To appear in the Proc. of the ACM SSGPLAN Conf. on Prog. LanguageDesign and Implementation (PLDI '95), La Jolla, CA, June 18-21, 1995

Corpus-based Static Branch Prediction

Brad Calder, Dirk Grunwald, Donald Lindsay,
James Martin, Michael Mozer, and Benjamin Zorn
Department of Computer Science
Campus Box 430
University of Colorado
Boulder, CO 80309-0430 USA

Abstract this paper, we describe ESP and its successful application to
the problem of program-based branch prediction.
Correctly predicting the direction that branches will take is Branch prediction is the process of correctly predicting

increasingly important in today’s wide-issue computer archi- whether branches will be taken or not before they are actually
tectures. The nam@ogram-based branch prediction is given executed. Branch prediction is important, both for computer
to static branch prediction techniques that base their predic- architectures and compilers. Compilers rely on branch pre-
tion on a program’s structure. In this paper, we investigate diction and execution estimation to implement optimizations
a new approach to program-based branch prediction that usessuch as trace-scheduling [12, 13] and other profile-directed
a body of existing programs to predict the branch behavior optimizations [8, 9].

in a new program. We call this approach to program-based
branch predictiongvidence-based static prediction, or ESP.

The main idea of ESP is that the behavior afoapus of pro-
grams can be used to infer the behavior of new programs. In
this paper, we use a neural network to map static features as-
sociated with each branch to the probabilty that the branch
will be taken. ESP shows significant advantages over other
prediction mechanisms. Specifically, it is a program-based
technique, it is effective across a range of programming lan-
guages and programming styles, and it does not rely on the
use of expert-defined heuristics. In this paper, we describe
the application of ESP to the problem of branch prediction
and compare our results to existing program-based branch pre-
dictors. We also investigate the applicability of ESP across
computer architectures, programming languages, compilers,
and run-time systems. Averaging over a body of 43 C and
Fortran programs, ESP branch prediction results in a miss rate
of 20%, as compared with the 25% miss rate obtained using
the best existing program-based heuristics.

Wide-issue computer architectures rely on predictable con-
trol flow, and failure to correctly predict a branch results in
delays for fetching and decoding the instructions along the
incorrect path of execution. The penalty for a mispredicted
branch may be several cycles long. For example, the mis-
predict penalty is 4 to 5 cycles on the Digital Alpha AXP
21064 processor. In previous studies, we found that condi-
tional branches in C programs were executed approximately
every 8 instructions on the Alpha architecture [7]. Current
wide-issue architectures can execute four or more instructions
per cycle. As a result, such architectures are likely to exe-
cute branch instructions every two cycles or less and effective
branch prediction on such architectures is extremely impor-
tant. Many approaches have been taken to branch prediction,
some of which involve hardware [5, 23] while others involve
software [3, 6, 11]. Software methods usually work in tan-
dem with hardware methods. For example, some architectures
have a “likely” bit that can be set by a compiler if a branch is
determined to be likely taken by a compiler.

Compilers typically rely on two general approaches for
1 Introduction branch prediction. Profile-based methods use program profiles
to determine the frequency that branch paths are executed.
In this paper, we propose a new technique for program-based Flsht_ar _and Freudenberger showed that profllc_e-based branch
branch prediction based on a general approach that we have in_predlctlon_can be extremely succes_sful in rt_educmg the number
vented calledEvidence-based Satic Prediction (ESP). Ourre- Of instructions executed between mis-predicted branches [11].
sults show that using our new approach results in better branch The main drawback of profile-based methods is that additional
prediction than all existing program-based techniques. In ad- Workiis required on the part of the programmer to generate the
dition, our ESP approach is very general, and can be applied Program profiles.
to a wide range of program behavior estimation problems. In Program-based branch prediction methods attempt to pre-
dict branch behavior in the absence of profile information and
are based only on a program’s structure. Some of these tech-
niques use heuristics based on local knowledge that can be
encoded in the architecture [14, 18]. Other techniques rely on
applying heuristics based on less local program structure in an

effort to predict branch behavior [3]. In this paper, we describe ready encodedin the instruction. While simple, BTFNT is also
a new approach to program-based branch prediction that doesquite successful. Our results in Section 5 show it has an over-
not rely on such heuristics. Our branch prediction relies on a all miss rate in our experiments of 34%. Any more sophisti-
general program-based prediction framework that we call ESP. cated program-based prediction techniques must do better than
The main idea of ESP is that the behavior of a corpus of pro- BTFNT to be viable.

grams can be used to infer the behavior of new programs. That
is, instead of using a different execution of a program to pre-
dict its own behavior (as is done with profile-based methods),
we use the behavior of a large body of different programs (the
training set, or corpus) to identify and infer common behavior.
Then we use this knowledge to predict branches for programs
that were not included in the training set. In particular, in this
paper we use a neural network to map static features associ-
ated with each branch to the probability that the branch will be
taken.

