paper, we describe
the application of ESP to the problem of branch prediction
and compare our results to existing program-based branch pre-
dictors. We also investigate the applicability of ESP across
computer architectures, programming languages, compilers,
and run-time systems. Averaging over a body of 43 C and
Fortran programs, ESP branch prediction results in a miss rate
of 20%, as compared with the 25% miss rate obtained using
the best existing program-based heuristics.

1 Introduction

In this paper, we propose a new technique for program-based
branch prediction based on a general approach that we have in-
vented calledEvidence-based Static Prediction (ESP). Our re-
sults show that using our new approach results in better branch
prediction than all existing program-based techniques. In ad-
dition, our ESP approach is very general, and can be applied
to a wide range of program behavior estimation problems. In

this paper, we describe ESP and its successful application to
the problem of program-based branch prediction.

Branch prediction is the process of correctly predicting
whether branches will be taken or not before they are actually
executed. Branch prediction is important, both for computer
architectures and compilers. Compilers rely on branch pre-
diction and execution estimation to implement optimizations
such as trace-scheduling [12, 13] and other profile-directed
optimizations [8, 9].

Wide-issue computer architectures rely on predictable con-
trol flow, and failure to correctly predict a branch results in
delays for fetching and decoding the instructions along the
incorrect path of execution. The penalty for a mispredicted
branch may be several cycles long. For example, the mis-
predict penalty is 4 to 5 cycles on the Digital Alpha AXP
21064 processor. In previous studies, we found that condi-
tional branches in C programs were executed approximately
every 8 instructions on the Alpha architecture [7]. Current
wide-issue architectures can execute four or more instructions
per cycle. As a result, such architectures are likely to exe-
cute branch instructions every two cycles or less and effective
branch prediction on such architectures is extremely impor-
tant. Many approaches have been taken to branch prediction,
some of which involve hardware [5, 23] while others involve
software [3, 6, 11]. Software methods usually work in tan-
dem with hardware methods. For example, some architectures
have a “likely” bit that can be set by a compiler if a branch is
determined to be likely taken by a compiler.

Compilers typically rely on two general approaches for
branch prediction. Profile-basedmethods use program profiles
to determine the frequency that branch paths are executed.
Fisher and Freudenberger showed that profile-based branch
prediction can be extremely successful in reducing the number
of instructions executed between mis-predicted branches [11].
The main drawback of profile-based methods is that additional
work is required on the part of the programmer to generate the
program profiles.

Program-based branch prediction methods attempt to pre-
dict branch behavior in the absence of profile information and
are based only on a program’s structure. Some of these tech-
niques use heuristics based on local knowledge that can be
encoded in the architecture [14, 18]. Other techniques rely on
applying heuristics based on less local program structure in an

effort to predict branch behavior [3]. In this paper, we describe
a new approach to program-based branch prediction that does
not rely on such heuristics. Our branch prediction relies on a
general program-basedprediction framework that we call ESP.
The main idea of ESP is that the behavior of a corpus of pro-
grams can be used to infer the behavior of new programs. That
is, instead of using a different execution of a program to pre-
dict its own behavior (as is done with profile-based methods),
we use the behavior of a large body of different programs (the
training set, or corpus) to identify and infer common behavior.
Then we use this knowledge to predict branches for programs
that were not included in the training set. In particular, in this
paper we use a neural network to map static features associ-
ated with each branch to the probability that the branch will be
taken.

Branch prediction using ESP has several important advan-
tages over existing program-based branch prediction methods.
First, because the technique automatically maps static features
of branches to a probability that they will be taken, our tech-
nique is suitable for program-based branch prediction across
different languages, compilers, and computer architectures.
Existing techniques rely on compiler-writer defined heuristics
that are based on an intuition about common programming id-
ioms. Second, given a large amount of static information about
each branch, the technique automatically determines what parts
of that information are useful. Thus, it does not rely on trial-
and-error on the part of the compiler writer searching for good
heuristics. Finally, our results show that ESP branch prediction
outperforms existing heuristic program-based branch predic-
tion techniques over a body of 43 C and Fortran programs. In
particular, our heuristics have an average overall miss rate of
20%, which compares to the 25% miss rate of the best existing
heuristic technique, and the 8% miss rate of the perfect static
predictor.

This paper has the following organization. In Section 2
we discuss previous approaches to program-based branch pre-
diction and other knowledge-basedapproaches to program op-
timization. In Section 3 we discuss the details of our ESP
branch prediction method. Section 4 describes the methods
we used to evaluate and compare ESP prediction with previous
approaches, and Section 5 presents our results. We summarize
our conclusions in Section 6 and also discuss possible future
directions to take with this research.

2 Background

In this section, we discuss the existing approaches to static
branch prediction and also discuss other knowledge-basedap-
proaches to compiler optimization.

2.1 Program-Based Branch Prediction Methods

One of the most simple program-basedmethods for branchpre-
diction is called “backward-taken/forward-not-taken” (BTFNT).
This technique relies on the heuristic that backward branches
are usually loop branches, and as such are likely to be taken.
One of the main advantages of this technique is that it relies
solely on the sign bit of the branch displacement, which is al-

ready encoded in the instruction. While simple, BTFNT is also
quite successful. Our results in Section 5 show it has an over-
all miss rate in our experiments of 34%. Any more sophisti-
cated program-basedprediction techniquesmust do better than
BTFNT to be viable.

To facilitate program-based methods for branch predic-
tion, some modern architectures provide a “branch-likely” bit
in eachbranch instruction [1]. In thesearchitectures, compilers
can employ either profile-based [11] or program-based tech-
niques to determine what branches are likely to be taken. In
recent work, Ball and Larus [3] showed that applying a number
of simple program-based heuristics can significantly improve
the branch prediction miss rate over BTFNT on tests based
on the conditional branch operation. A complete summary of
the Ball and Larus heuristics is given in Table 1 (as described
in [22]). Their heuristics use information about the branch
opcode, operands, and characteristics of the branch successor
blocks, and encode knowledge about common programming
idioms.

Two questions arise when employing an approach like that
taken by Ball and Larus. First, an important question is which
heuristics should be used. In their paper, they describe seven
heuristics that they considered successful, but also noted that
“We tried many heuristics that were unsuccessful. [3]” A sec-
ond issue that arises with heuristic methods is how to decide
what to do when more than one heuristic applies to a given
branch. This problem has existed in the artificial intelligence
community for many years and is commonly known as the “ev-
idence combination” problem. Ball and Larus considered this
problem in their paper and decided that the heuristics should be
applied in a fixed order; thus the first heuristic that applied to a
particular branchwasused to determine what direction it would
take. They determined the “best” fixed order by conducting an
experiment in which all possible orders were considered. We
call using this pre-determined order for heuristic combination
the A Priori Heuristic Combination (APHC) method. Using
APHC, Ball and Larus report an average overall miss rate on
the MIPS architecture of 20%.