To facilitate program-based methods for branch predic-
tion, some modern architectures provide a “branch-likely” bit
ineachbranchinstruction [1]. Inthese architectures, compilers
can employ either profile-based [11] or program-based tech-
nigues to determine what branches are likely to be taken. In
recentwork, Ball and Larus [3] showed that applying a number
of simple program-based heuristics can significantly improve
the branch prediction miss rate over BTFNT on tests based
on the conditional branch operation. A complete summary of
the Ball and Larus heuristics is given in Table 1 (as described

Branch prediction using ESP has several important advan- in [22]). Their heuristics use information about the branch
tages over existing program-based branch prediction methods. opcode, operands, and characteristics of the branch successor
First, because the technique automatically maps static featuresblocks, and encode knowledge about common programming
of branches to a probability that they will be taken, our tech- idioms.
nique is suitable for program-based branch prediction across
different languages, compilers, and computer architectures. .,
Existing techniques rely on compiler-writer defined heuristics |,
that are based on an intuition about common programming id-
ioms. Second, given alarge amount of static information about
each branch, the technique automatically determines what parts
of that information are useful. Thus, it does not rely on trial-
and-error on the part of the compiler writer searching for good
heuristics. Finally, our results show that ESP branch prediction
outperforms existing heuristic program-based branch predic-
tion techniques over a body of 43 C and Fortran programs. In
particular, our heuristics have an average overall miss rate of
20%, which compares to the 25% miss rate of the best existing

heur@stic technique, and the 8% miss rate of the perfect static take. They determined the “best" fixed order by conducting an

predictor. experiment in which all possible orders were considered. We
This paper has the following organization. In Section 2 call using this pre-determined order for heuristic combination

we discuss previous approachesto program-based branch pre-the A Priori Heuristic Combination (APHC) method. Using

diction and other knowledge-based approaches to program op- APHC, Ball and Larus report an average overall miss rate on

timization. In Section 3 we discuss the details of our ESP the MIPS architecture of 20%.

branch prediction method. Section 4 describes the methods

" ; . In arelated paper, Wu and Larus refined the APHC method
we usedto evaluate and compare ESP prediction with previous ot ga) ang Larus [22]. In that paper, their goal was to deter-

€mine branclprobabilitiesinstead of simple branch prediction.
Whereas with branch prediction, the goal is to determine a
single bit of information per branch (likely versus unlikely),
with branch probabilities, the goal is to determine the numeric
probability that a branch is taken or not taken. Wu and Larus
abandoned the simplistic evidence combination function of
.) . o . APHC in favor of an evidence combination function borrowed
In this section, we discuss the existing approaches to static from Dempster-Shafer theory [10, 17]. We call this form of ev-
branch prediction and also discuss other knowledge-based ap-jgence combinatio®empster-Shafer Heuristic Combination
proaches to compiler optimization. (DSHC). By making some fairly strong independence assump-
tions, the Dempster-Shafer evidence combination function can
produce an estimate of the branch probability from any number
of sources of evidence. For example, if one heuristic indicates
that a branch is likely to be taken with probability X%, while
another says it is likely to be taken with probability Y%, then
DSHC allows these two probabilities to be combined. The
probabilities X% and Y% that Wu and Larus use are taken
directly from the paper of Ball and Larus [3]. We refer to a
DSHC algorithm based on this data as DSHC(B&L).

Two questions arise when employing an approach like that
en by Ball and Larus. First, an important question is which
uristics should be used. In their paper, they describe seven
heuristics that they considered successful, but also noted that
“We tried many heuristics that were unsuccessful. [3]” A sec-
ond issue that arises with heuristic methods is how to decide
what to do when more than one heuristic applies to a given
branch. This problem has existed in the artificial intelligence
community for many years and is commonly known as the “ev-
idence combination” problem. Ball and Larus considered this
problem in their paper and decided that the heuristics should be
applied in a fixed order; thus the first heuristic that applied to a
particular branch was used to determine what direction it would

our conclusions in Section 6 and also discuss possible future
directions to take with this research.

2 Background

2.1 Program-Based Branch Prediction Methods

One of the most simple program-based methods for branch pre-
diction is called “backward-taken/forward-not-taken” (BTFNT).
This technique relies on the heuristic that backward branches
are usually loop branches, and as such are likely to be taken.
One of the main advantages of this technique is that it relies
solely on the sign bit of the branch displacement, which is al-

Heuristic Heuristic

Name Description

Loop Branch| Predict that the edge back to the loop’s head is taken and the edge exiting the loop
is not taken.

Pointer If a branch compares a pointer against null or compares two pointers, predict the
branch on false condition as taken.

Opcode If abranch checks an integer for less than zero, less than or equal to zero, orjequal
to a constant, predict the branch on false condition.

Guard If a register is an operand of the branch comparison, the register is used before

being defined in a successor block, and the successor block does not post-dominate
the branch, predict the successor block as taken.
Loop Exit If a comparison is inside a loop and no successor is a loop head, predict the edge
exiting the loop as not taken.
Loop Header| Predict the successor that does not post-dominate and is a loop header or|a loop
pre-header as taken.

Call Predict the successor that contains a call and does not post-dominate the branch
as taken.

Store Predict the successor that contains a store instruction and does not post-dominate
the branch as not taken.

Return Predict the successor that contains a return as not taken.

Tablel: Summary of the Ball/Larus Heuristics

Becausethe goal of Wu and Larus was to perform program- 3 Evidence-based Branch Prediction
based profile estimation, they give no results about how the

DSHC method works for program-based branch prediction. |, this section, we propose a general framework for program-

One of the contributions of our paper is that we quantify the pased prediction. Our method, ESP, is generally described as
effectiveness of the DSHC method for branch prediction. follows. A body of programs and program input is gathered
Wagner et al. [21] also used heuristics similar to those of (the corpus). Particular static information (thsiatic feature
Ball and Larus to perform program-based profile estimation. set) aboutimportant static elements of the corpus (e.g., instruc-
They also applied the heuristics in a fixed order. They report tions) are recorded. The programs in the corpus are executed,
branch prediction miss rate results similar to those of Ball and and the corresponding dynamic behavior is associated with
Larus. each static element (e.g., the number of times a branch is taken
and not-taken is associated with each branch). At this point,
L. we have accumulated a body of knowledge about the relation-
2.2 Knowledge-Base Approaches to Optimization ship between static program elements and dynamic behavior.
)) This body of knowledge can then be used at a later time to pre-
Our ESP method relies on collecting data from a corpus of pro- dict the behavior of instructions with similar static features for
gram behavior and using that data to perform program-based programs not in the corpus. With this broad definition of our
prediction. There is little other work in compiler optimization framework in mind, we now describe how we apply this general

that has taken this approach. We summarize the work we are framework to the specific problem of branch prediction.
aware of here.

In [2], Balasundaram et al. address a somewhat different 3.1 ESP Branch Prediction
program-based estimation problem. The authors wanted to ="
make compile-time decisions about data partitioning across a
parallel computer. They report on the idea of using profile
data to “train” an estimator. This training, an offline step,
generates code which is then incorporated into their compiler.
Training only needsto be done once per compilationtarget, and
is reported to be better than using a parameterized theoretical
model. While the strategy they employ is similar to ESP, their
application domain is quite different. In addition, our results Some of the features are properties of the branch instruction
show that this general approach of knowledge-based“training” itself (e.g., the branch opcode), others are properties of the
can be used to enhance a wide class of optimizations based onregisters used to define the register in the branch instruction
program behavior estimation. (e.g., the opcode of the instructions that defined them), while

others are properties of the procedure that the branchiis in (leaf
versus non-leaf). The existence of some features is dependent
on the values of other features. For example, feature 4 is only

In applying ESP to the problem of branch prediction, we instan-
tiate the above framework in the following way. The static pro-
gram elements we are interested in are the program branch in-
structions. For this study, we consider only two-way branches.
For each branch instruction in the program text, we record a
large static feature set (see Table 2).