In a related paper, Wu and Larus refined the APHC method
of Ball and Larus [22]. In that paper, their goal was to deter-
mine branchprobabilities instead of simple branch prediction.
Whereas with branch prediction, the goal is to determine a
single bit of information per branch (likely versus unlikely),
with branch probabilities, the goal is to determine the numeric
probability that a branch is taken or not taken. Wu and Larus
abandoned the simplistic evidence combination function of
APHC in favor of an evidence combination function borrowed
from Dempster-Shafer theory [10, 17]. We call this form of ev-
idence combinationDempster-Shafer Heuristic Combination
(DSHC). By making some fairly strong independenceassump-
tions, the Dempster-Shafer evidence combination function can
producean estimate of the branch probability from any number
of sources of evidence. For example, if one heuristic indicates
that a branch is likely to be taken with probability X%, while
another says it is likely to be taken with probability Y%, then
DSHC allows these two probabilities to be combined. The
probabilities X% and Y% that Wu and Larus use are taken
directly from the paper of Ball and Larus [3]. We refer to a
DSHC algorithm based on this data as DSHC(B&L).

Heuristic Heuristic
Name Description

Loop Branch Predict that the edge back to the loop’s head is taken and the edge exiting the loop
is not taken.

Pointer If a branch compares a pointer against null or compares two pointers, predict the
branch on false condition as taken.

Opcode If a branch checksan integer for less than zero, less than or equal to zero, or equal
to a constant, predict the branch on false condition.

Guard If a register is an operand of the branch comparison, the register is used before
being defined in asuccessor block,and the successor block doesnot post-dominate
the branch, predict the successor block as taken.

Loop Exit If a comparison is inside a loop and no successor is a loop head, predict the edge
exiting the loop as not taken.

Loop Header Predict the successor that does not post-dominate and is a loop header or a loop
pre-header as taken.

Call Predict the successor that contains a call and does not post-dominate the branch
as taken.

Store Predict the successor that contains a store instruction and does not post-dominate
the branch as not taken.

Return Predict the successor that contains a return as not taken.

Table 1: Summary of the Ball/Larus Heuristics

Becausethe goal of Wu andLarus was to perform program-
based profile estimation, they give no results about how the
DSHC method works for program-based branch prediction.
One of the contributions of our paper is that we quantify the
effectiveness of the DSHC method for branch prediction.

Wagner et al. [21] also used heuristics similar to those of
Ball and Larus to perform program-based profile estimation.
They also applied the heuristics in a fixed order. They report
branch prediction miss rate results similar to those of Ball and
Larus.

2.2 Knowledge-Base Approaches to Optimization

Our ESP method relies on collecting data from a corpusof pro-
gram behavior and using that data to perform program-based
prediction. There is little other work in compiler optimization
that has taken this approach. We summarize the work we are
aware of here.

In [2], Balasundaram et al. address a somewhat different
program-based estimation problem. The authors wanted to
make compile-time decisions about data partitioning across a
parallel computer. They report on the idea of using profile
data to “train” an estimator. This training, an offline step,
generates code which is then incorporated into their compiler.
Training only needsto bedoneonceper compilation target, and
is reported to be better than using a parameterized theoretical
model. While the strategy they employ is similar to ESP, their
application domain is quite different. In addition, our results
show that this general approachof knowledge-based“training”
can be used to enhance a wide class of optimizations based on
program behavior estimation.

3 Evidence-based Branch Prediction

In this section, we propose a general framework for program-
based prediction. Our method, ESP, is generally described as
follows. A body of programs and program input is gathered
(the corpus). Particular static information (thestatic feature
set) about important static elements of the corpus (e.g., instruc-
tions) are recorded. The programs in the corpus are executed,
and the corresponding dynamic behavior is associated with
each static element (e.g., the number of times a branch is taken
and not-taken is associated with each branch). At this point,
we have accumulated a body of knowledge about the relation-
ship between static program elements and dynamic behavior.
This body of knowledge can then be used at a later time to pre-
dict the behavior of instructions with similar static features for
programs not in the corpus. With this broad definition of our
framework in mind, we now describe how we apply this general
framework to the specific problem of branch prediction.

3.1 ESP Branch Prediction

In applying ESP to the problem of branchprediction,we instan-
tiate the above framework in the following way. The static pro-
gram elements we are interested in are the program branch in-
structions. For this study, we consider only two-way branches.
For each branch instruction in the program text, we record a
large static feature set (see Table 2).

Some of the features are properties of the branch instruction
itself (e.g., the branch opcode), others are properties of the
registers used to define the register in the branch instruction
(e.g., the opcode of the instructions that defined them), while
others are properties of the procedure that the branch is in (leaf
versus non-leaf). The existence of some features is dependent
on the values of other features. For example, feature 4 is only

Feat. Feature
Num. Name Feature Description
1 Br. opcode The opcode of branch instruction.
2 Br. direction F — Forward branch, B — Backwards branch
3 Br. operand opcode The opcodeof the insruction that defines the register used in the branch instruction

(or ?, if the branch operand is defined in a previous basic block).
4 RA opcode If the instruction in (3) uses an RA register, this is the opcode of the instruction

that defines that register (? otherwise).
5 RB opcode If the instruction in (3) uses an RB register, this is the opcode of the instruction

that defines that register (? otherwise).
6 Loop header LH — the basic block is a loop header, NLH - not a loop header
7 Language The language of the procedure the branch is in (C or FORT).
8 Procedure type The branches’ procedure is a Leaf, NonLeaf or calls itself recursively (CallSelf)
9–16 Features of the Taken Successor of the Branch
9 Br. dominates D — basic block dominates this successor, or ND — does not dominate
10 Br. postdominates PD — the successor basic block post-dominates the basic block with the branch,

or NPD — does not post-dominate
11 Succ. Ends Branch type ending successor basic block, possible values (FT — fall through,

CBR — conditional branch, UBR — unconditional branch, BSR — branch sub-
routine, JUMP — jump, IJUMP — indirect jump, JSR — jump subroutine, IJSR
— indirect jump subroutine, RETURN, COROUTINE, LASTJUMP KIND, or
NOTHING)

12 Succ. Loop LH — the successorbasic block is a loop header or unconditionallypassescontrol
to a basic block which is a loop header, NLH — not a loop header

13 Succ. Backedge LB — the edge getting to the successor is a loop back edge, NLB — not a loop
back edge

14 Succ. Exit LE — the edge getting to the successor is a loop exit edge, NLE — not a loop
exit edge

15 Succ. UseDef UBD — the successorbasic block has a use of a register before defining it and that
register was used to determine the destination of the current conditional branch
instruction. NU — no use before def in successor

16 Succ Call PC — the successor basic block contains a procedure call or unconditionally
passes control to a basic block with a procedure call, NPC — no procedure call
down here

17–24 Features of the Not Taken Successor of the Branch
As above features 9–16

Table 2: Static Feature Set Used in the ESP Branch Prediction Study.

meaningful if feature 3 has an RA operand. We call such
featuresdependent static features.

We chose the feature set shown in Table 2 based on several
criteria. First, we encoded information that we believed would
likely be predictive of behavior. This information included
someof the information used to define the Ball/Larus heuristics
(e.g., information about whether a call appears in a successor
of the branch). Second, we encode other information that was
easily available. For example, since the opcodes that define
the branch instruction register are readily available, we include
them as well. Similarly, information about the procedure type
is readily available. We note that the feature set listed here
is the only one we have yet tried. We have made no effort to
identify a particularly good feature set, and our positive results
suggest that such “feature tuning” is unnecessary.

Having defined the static feature set, we then determine
the static feature set for each branch in the corpus of programs.
We next run the programs in the corpus and collect information
about how often each branch is taken and not taken. The goal
is to associate two pieces of dynamic information with each
branch instruction: how frequently the branch was executed
and how often was it taken. Because execution frequency is
program dependent, we normalize the branch frequency by
the total number of branches executed in the program. We
compute thenormalized branch weight by dividing how many
times the branch was executed by the total number of branches
executed by the program (resulting in a number between zero
and one). Finally, we associate with each branch instruction in
the corpus its static feature set, its normalized branch weight,
and its branch probability (percentage of the time the branch
was taken).

3.1.1 Prediction using Neural Nets

Our goal is to have a system that can predict the branch prob-
ability for a particular branch from its static feature set. This
system should accurately predict not just for the programs in
the corpus, but also for previously unseen programs.

One way of doing such prediction is via afeedforward
neural network [19]. A feedforward neural network maps a
numerical input vector to a numerical output. Here, the input
vector consists of the feature values in the static feature set,
and the output is a scalar indicating the branch probability.

Figure 1 depicts the branch prediction neural network. A
neural network is composed ofprocessing units, depicted in
the Figure by circles. Each processing unit conveys ascalar
valueknownas itsactivity. Theactivity pattern over the bottom
row of units is the input to the network. The activity of the
top unit is the output of the network. Activity in the network
flows from input to output, through a layer of intermediate or
hidden units, via weighted connections. These connections
are depicted in the figure by links with arrows indicating the
direction of activity flow.

This is a standard neural network architecture. We also use
a fairly standard neural network dynamics in which the activity
of hidden uniti, denotedhi, is computed as:

hi = tanh(
X

j

wijxj + bi);

wherexj is the activity of input unitj, wij is the connection
weight from input unitj to hidden uniti, bi is a bias weight
associated with the unit, and tanh is the hyperbolic tangent
function,

tanh(u) =
eu � e�u

eu + e�u
:

Similarly, the output unit activity, denotedy, is computed from
the hidden unit activities:

y = :5 tanh(
X

i

vihi + a) + 1;

wherevi is the connection weight from hidden uniti to the
output unit anda is a bias weight associated with the output
unit. The tanh function is normalized to achieve an activity
range of[0;1] for the output unit.

The input-output behavior of the neural network is deter-
mined by its free parameters, the weightsw andv and biases
b anda. These parameters are set by an algorithm known as
back propagation [16]. This is a gradient descentprocedure for
adjusting the parameters such that performance of the network
on a training corpus is optimized. The standard measure of
performance is the sum of squared errors,

E =

X

k

(y
k
� t

k
)

2
;

wherek is an index over examples in the training corpus,yk

is the actual output of the network when training inputk is
presented, andtk is thetarget output—the output indicated for
that example in the training corpus.

In this application, however, we have a different criterion
for good performance. We want to minimize two sorts of errors,
missed branches (MB) andbranches incorrectly taken (BIT).
MB occur when the predictor says that the branch will be taken
with probability less than .5 when the branch is in reality taken;
BIT occur when the predictor says that the branch will be taken
with probability greater than .5 when the branch is in reality not
taken. If the network output for examplek, is binary—1 if the
predicate “the branch probability is greater than .5” is believed
to be true, 0 otherwise—then the total number of errors due to
MB for examplek is

EMB = (1� y
k
)t
k
n
k
;

wherenk is the normalized branch weight. The producttknk

gives the (relative) number of cases where the branch is taken.
All of these branches are missed ifyk = 0 (or equivalently,
1� yk = 1). Similarly, the total number of errors due to BIT
is

EBIT = y
k
(1� t

k
)n

k
:

Because these two types of errors have equal cost, the total
error is simply

E =

X

k

EMB+EBIT =

X

k

n
k
[y
k
(1� t

k
)+ t

k
(1� y

k
)]:

This is used as the error measure to be minimized by the neural
net training procedure. That is, the free parameters in the neural

Figure 1: The branch prediction neural network. Each circle represents a processing unit in the network, and the links between units depict the
flow of activity.

net are adjusted such that the network will produce outputsyk

such thatE is minimized. Note that this does not require that
the network accurately predict branch probabilities per se, as
we were assuming previously.1

Each input unit’s activity is normalized over the training set
to have zero mean and standard deviation 1. The same normal-
ization is applied for test cases. We deal with nonmeaningful
dependentstatic features by setting their input activity to 0 after
the normalization step; this prevents the nonmeaningful fea-
tures from having any effect on the computation, and is equiva-
lent to gating the flow of activity from these features by another
feature that indicates the relevance of the dependent features
for a particular example. We use a “batch” training procedure
in which weights are updated following a sweep through the
entire training corpus, and an adaptive learning rate procedure
wherein the learning rate for the network is increased if error
drops regularly or is decreased otherwise. Momentum is not
used. Training of the network continues until thethresholded
error of the net no longer decreases. By thresholded error, we
mean the error computed when the output is first thresholded
to values 0 or 1. This achieves a form of early stopping, and
thereby helps to prevent overfitting.

3.1.2 Discussion

In Section 2, we noted that there were two inherent problems
with heuristic-based approaches to program-based prediction.
First there is the problem of determining what heuristics to
use. In particular, the search for successful heuristics requires
a significant amount of effort and cannot be easily automated.
Furthermore, the effectiveness of particular heuristics (e.g.,
the “return heuristic” which predicts the successor without the
return instruction to be taken) will dependon the programming
language, compiler, programming style, and architecture being
used.

1In the abovediscussion, we assumed that the networkoutputwill be either 0
or 1. However, the output must be continuous-valuedin order to apply gradient-
based training procedures. Thus, we use the continuous activation rule fory

presented earlier, and simply interpret the continuous output as the network’s
confidence that the true branch probability is greater than .5.

For example, one might think that the return heuristic is
likely to be more effective when applied to languages, such as
Scheme, where recursion is the most commonly used mecha-
nism for performing iteration. Likewise, the pointer heuristic,
which assumes pointer comparisons to null and for equality
will fail, is more likely to be applicable in a “pointerful” lan-
guage like Scheme. We found, however, that when we applied
these heuristics to three Scheme programs (boyer, corewar,
and sccomp, all compiled with the Scheme-to-C compiler)2,
the results show that the return heuristic had an average 56%
miss rate and the pointer heuristic had a miss rate of 89%.
These results show that applying heuristics based on intuition
is both difficult and can often result in incorrect conclusions.
Thus, new heuristics will be required for new architectures,
programming languages, and even compilers.