Feat. Feature

Num. Name Feature Description

1 Br. opcode The opcode of branch instruction.

2 Br. direction F — Forward branchB — Backwards branch

3 Br. operand opcode The opcode of the insruction that defines the register used in the branch instriiction
(or ?, if the branch operand is defined in a previous basic block).

4 RA opcode If the instruction in (3) uses an RA register, this is the opcode of the instruction
that defines that register (? otherwise).

5 RB opcode If the instruction in (3) uses an RB register, this is the opcode of the instrugtion
that defines that register (? otherwise).

6 Loop header LH — the basic block is a loop header, NLH - not a loop header

7 Language The language of the procedure the branch is in (C or FORT).

8 Procedure type The branches’ procedure is a Leaf, NonLeaf or calls itself recursively (CallSelf)

9-16 Features of the Taken Successor of the Branch

9 Br. dominates D — basic block dominates this successor, or ND — does not dominate

10 Br. postdominates | PD — the successor basic block post-dominates the basic block with the branch,
or NPD — does not post-dominate

11 Succ. Ends Branch type ending successor basic block, possible values (FT — fall thrqugh,
CBR — conditional branch, UBR — unconditional branch, BSR — branch sub-
routine, JUMP — jump, IJUMP — indirect jump, JSR — jump subroutine, IJSR
— indirect jump subroutine, RETURN, COROUTINE, LASIUMP.KIND, or
NOTHING)

12 Succ. Loop LH — the successorbasic block is a loop header or unconditionally passes control
to a basic block which is a loop header, NLH — not a loop header

13 Succ. Backedge | LB — the edge getting to the successor is a loop back edge, NLB — not a |oop
back edge

14 Succ. Exit LE — the edge getting to the successor is a loop exit edge, NLE — not a|loop
exit edge

15 Succ. UseDef UBD — the successorbasic block has a use of a register before defining it and that
register was used to determine the destination of the current conditional branch
instruction. NU — no use before def in successor

16 Succ Call PC — the successor basic block contains a procedure call or unconditignally
passes control to a basic block with a procedure call, NPC — no procedurg call
down here

17-24 Features of the Not Taken Successor of the Branch

As above features 9-16

Table

2. Static Feature Set Used in the ESP Branch Prediction Study.

meaningful if feature 3 has an RA operand. We call such wherez; is the activity of input unitj, w;; is the connection
featuresdependent static features. weight from input unitj to hidden unitz, b; is a bias weight

We chose the feature set shown in Table 2 based on severaj@ssociated with the unit, and tanh is the hyperbolic tangent
criteria. First, we encoded information that we believed would function,
likely be predictive of behavior. This information included tanh(u) = e —¢
some of the information used to define the Ball/Larus heuristics e t+e
(e.g., information about whether a call appears in a successorSimilarly, the output unit activity, denotedis computed from
of the branch). Second, we encode other information that was the hidden unit activities:
easily available. For example, since the opcodes that define
the branch instruction register are readily available, we include y= .5tanr(2 viki +a) +1,
them as well. Similarly, information about the procedure type -
is readily available. We note that the feature set listed here
is the only one we have yet tried. We have made no effort to wherew; is the connection weight from hidden unito the
identify a particularly good feature set, and our positive results output unit anck is a bias weight associated with the output
suggest that such “feature tuning” is unnecessary. unit. The tanh function is normalized to achieve an activity

Having defined the static feature set, we then determine @nge of(0, 1 for the output unit.
the static feature set for each branchin the corpus of programs. The input-output behavior of the neural network is deter-
We next run the programs in the corpus and collectinformation mined by its free parameters, the weightsindv and biases
about how often each branch is taken and not taken. The goal b anda. These parameters are set by an algorithm known as
is to associate two pieces of dynamic information with each backpropagation[16]. Thisis a gradient descentprocedure for
branch instruction: how frequently the branch was executed adjusting the parameters such that performance of the network
and how often was it taken. Because execution frequency is on atraining corpusis optimized. The standard measure of
program dependent, we normalize the branch frequency by performance is the sum of squared errors,
the total number of branches executed in the program. We
compute thenormalized branch weight by dividing how many E = E (yk _ tk)z,
times the branch was executed by the total number of branches -
executed by the program (resulting in a number between zero
and one). Finally, we associate with each branch instruction in \yheref is an index over examples in the training corpy,
the corpus its static feature set, its normalized branch weight, js the actual output of the network when training inguis
and its branch probability (percentage of the time the branch resented, antf is thetarget output—the output indicated for
was taken). that example in the training corpus.