A secondproblem with heuristic approachesis determining
how to combine them when more than one apply to the same
situation. While Wu and Larus attempted to solve this problem
using Dempster-Shafer theory, our results show that using the
DSHC method results in slightly higher miss rates than the
more ad hoc APHC method. This is likely a result of the
strong independence assumptions embodied in the Dempster-
Shafer evidence combination function [15].

Our ESP method addresses these two disadvantages di-
rectly. Instead of relying on experts to think of heuristics
and to test them to determine if they are effective, our method
extracts features associatedwith predictable behavior automat-
ically. The ESP method also has disadvantages, as well. First,
a corpus of programs must be available. For our results in
Section 5, we initially had only 8 C programs to examine. Our
average, ESP prediction results for these 8 programs were the
same as the APHC and DSHC results. After we increased the
corpus of 8 C programs to 23 C programs, the average mispre-
diction rate for ESP was 5% lower than the average miss rates
for the APHC and DSHC techniques. Second, our approach
requires that the feature set be defined. Our results indicate
that having too much information does not degrade the ESP

2In the future, we plan to investigate how the ESP approach works for lan-
guages such as C++ and Scheme as well.

predictions (we have not investigated the impact of not having
enough data in the feature set). Third, our current implemen-
tation of ESP requires that the neural net be trained. Such
training requires someone who understands neural nets fairly
well, probably at the level of a person who has taken a course
in neural nets. We envision that if the ESP approach becomes
sufficiently widespread, then tools that facilitate such training
would be made available. We also note that preliminary re-
sults we have obtained using decision trees instead of neural
networks are comparable to the neural net results presented
here. Moreover, decision trees are easier to use and the knowl-
edge they encode can be automatically translated into simple
if-then rules.

4 Evaluation Methods

To perform our evaluation, we collected information from 43 C
and Fortran programs. During our study, we instrumented the
programs from the SPEC92 benchmark suite and other pro-
grams, including many from the Perfect Club [4] suite. We
used ATOM [20] to instrument the programs. Due to the struc-
ture of ATOM, we did not need to record traces and could trace
very long-running programs. The programs were compiled on
a DEC 3000-400 using the Alpha AXP-21064 processor using
either the DEC C or FORTRAN compilers. Most programs
were compiled using the standard OSF/1 V1.2 operating sys-
tems; other programs were compiled using different compilers
and different versions of the operating system. Most programs
were compiled with standard optimization (-O). Each program
was run once to collect information about branch frequency and
the percentageof “taken”branches. For the SPEC92programs,
we used the largest input distributed with the SPEC92 suite.

Table 3 shows the basic statistics for the programs we
instrumented. The first column lists the number of instruc-
tions traced and the second column gives the percentage of
instructions that are conditional branches. The third column
gives the percentage of conditional branches that are taken.
The columns labeled ‘Q-50’, ‘Q-75’, ‘Q-90’, ‘Q-95’, ‘Q-99’,
and ‘Q-100’ show the number of branch instruction sites that
contribute 50, 75, 90, 95, 99 and 100% of all the executed
conditional branches in the program. The next column ‘Static’
shows the total number of conditional branch sites in each pro-
gram. Thus, in Alvinn, two branch instructions constitute over
90% of all executed branches and correctly predicting these
two conditional branches is very important.

The ATOM instrumentation tool provides a concrete rep-
resentation of the program, and we used this information to
construct a control flow graph. Using the control flow graph,
we computed the dominator and post-dominator trees. Follow-
ing this, we determined the natural loop headers and applied
the same definition of natural loops used by Ball and Larus to
determine the loop bodies [3]. We used ATOM to reproduce
the Ball and Larus APHC results, and to generate the static
feature sets with the corresponding branch probabilities which
are used to train the neural net for ESP.

For ESP, we did not use the information gathered about a
given program to predict the branches for that same program;
rather, we used across validation study. We took all of the
programs, except the one program for which we want to gather

prediction results and fed the corpus of programs into the neu-
ral net. We then use the neural net’s branch probabilities to
predict branches for that program not included in the corpus.
This provides a conservative estimate of how well ESP will
perform since we are predicting the behavior of a program
that the neural net has not seen. For the ESP results shown
in Section 5, we performed the cross validation breaking the
programs into two groups – C programs and FORTRAN pro-
grams. We performed cross validation feeding the feature sets
for 22 of the C programs at a time into the neural net, predicting
branches for the 23rd C program not included in initial 22. We
did the same for FORTRAN programs feeding into the neural
net the feature sets for 19 of the 20 programs in order to predict
branches for the 20th program.

5 Results

We now compare the prediction accuracy ofa priori heuris-
tic combination (APHC) branch prediction [3], the Dempster-
Shafer heuristic combination (DSHC) proposed by Wu and
Larus [22], and our ESP technique. Following this, we show
that the APHC and DSHC techniques are sensitive to differ-
ences in system architecture and compilers.

5.1 Comparison: APHC, DSHC and ESP

Table 4 shows the branch misprediction rate for the meth-
ods we implemented. The first column shows the results for
the BTFNT architecture, the second column shows the re-
sults for our implementation of the Ball and Larus heuristics,
and the third and fourth columns show the results when ap-
plying Dempster-Shafer to those heuristics. In implement-
ing DSHC, we use both the original prediction rates specified
in [3], DSHC(B&L), and the prediction rates produced by our
implementation, DSHC(Ours). Later, we compare the simi-
larity between these two sets of prediction heuristics as seen
in Table 6. The fifth column in Table 4 shows the results
for our ESP method and the last column shows the results
for the perfect static profile prediction. Table 4 reveals sev-
eral interesting points. First, the overall average shows that
the Dempster-Shafer method performs no better than the fixed
order of heuristics. Wu and Larus [22] said

When more than one heuristic applies to a branch,
combining the probabilities estimated by the ap-
plicable heuristics should produce an overall branch
probability that is more accurate than the individ-
ual probabilities.