u_e—u

7

In this application, however, we have a different criterion

3.1.1 Prediction using Neural Nets for good performance. We want to minimize two sorts of errors,
missed branches (MB) and branchesincorrectly taken (BIT).
Our goal is to have a system that can predict the branch prob- MB occur when the predictor says that the branch will be taken
ability for a particular branch from its static feature set. This with probability less than .5 whenthe branchis in reality taken;
system should accurately predict not just for the programs in BIT occur when the predictor says that the branch will be taken
the corpus, but also for previously unseen programs. with probability greater than .5 whenthe branchis in reality not
One way of doing such prediction is viafeedforward taken. If the network output for exampkeis binary—1 if the
neural network [19]. A feedforward neural network maps a predicate “the branch probability is greater than .5”is believed
numerical input vector to a numerical output. Here, the input {0 P€ true, 0 otherwise—then the total number of errors due to
vector consists of the feature values in the static feature set, MB for examplek is
and the output is a scalar indicating the branch probability. ok k
FEus :(l—y)t n,

Figure 1 depicts the branch predi_ction _neural rjetwo_rk. A
neural network is composed pfocessing units, depicted in wheren* is the normalized branch weight. The prodtfti*
the Figure by circles. Each processing unineeys ascalar gives the (relative) number of cases where the branch is taken.
value known asitactivity. The activity pattern overthe bottom A| o these branches are missedit = 0 (or equivalently,

row of units is the input to the network. The activity of the 7 _ ¥* = 1). Similarly, the total number of errors due to BIT
top unit is the output of the network. Activity in the network

fI_ows from inpl_Jt to output, through a layer of intermediate or Eprr = yk(l _ tk)nk‘

hidden units, via weighted connections. These connections

are depicted in the figure by links with arrows indicating the Because these two types of errors have equal cost, the total
direction of activity flow. error is simply

This is a standard neural network architecture. We also use & ek &
afairly standard neural network dynamicsin which the activity £ = E Emp + Eprr = E iy (1-t7)+¢°(1-y")].
of hidden unitz, denoted:;, is computed as: k k

hi = tanl‘(E :wi 2+ bi), Thisis used as the error measure to be minimized by the neural
¥ i)
r nettraining procedure. Thatis, the free parametersinthe neural

Figurel: The branch prediction neural network. Each circle represents a processing unit in the network, and the links between units depict the
flow of activity.

net are adjusted such that the network will produce outphits For example, one might think that the return heuristic is
such thatE is minimized. Note that this does not require that likely to be more effective when applied to languages, such as
the network accurately predict branch probabilities per se, as Scheme, where recursion is the most commonly used mecha-
we were assuming previously. nism for performing iteration. Likewise, the pointer heuristic,
Each input unit’s activity is normalized over the training set which assumes pointer comparisons to nu,l,l and for ?quallty
to have zero mean and standard deviation 1. The same normal-Will fail, is more likely to be applicable in a “pointerful” lan-
ization is applied for test cases. We deal with nonmeaningful 94age like Scheme. We found, however, that when we applied
dependentstatic features by setting their input activity to 0 after tNeSe heuristics to three Scheme programs (boyer, corewar,
the normalization step; this prevents the nonmeaningful fea- and sccomp, all compiled with the S_cheme-to-c compiler)
tures from having any effect on the computation, and is equiva- the results show that the return heuristic had an average 56%

lent to gating the flow of activity from these features by another miss rate and the pointer hel.Jr'St'C had.a miss rate .Of 89%
feature that indicates the relevance of the dependent features, NeS€ results show that applying heuristics based on intuition
for a particular example. We use a “batch” training procedure is both difficult a_nc_i can _often resu_lt in incorrect con_clusmns.
in which weights are updated following a sweep through the Thus, new heuristics will be required fO(new architectures,
entire training corpus, and an adaptive learning rate procedure Programming languages, and even compilers.

wherein the learning rate for the network is increased if error A second problem with heuristic approachesis determining
drops regularly or is decreased otherwise. Momentum is not how to combine them when more than one apply to the same
used. Training of the network continues until tieesholded situation. While Wu and Larus attempted to solve this problem
error of the net no longer decreases. By thresholded error, we using Dempster-Shafer theory, our results show that using the
mean the error computed when the output is first thresholded DSHC method results in slightly higher miss rates than the
to values 0 or 1. This achieves a form of early stopping, and more ad hoc APHC method. This is likely a result of the

thereby helps to prevent overfitting. strong independence assumptions embodied in the Dempster-
Shafer evidence combination function [15].
3.1.2 Discussion Our ESP method addresses these two disadvantages di-

rectly. Instead of relying on experts to think of heuristics

In Section 2, we noted that there were two inherent problems and to test them to determine if they are effective, our method
with heuristic-based approaches to program-based prediction. extracts features associated with p(edlctable behavior automat-
First there is the problem of determining what heuristics to iC&lly. The ESP method also has disadvantages, as well. First,
use. In particular, the search for successful heuristics requires @ COrpus of programs must be available. For our results in
a significant amount of effort and cannot be easily automated. Section 5, we initially had ogl8 C programs to examine. Our
Furthermore, the effectiveness of particular heuristics (e.g., 2verage, ESP prediction results for these 8 programs were the
the “return heuristic”’ which predicts the successor without the Same as the APHC and DSHC results. After we increased the
return instruction to be taken) will depend on the programming C€OrPus of 8 C programs to 23 C programs, the average mispre-

language, compiler, programming style, and architecture being diction rate for ESP was 5% Iow_er than the average miss rates
used. for the APHC and DSHC techniques. Second, our approach

requires that the feature set be defined. Our results indicate
that having too much information does not degrade the ESP

1In the above discussion, we assumed that the network outputwill be either 0
or 1. However, the output must be continuous-valuedin order to apply gradient-
based training procedures. Thus, we use the continuous activation rgle for 2| the future, we plan to investigate how the ESP approach works for lan-
presented earlier, and simply interpret the continuous output as the network’s g ages such as C++ and Scheme as well.
confidence that the true branch probability is greater than .5.

predictions (we have not investigated the impact of not having prediction results and fed the corpus of programs into the neu-
enough data in the feature set). Third, our currentimplemen- ral net. We then use the neural net's branch probabilities to
tation of ESP requires that the neural net be trained. Such predict branches for that program not included in the corpus.
training requires someone who understands neural nets fairly This provides a conservative estimate of how well ESP will
well, probably at the level of a person who has taken a course perform since we are predicting the behavior of a program
in neural nets. We envision that if the ESP approach becomes that the neural net has not seen. For the ESP results shown
sufficiently widespread, then tools that facilitate such training in Section 5, we performed the cross validation breaking the
would be made available. We also note that preliminary re- programs into two groups — C programs and FORTRAN pro-
sults we have obtained using decision trees instead of neural grams. We performed cross validation feeding the feature sets
networks are comparable to the neural net results presentedfor 22 of the C programs at atime into the neural net, predicting
here. Moreover, decision trees are easier to use and the knowl-branches for the 23rd C program not included in initial 22. We
edge they encode can be automatically translated into simple did the same for FORTRAN programs feeding into the neural
if-then rules. net the feature sets for 19 of the 20 programs in order to predict
branches for the 20th program.

4 Evaluation Methods
5 Results

To perform our evaluation, we collected information from 43 C

and Fortran programs. During our study, we instrumented the We now compare the prediction accuracyaofriori heuris-
programs from the SPEC92 benchmark suite and other pro- tic combination (APHC) branch prediction [3], the Dempster-
grams, including many from the Perfect Club [4] suite. We Shafer heuristic combination (DSHC) proposed by Wu and
used ATOM [20] to instrument the programs. Due to the struc- Larus [22], and our ESP technique. Following this, we show
ture of ATOM, we did not need to record traces and could trace that the APHC and DSHC techniques are sensitive to differ-
very long-running programs. The programs were compiled on ences in system architecture and compilers.

a DEC 3000-400 using the Alpha AXP-21064 processor using

either the DEC C or FORTRAN compilers. Most programs .

were compiled using the standard OSF/1 V1.2 operating sys- 5-1 Comparison: APHC, DSHC and ESP

tems; other programs were compiled using different compilers . o

and different versions of the operating system. Most programs _ 1able 4 shows the branch misprediction rate for the meth-
were compiled with standard optimization@. Each program ods we implemented. The first column shows the results for
was run once to collectinformation about branch frequency and the BTENT architecture, the second column shows the re-
the percentage of “taken” branches. For the SPEC92 programs,5U|t5 for our implementation of the Ball and Larus heuristics,

we used the largest input distributed with the SPEC92 suite. ~@nd the third and fourth columns show the results when ap-
plying Dempster-Shafer to those heuristics. In implement-