However, there was no comparison to the earlier results of Ball
and Larus. In 6 cases (flex, sort, mdljsp2, CSS,
NAS, TFS), the Dempster-Shafer method is more than 5%
worse than the simple APHC ordering, while the APHC or-
dering method is 5% worse in only three cases (wdiff,
SDS, LWS). The intuition in [22] was correct; however, the
Dempster-Shafer theory does not combine the evidence well
enough to improve branch prediction. The ESP technique per-
forms significantly better than the Dempster-Shafer and the
APHC method in 15 cases (burg, flex, gzip, indent,

Insn’s % Cond Conditional Branch Quantiles
Program Traced Branches %Taken Q-50 Q-75 Q-90 Q-95 Q-99 Q-100 Static
bc 93,395,683 10.06 42.43 41 97 160 204 273 753 1,956
bison 6,344,388 10.02 76.83 16 89 197 311 654 1,348 2,905
burg 721,029 12.17 62.32 30 84 153 220 465 802 1,766
flex 15,458,984 12.89 68.37 29 102 190 260 421 1,204 2,969
grep 745,131 19.35 72.40 6 25 94 196 422 910 3,310
gzip 309,547,166 11.08 60.75 3 13 29 36 49 342 2,476
indent 32,569,634 14.72 51.91 27 74 159 244 457 1,065 2,272
od 210,341,272 12.88 45.72 30 56 76 84 118 433 1,702
perl 181,256,552 10.26 39.89 28 88 233 342 719 2,690 12,288
sed 85,604,071 10.63 65.55 16 59 91 109 151 863 2,570
siod 28,750,877 13.04 56.85 14 38 95 128 186 684 2,156
sort 10,301,164 14.01 59.12 13 24 51 63 77 352 1,810
tex 147,820,930 7.58 57.47 39 111 259 416 790 2,365 6,050
wdiff 76,185,396 13.21 53.65 7 11 19 24 29 502 1,618
yacr 1,017,126,630 19.24 70.73 11 33 88 127 345 1,673 3,442
alvinn 5,240,969,586 8.93 97.77 2 2 2 3 102 430 1,622
compress 92,629,658 12.31 68.25 4 7 12 14 16 230 1,124
ear 17,005,801,014 4.97 90.13 2 4 6 8 32 530 1,846
eqntott 1,810,540,418 10.78 90.30 2 2 14 42 72 466 1,536
espresso 513,008,174 15.96 61.90 44 104 163 221 470 1,737 4,568
gcc 143,737,915 12.60 59.42 245 804 1,612 2,309 3,724 7,640 16,294
li 1,355,059,387 11.30 47.30 16 33 52 80 127 556 2,428
sc 1,450,134,411 17.99 66.88 14 41 94 153 336 1,471 4,478
doduc 1,149,864,756 6.94 48.68 3 40 175 231 296 1,447 7,073
fpppp 4,333,190,877 2.44 47.74 10 28 51 73 109 744 6,260
hydro2d 5,682,546,752 6.02 73.34 14 43 74 111 230 1,613 7,088
mdljsp2 3,343,833,266 10.12 83.62 6 10 14 16 23 1,010 6,789
nasa7 6,128,388,651 2.51 79.29 8 21 55 94 277 1,083 6,581
ora 6,036,097,925 5.25 53.24 5 8 11 12 17 641 5,899
spice 16,148,172,565 11.51 71.63 2 12 38 63 116 1,762 9,089
su2cor 4,776,762,363 3.34 73.07 8 15 26 34 60 1,569 7,246
swm256 11,037,397,884 1.65 98.42 2 2 3 3 13 795 6,080
tomcatv 899,655,317 3.35 99.28 3 4 5 7 7 515 5,474
wave5 3,554,909,341 4.37 61.79 18 40 82 132 276 1,331 8,149
APS 1,490,454,770 3.99 50.64 44 123 283 357 524 1,617 8,926
CSS 379,319,722 7.32 55.63 32 109 211 262 467 2,202 9,670
LWS 14,183,394,882 7.92 66.34 3 9 18 26 38 1,148 6,927
NAS 3,603,798,937 3.43 60.67 5 14 34 69 125 1,663 7,614
OCS 5,187,329,629 3.02 88.57 3 10 46 79 197 1,447 7,084
SDS 1,108,675,255 6.77 53.05 9 25 43 67 169 1,669 7,585
TFS 1,694,450,064 3.17 77.42 15 38 122 220 464 1,598 7,270
TIS 1,722,430,820 5.27 51.08 8 20 31 36 66 863 6,292
WSS 5,422,412,141 4.76 62.36 41 145 275 344 533 1,756 7,592

Table 3: Measured attributes of the traced programs.

Branch Prediction Miss Rates
Program BTFNT APHC DSHC DSHC ESP Perfect

(B&L’s) (B&L’s) (Ours)
bc 40 37 35 35 32 14
bison 52 15 16 16 14 4
burg 53 35 33 32 26 9
flex 43 33 39 38 19 9
grep 42 27 23 22 19 12
gzip 33 32 33 33 20 9
indent 42 27 28 27 19 6
od 44 44 40 40 30 8
perl 35 39 36 36 26 4
sed 45 22 22 23 25 5
siod 50 34 32 33 27 10
sort 44 35 41 42 21 8
tex 43 37 38 36 30 13
wdiff 42 32 11 11 4 3
yacr 32 14 11 12 14 6
Other C Avg 43 31 29 29 22 8
alvinn 2 2 2 2 1 0
ear 10 8 8 8 8 7
compress 44 25 26 28 30 14
eqntott 47 7 7 7 6 2
espresso 34 24 23 23 32 15
gcc 48 34 35 34 31 12
li 43 26 25 27 28 12
sc 39 29 31 29 24 9
SPEC C Avg 34 19 20 20 20 9
dodoc 23 19 20 19 16 5
fpppp 42 53 52 52 35 11
hydro2d 28 17 16 16 12 4
mdljsp2 69 41 62 62 64 10
nasa7 8 12 12 11 5 3
ora 46 18 18 18 18 5
spice 16 16 18 14 14 7
su2cor 17 21 20 20 12 10
swm256 1 1 1 1 1 1
tomcatv 44 44 44 44 1 1
wave5 19 27 24 23 21 6
SPEC Fortran Avg 29 24 26 25 18 6
APS 28 30 34 31 26 10
CSS 39 29 40 36 33 9
LWS 38 32 25 25 18 16
NAS 42 12 22 22 12 4
OCS 4 6 5 5 4 2
SDS 18 32 25 19 21 12
TFS 12 10 15 13 11 6
TIS 18 26 25 22 16 16
WSS 32 28 26 26 25 11
Perf Club Avg 26 23 24 22 18 10
Overall Avg 34 25 26 25 20 8

Table 4: Comparison of using Heuristics in Ball and Larus ordering, Dempster-Shafer Theory and ESP. The first column shows the misprediction
rate of the BTFNT approach. The second column shows the miss rate for our implementation of the APHC method of Ball and Larus. We computed
the Dempster-Shafer miss rates, shown in column three, with the same values for the heuristics used by Wu and Larus as well as the values we
computed, shown in column four. The fifth column is the miss rate for the ESP technique, while the last column is the miss rate for perfect static
profile prediction. In each case, smaller values are better.

od, perl, siod, sort, tex, wdiff, fpppp, su2cor,
tomcatv, LWS, andTIS), and has significantly worse per-
formance in only one case (mdljsp2).