_ Table 3 shows the basic statistics for the programs we j,q DSHC, we use both the original prediction rates specified
instrumented. The first column lists the number of instruc- [3], DSHC(B&L), and the prediction rates produced by our
tions traced and the second column gives the percentage °fimplementation, DSHC(Ours). Later, we compare the simi-
instructions that are conditional branches. The third column larity between these two sets of prediction heuristics as seen
gives the percentage of conditional branches that are taken.;, Taple 6. The fifth column in Table 4 shows the results
The FoIUmqs labeled ‘Q-50", ‘Q-75', ‘Q-90", ‘Q-95', “Q-99", or our ESP method and the last column shows the results
and ‘Q-100’ show the number of branch instruction sites that ¢, e perfect static profile prediction. Table 4 reveals sev-
contribute 50, 75, 90, 95, 99 and 100% of all the executed gy interesting points. First, the overall average shows that
conditional branches in the program. The next column ‘Static’ o pempster-Shafer method performs no better than the fixed
shows the total number of conditional branch sites in each pro- rqer of heuristics. Wu and Larus [22] said

gram. Thus, in Alvinn, two branch instructions constitute over
90% of all executed branches and correctly predicting these

-] ; Wh rethanoneheuristi li ranch
two conditional branches is very important. en morethan oneheuristicappliesto abranch,

combining the probabilities estimated by the ap-

The ATOM instrumentation tool provides a concrete rep- plicableheuristics should produce an overall branch
resentation of the program, and we used this information to probability that is more accuratethan theindivid-
construct a control flow graph. Using the control flow graph, ual probabilities.

we co_mputed the do_minator and post-dominator trees. FoIIo_w-
ing this, we determined the natural loop headers and applied However, there was no comparison to the earlier results of Ball
the same definition of natural loops used by Ball and Larus to and Larus. In 6 case$l(ex, sort, ndljsp2, CSS,
determine the loop bodies [3]. We used ATOM to reproduce NAS, TFS), the Dempster-Shafer method is more than 5%
the Ball and Larus APHC results, and to generate the static worse than the simple APHC ordering, while the APHC or-
feature sets with the corresponding branch probabilities which dering method is 5% worse in only three casedi(f f,
are used to train the neural net for ESP. SDS, LWB). The intuition in [22] was correct; however, the
For ESP, we did not use the information gathered about a Dempster-Shafer theory does not combine the evidence well
given program to predict the branches for that same program; €noughto improve branch prediction. The ESP technique per-
rather’ we used aross Va“da’[ion study We took a” Of ’[he forms S|gn|f|Car.|t|y better than the Dempsti_a‘r-s_hafer and the
programs, exceptthe one program for which we want to gather APHC method in 15 caseshur g, f | ex, gzi p, i ndent,