We feel that the ESP results may be improved by expanding
the feature sets used. We used a limited number of “features”
in the feature set to distinguish branches, primarily using the
features described by Ball and Larus. To extend the set of
features, we need to determine what new features (e.g., infor-
mation from the control dependencegraph) we want to include,
capture that information during program instrumentation, and
pass those features to the neural net. This is a simple process,
but we have only examined a small set of the possible features.
Rather than rely on intuition about the appropriate features
(e.g,. by using the Ball and Larus predictors), we should pro-
vide as much information to the neural network as possibleand
let it decide the importance.

5.2 Cross-Architectural Study of A Priori Heuristics

In the paper by Ball and Larus [3], a number ofprediction
heuristics were described. These heuristics were the founda-
tion for the prediction scheme in both the study by Ball and
Larus and the study by Wu and Larus. In the study by Wu
and Larus, the values given in [3] were used for the Dempster-
Shafer combination method, even though the study by Wu and
Larus used a different architecture, compiler and runtime sys-
tem. We wondered how sensitive these metrics were to differ-
ences in architecture, compiler, runtime system and selection
of programs.

We use the CFG, dominator,post-dominator and loop infor-
mation to implement the same heuristics in [3], summarized
in Table 1. Our implementation results for these heuristics
are shown in Table 5. This table shows detailed information
about how the branch heuristics performed for each program.
Some of the programs in our suite were also used in the ear-
lier study by Ball [3], and the values in parenthesis show the
equivalent metrics recorded in that study. In general, the val-
ues are quite similar, but there are some small differences that
we believe arise from different runtime libraries. For exam-
ple, a binary-buddy memory allocator would not contain any
loops, while a coalescing implementation may contain several
loops. These library routines are part of the native operating
system, and not part of the distributed benchmark suite. Note
that there are considerable differences, in the percentage of
non-loop branches, particularly ineqntott. Some of these
differences are caused by libraries and runtime systems, but
others can be attributed to architectural features. For example,
the Alpha has a “conditional move” operation that obliviates
the need for many short conditional branches, reducing the
number of conditional branches that are executed.

Table 5 further demonstrates that our implementation of the
heuristics listed in [3] appear to be correct. The loop miss rates
are roughly the same, the heuristics cover approximately the
same percentage of branches and the overall branch prediction
miss rates are similar. There are some differences, but after
some investigation,we have attributed most of these to different
architectures, operating systems and compilers.

Table 6 shows the comparison of the overall averages for
the heuristics comparing the Ball and Larus results on the

MIPS architecture to our results on the Alpha. This table also
shows the probablilites used in the DSHC results shown in
Table 4. The B&L miss rates were used for the DSHC(B&L)
probabilities and our Overall miss rates in Table 6 were used
for the DSHC(Ours) probablilities in Table 4.

We felt that the differences seen in Table 6 were to be
expected, because the two studies used a different collection
of programs with different compilers that implement differ-
ent optimizations for different architectures and used different
runtime libraries. Table 6 supports our position that at least
some of Ball and Larusheuristics are quite languagedependent.
First, we point out that pointers are very rare in FORTRAN, and
as such the great successof the Pointer heuristic in FORTRAN
is of little consequencebecause it applies to very few branches.
Next, we see that while the Store heuristic appears successful
in our FORTRAN programs, it performs much worse in our
C programs. Conversely, the Loop Header heuristic performs
well in C programs, but poorly in FORTRAN programs. Over-
all, four of the nine heuristics show a difference of greater than
10% in their miss rates when our C and Fortran programs are
compared.

5.2.1 The In
uence of Architectures

In certain cases, we had slightly different implementations of
heuristics than Ball and Larus because the Alpha architecture
did not allow us to implement the heuristicsas originally stated.
For example, with respect to the Opcode heuristic, the Alpha
architecture has two types of branch instructions;one compares
floating point numbers to zero and the other integer numbers
to zero. The conditional branch instructions always compare
a register to zero. On the MIPS architecture, the “branch if
equal” (BEQ) and “branch if not-equal” (BNE) instructions
compares two registers. To accomplish the same task on the
Alpha, an earlier comparison must be made between the two
registers, and the resulting value is then compared to zero.

However, our implementation of the heuristics took these
factors into account, constructing an abstract syntax tree from
the program binary and using that to determine the outcome
of the conditional branch. Clearly, determining this informa-
tion at compile time would simplify the analysis, because we
could use more information from the program. However, both
Ball and Larus [3] and our study used binary instrumentation,
so we felt that other factors must also contribute to the pre-
diction differences. We examined one program for which the
Ball and Larus heuristics provided good prediction accuracy,
tomcatv in more detail, since our implementation of those
heuristics provided worse prediction accuracy (see Table 5).
On the Alpha,tomcatv spends 99% of its execution in one
procedure. Furthermore, most of the basic block transitions in
that procedure involve three basic blocks, shown in Figure 2.
The edge from block 32! 28 is a loop back edge, and our
heuristics indicate this correctly. However, the remaining two
conditional branches only match the “guard” heuristic in the
heuristics described by Ball and Larus. However, their study
indicated thattomcatv benefited from the “store” heuristic,
which predicts that basic blocks withstore instructions fol-
lowing a conditional branch are not taken. By comparison,
on the Alpha, none of the successors of block 28 (blocks 29

Loop Branches Non-Loop Branches
Miss Rate Miss Rate %Non-Loop %Branches Miss Rate Miss Rate Overall

For Loops Branches Covered By For With Miss
Heuristics Hueristics Default Rate

bc 39 74 80 30 36 37
bison 12 64 84 15 18 15
burg 22 66 80 39 42 35
flex 15 60 58 38 46 33
grep 9 60 89 36 39 27
gzip 4 48 31 45 62 32
indent 27 69 77 23 27 27
od 56 83 74 43 42 44
perl 43 69 80 34 38 39
sed 19 54 78 19 25 22
siod 34 74 59 29 34 34
sort 17 63 66 50 45 35
tex 33 51 78 40 41 37
wdiff 11 65 100 44 44 32
yacr 4 37 85 24 31 14
Other C Avg 23 62 75 34 38 31
alvinn 0 3 65 40 42 2
compress 8 (12) 57 (66) 80 (90) 38 (39) 38 (40) 25 (30)
ear 2 17 96 41 41 8
eqntott 2 (3) 11 (49) 75 (5) 40 (37) 45 (50) 7 (26)
espresso 17 (18) 45 (37) 73 (44) 26 (25) 33 (26) 24 (21)
gcc 25 (22) 72 (73) 79 (79) 33 (32) 37 (37) 34 (33)
li 28 (28) 61 (62) 87 (90) 22 (25) 25 (28) 26 (28)
sc 10 64 76 40 40 29
SPEC C Avg 11 41 79 35 38 19
doduc 10 (8) 42 (52) 69 (92) 23 (31) 31 (33) 19 (21)
fpppp 28 (34) 70 (86) 61 (82) 63 (40) 64 (42) 53 (41)
hydro2d 3 52 88 25 31 17
mdljsp2 9 81 33 38 49 41
nasa7 3 (1) 24 (10) 66 (95) 33 (29) 38 (32) 12 (4)
ora 3 64 57 15 27 18
spice 9 (9) 23 (21) 61 (75) 27 (33) 38 (36) 16 (14)
su2cor 1 44 78 46 47 21
swm256 1 1 65 9 13 1
tomcatv 1 (1) 43 (38) 100 (100) 99 (1) 99 (2) 44 (1)
wave5 10 50 82 45 44 27
SPEC Fortran Avg 7 45 69 39 44 24
APS 26 52 62 25 33 30
CSS 22 62 57 35 34 29
LWS 15 60 62 26 44 32
NAS 5 74 38 10 14 12
OCS 3 10 54 15 31 6
SDS 22 36 58 26 48 32
TFS 6 24 76 14 23 10
TIS 22 40 44 20 32 26
WSS 18 40 56 33 43 28
Perf Club Avg 16 44 56 23 34 23
Common Avg 13 (14) 45 (49) 75 (75) 41 (29) 45 (33) 26 (22)
Overall Avg 15 50 70 33 38 25

Table 5: Results for the Program-Based Heuristic Approaches. The first column lists the miss rate for loop branches. The second column shows
the percentage of non-loop branches. The third column shows the dynamic percentage of non-loop branches that can be predicted using one of
the heuristics, while the fourth column shows the miss rate achieved when using those heuristics. For example, 80% of the non-loop branches in
compress can be predicted using some heuristic, and those heuristics have a 38% miss rate. Branches that can not be predicted using the heuristics
are predicted using a uniform random distribution. The fifth column shows the prediction miss rate for the execution of all non-loop branches,
combining the predictions from the heuristics and the random predictions. Lastly, the sixth column lists the misprediction rate when both loop and
non-loop branches are included.

Branch Prediction Miss Rates
Heuristic B&L (MIPS) Our Implementation (ALPHA)

C FORTRAN Overall
Loop Branch 12% 17% 12% 15%
Pointer 40% 58% 1% 55%
Call 22% 23% 44% 31%
Opcode 16% 33% 29% 32%
Loop Exit 20% 28% 30% 29%
Return 28% 29% 30% 30%
Store 45% 52% 30% 42%
Loop Header 25% 33% 48% 40%
Guard 38% 34% 31% 33%

Table 6: Comparison of Branch Miss Rates for Prediction Heuristics. These averages are for all the programs we simulated and a program is
only included in a heuristic’s average if the heuristic applies to at least 1% of the branches in the program.

28
LDT F20,0(R22)
FABS F8,F11
FABS F20,F10

CMPTLT F10,F11,F11
FBNE F11,Node30

29
FMOV F20,F8

BIS R31,R21,R12
BIS R31,R7,R13

30
LDT F26,0(R20)

FABS F9,F28
FABS F26,F14

CMPTLT F14,F28,F28
FBNE F28,Node32

21

31
FMOV F26,F9

BIS R31,R21,R14
BIS R31,R7,R15

32
LDA R22,8(R22)

CMPLE R22,R17,R2
ADDL R21,#1,R21
LDA R20,8(R20)
BNE R2, Node28

21

33
ADDL R7,#1,R7

CMPLE R7,R27,R26
BNE R26,Node34

21

Node34

Node27

Figure 2: Sample code fragment from TOMCATV benchmark that
continues most of the branches in the program. The numbers on the
edges indicate the percentage of all edge transitions attributed to a
particular edge. The dotted edges indicate taken branches.

and 30) or block 30 (blocks 31 and 32) contain store instruc-
tions. This difference may be attributed to different register
scheduling or register saving conventions, requiring a store
on the MIPS, but not on the Alpha. The “guard” heuristic
still applies, but predicts both branches in blocks 28 and 30
incorrectly.

5.2.2 The In
uence of Compilers and Optimizations

To further validate our belief that the choice of compilers in-
fluences the prediction accuracy of the various heuristics, we
compiled one program,espresso, with the following com-
pilers:cc on OSF/1 V1.2,cc on OSF/1 V2.0, the DEC GEM
C compiler and the Gnu C compiler. The results are shown
in Table 7. In terms of the overall miss rate, the compilers all
show different behavior. Also note that the DEC GEM C com-
piler produced significantly fewer loop branches, and resulted
in a program approximately 15% faster than the other compil-
ers. The GEM compiler unrolled one loop in the main routine,
inserting more forward branches and reducing the dynamic
frequency of loop edges.

This simple optimization changed the characteristics of the
branches in the program and the efficacy of the APHC branch
prediction technique. The difference caused by loop-unrolling
is significant if we want to use branch probabilities after tradi-
tional optimizations have been applied. However, many pro-
grammers unroll loops “by hand” and other programmers use
source-to-source restructuring tools, such as KAP or VAST.
The differences evinced by these applications may render the
fixed ordering of heuristics inappropriate for some programs.

Our validation study confirmed an underlying assumption
in our work: heuristic-based branch prediction rates vary with
programs, program style, compiler, architecture, and runtime
system. Rather than choosing a set of heuristics based on the
intuition of a few people, we have devised a program-based
prediction mechanism that can be adapted to the techniques,
style andmechanismsof different programmers, languagesand
systems. Furthermore, the corpus-based approach means our
prediction technique can be customized to specific groups or
customers.

Program O/S Compiler Loop Branches Non-Loop Branches Overall Perfect
Miss Rate %Non-Loop Heuristic Miss Rate Miss Rate

Branches Miss Rate
Espresso 1.2 cc 17 45 26 24 15
Espresso 2.0 cc 18 46 27 25 15
Espresso 2.0 GEM C 25 57 26 32 12
Espresso 2.0 Gnu C 17 46 23 22 15

Table 7: Comparison of Accuracy of Prediction Heuristics Using Different Compilers

6 Summary

Branch prediction is very important in modern computer ar-
chitectures. In this paper, we investigate methods for static
program-based branch prediction. Such methods are impor-
tant because they do not require complex hardware or time-
consuming profiling. We propose a new, general approach
to program-based behavior estimation called evidence-based
static prediction (ESP). We then show how our general ap-
proach can be applied specifically to the problem of program-
based branch prediction. The main idea of ESP is that the
behavior of a corpus of programs can be used to infer the
behavior of new programs. In this paper, we use a neural net-
work to map static features associated with each branch to the
probability that the branch will be taken.

ESP has the following advantages over existing program-
based approaches to branch prediction. First, instead of being
basedon heuristics, it is basedon a corpusof information about
actual program behavior and structure. We have observed that
the effectiveness of heuristic approaches to branch prediction
can be architecture, compiler, and language dependent. Thus,
ESP can be specialized easily to work with new and different
programming languages,compilers, computer architectures, or
runtime systems. It is our hope that it can even be customized
for specific application domains, or workgroups with a modest
amount of effort.

Second, the ESP approach does not require careful consid-
eration when deciding what features to include in the training
data. The neural net we use is capable of ignoring information
that is irrelevant andsuch information doesnot degrade the per-
formance of the predicted branch probabilities. On the other
hand, with heuristic methods, trial-and-error is often required
to find heuristics that are effective.

Finally, we have shown that the ESP approach results
in branch prediction miss rates that are better than the best
program-based heuristic approaches. Over a collection of 43
C and Fortran programs, the overall miss rate of ESP branch
prediction was20%, which comparesagainst the 25% miss rate
using a fixed ordering of the Ball and Larus heuristics (the best
heuristic method), and the overall 8% miss rate of the perfect
static-profile predictor.

We see many future directions to take with this work. Cur-
rently, the neural network we use not only provides a prediction
for each branch, but also provides its estimate of the branch
probability. If that probability is> 50% we estimate that the
branch will be taken. Our next goal will be to incorporate

this branch probability data to perform program-based profile
estimation using ESP. It is simple to add more “features” into
our training information; for example, we plan on indicating
branches in library subroutines, since that those subroutines
may have similar behavior across a number of programs. We
also plan to gather large bodies of programs in other pro-
gramming languages, such as C++ and Scheme, and evaluate
how ESP branch prediction works for those languages. We are
also interested in seeinghow effective other classification tech-
niques, such as memory-based reasoning or decision trees, will
be for ESP prediction. Finally, we are interested in comparing
the effectiveness of using ESP prediction techniques against
using profile-based methods across a range of optimization
problems.

We also see other possible uses of the ESP approach that
supplement profile-based prediction techniques. We expect
that organizations and workgroups might use their own pro-
grams to “train” the ESP system. They could then use program-
basedinformation for most compilations, and useprofile-based
information for performance-critical compilations. Likewise,
computer vendors may provide several trained ESP predictors,
based on program type or language.

Acknowledgements

We would like to thank Alan Eustace and Amitabh Srivastava
for developing ATOM, and James Larus for motivating this
paper. Brad Calder was supported by an ARPA Fellowship
in High Performance Computing administered by the Institute
for AdvancedComputer Studies, University of Maryland. This
work was funded in part by NSF grant No. ASC-9217394,NSF
grant No. CCR-9404669,ARPA contract ARMY DABT63-94-
C-0029 and a software grant from Digital Equipment Corp.

References

[1] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porter-
field, and B. Smith. The tera computer system. InInternational
Conference on Supercomputing, pages 1–6, June 1990.

[2] Vasanth Balasundaram, Geoffrey Fox, Ken Kennedy, and Ulrich
Kremer. A static performanceestimator to guide data partitioning
decisions. InThird ACM SIGPLAN Symposium on Principles &
Practice of Parallel Programming, pages 213–223, July 1991.

[3] Thomas Ball and James R. Larus. Branch prediction for free. In
Proceedings of the SIGPLAN’93 Conference on Programming
Language Design and Implementation, pages 300–313, June
1993.

[4] M. Berry. The Perfect Club Benchmarks: Effective performance
evaluation of supercomputers.The International Journal of Su-
percomputer Applications, 3(3):5–40, Fall 1989.

[5] Brad Calder and Dirk Grunwald.Fast & accurate instruction fetch
and branch prediction. In21st Annual International Symposium
on Computer Architecture, pages 2–11. ACM, April 1994.

[6] Brad Calder and Dirk Grunwald. Reducing branch costs via
branch alignment. InSix International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, pages 242–251. ACM, 1994.

[7] Brad Calder, Dirk Grunwald, and Benjamin Zorn. Quantifying
behavioral differences between C and C++ programs.Journal of
Programming Languages, 2(4), 1994. Also available as Univer-
sity of Colorado Technical Report CU-CS-698-94.

[8] P. P. Chang and W. W. Hwu. Profile-guided automatic inline
expansion for C programs.Software Practice and Experience,
22(5):349–376, 1992.

[9] P. P. Chang, S. A. Mahlke, and W. W. Hwu. Using profile infor-
mation to assist classic compiler code optimizations.Software
Practice and Experience, 21(12):1301–1321, 1991.

[10] A. P. Dempster. A generalization of bayesian inference.Journal
of the Royal Statistical Society, 30:205–247, 1968.

[11] J. A. Fisher and S. M. Freudenberger. Predicting conditional
branch directions from previous runs of a program. InPro-
ceedings of the Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-V), pages 85–95, Boston, Mass., October 1992. ACM.

[12] Joseph A. Fisher. Trace scheduling: A technique for global
microcode compaction.IEEE Transactions on Computers, C-
30(7):478–490, July 1981.

[13] Wen-mei W. Hwu and Pohua P. Chang. Achieving high instruc-
tion cache performancewith an optimizing compiler. In16th An-
nual International Symposium on Computer Architecture, pages
242–251. ACM, 1989.

[14] Scott McFarling and John Hennessy. Reducing the cost of
branches. In13th Annual International Symposium of Com-
puter Architecture, pages 396–403. Association for Computing
Machinery, 1986.

[15] Judea Pearl.Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann, San Mateo,
CA, 1988.

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.Parallel dis-
tributed processing: Explorations in the microstructureof cogni-
tion. Volume I: Foundations, chapter Learning internal represen-
tations by error propagation,pages 318–362.MIT Press/Bradford
Books, Cambridge, MA, 1986. D. E. Rumelhart and J. L. Mc-
Clelland, editors.

[17] G. Shafer.A Mathematical Theory of Evidence. Princeton Uni-
versity Press, Princeton, NJ, 1976.

[18] J. E. Smith. A studyof branchpredictionstrategies. In8th Annual
International Symposium of Computer Architecture, pages 135–
148. ACM, 1981.

[19] P. Smolensky, M. C. Mozer, and D. E. Rumelhart, editors.Math-
ematical perspectives on neural networks. Erlbaum, 1994. In
press.

[20] Amitabh Srivastava and Alan Eustace. ATOM: A system for
building customized program analysis tools. InProceedings of
the SIGPLAN’94 Conference on ProgrammingLanguageDesign
and Implementation, pages 196–205. ACM, 1994.

[21] Tim A. Wagner, Vance Maverick, Susan Graham, and Michael
Harrison. Accurate static estimators for program optimization.
In Proceedingsof the SIGPLAN’94 Conferenceon Programming
Language Design and Implementation, pages 85–96, Orlando,
Florida, June 1994. ACM.

[22] Youfeng Wu and James R. Larus. Static branch frequency and
program profile analysis. In27th International Symposium on
Microarchitecture, San Jose, Ca, November 1994. IEEE.

[23] Tse-Yu Yeh and Yale N. Patt. A comparison of dynamic branch
predictors that use two levels of branch history. In20th Annual
International Symposium on Computer Architecture, pages 257–
266, San Diego, CA, May 1993. ACM.