#Insn’s % Cond Conditional Branch Quantiles
Program Traced Branches| %Taken || Q-50 [Q-75] Q-90 | Q-95 | Q-99 [Q-100 | Static
bc 93,395,683 10.06 42.43 41 97 160 | 204 | 273 753 | 1,956
bison 6,344,388 10.02 76.83 16 89 197 | 311 | 654 | 1,348 | 2,905
burg 721,029 12.17 62.32 30 84| 153 | 220 | 465 802 | 1,766
flex 15,458,984 12.89 68.37 29| 102 | 190 | 260 | 421 | 1,204 | 2,969
grep 745,131 19.35 72.40 6 25 94 | 196 | 422 910 | 3,310
gzip 309,547,166 11.08 60.75 3 13 29 36 49 342 | 2,476
indent 32,569,634 14.72 51.91 27 74| 159 | 244 | 457 | 1,065 | 2,272
od 210,341,272 12.88 45.72 30 56 76 84 | 118 433 | 1,702
perl 181,256,552 10.26 39.89 28 88| 233 | 342 | 719 | 2,690 | 12,288
sed 85,604,071 10.63 65.55 16 59 91 109 | 151 863 | 2,570
siod 28,750,877 13.04 56.85 14 38 95| 128 | 186 684 | 2,156
sort 10,301,164 14.01 59.12 13 24 51 63 77 352 | 1,810
tex 147,820,930 7.58 57.47 39| 111 | 259 | 416 | 790 | 2,365 | 6,050
wdiff 76,185,396 13.21 53.65 7 11 19 24 29 502 | 1,618
yacr 1,017,126,630 19.24 70.73 11 33 88 | 127 | 345 | 1,673 | 3,442
alvinn 5,240,969,586 8.93 97.77 2 2 2 3 102 430 | 1,622
compress 92,629,658 12.31 68.25 4 7 12 14 16 230 | 1,124
ear 17,005,801,014 4.97 90.13 2 4 6 8 32 530 | 1,846
eqntott 1,810,540,418 10.78 90.30 2 2 14 42 72 466 | 1,536
espresso 513,008,174 15.96 61.90 44 | 104 163 221 | 470 | 1,737 | 4,568
gcc 143,737,915 12.60 59.42 || 245 | 804 |1,612|2,309 | 3,724 | 7,640 | 16,294
li 1,355,059,387 11.30 47.30 16 33 52 80 | 127 556 | 2,428
sC 1,450,134,411 17.99 66.88 14 41 94 | 153 | 336 | 1,471 | 4,478
doduc 1,149,864,756) 6.94 48.68 3 40 | 175] 231 | 296 | 1,447 | 7,073
fpppp 4,333,190,877 2.44 47.74 10 28 51 73 | 109 744 | 6,260
hydro2d 5,682,546,752 6.02 73.34 14 43 74| 111 | 230 1,613 | 7,088
mdljsp2 3,343,833,266 10.12 83.62 6 10 14 16 23 | 1,010 | 6,789
nasa7 6,128,388,651 2.51 79.29 21 55 94 | 277 | 1,083 | 6,581
ora 6,036,097,925 5.25 53.24 5 8 11 12 17 641 | 5,899
spice 16,148,172,565 11.51 71.63 2 12 38 63 | 116 | 1,762 | 9,089
su2cor 4,776,762,363 3.34 73.07 8 15 26 34 60 | 1,569 | 7,246
swm256 || 11,037,397,884 1.65 98.42 2 2 3 3 13 795 | 6,080
tomcatv 899,655,317 3.35 99.28 3 4 5 7 7 515 | 5,474
waveb 3,554,909,341 4.37 61.79 18 40 82 132 | 276 | 1,331 | 8,149
APS 1,490,454,770 3.99 50.64 44| 123 | 283 | 357 | 524 | 1,617 | 8,926
CSS 379,319,722 7.32 55.63 32| 109 | 211 | 262 | 467 | 2,202 | 9,670
LWS 14,183,394,882 7.92 66.34 3 9 18 26 38 | 1,148 | 6,927
NAS 3,603,798,937 3.43 60.67 5 14 34 69 125 | 1,663 | 7,614
ocCs 5,187,329,629 3.02 88.57 3 10 46 79 197 | 1,447 | 7,084
SDS 1,108,675,255 6.77 53.05 9 25 43 67 | 169 | 1,669 | 7,585
TFS 1,694,450,064 3.17 77.42 15 38| 122 | 220 | 464 | 1,598 | 7,270
TIS 1,722,430,820 5.27 51.08 8 20 31 36 66 863 | 6,292
WSS 5,422,412,141 4.76 62.36 41| 145| 275 | 344 | 533 | 1,756 | 7,592

Table3: Measured attributes of the traced programs.

Branch Prediction Miss Rates
Program BTFNT | APHC | DSHC | DSHC | ESP | Perfect
(B&L's) | (B&L's) | (Ours)
bc 40 37 35 35| 32 14
bison 52 15 16 16 14 4
burg 53 35 33 32 26 9
flex 43 33 39 38 19 9
grep 42 27 23 22 19 12
gzip 33 32 33 33| 20 9
indent 42 27 28 27 19 6
od 44 44 40 40 | 30 8
perl 35 39 36 36| 26 4
sed 45 22 22 23| 25 5
siod 50 34 32 33| 27 10
sort 44 35 41 42| 21 8
tex 43 37 38 36| 30 13
wdiff 42 32 11 11 4 3
yacr 32 14 11 12 14 6
Other C Avg 43 31 29 29 22 8
alvinn 2 2 2 2 1 0
ear 10 8 8 8 8 7
compress 44 25 26 28 30 14
egntott a7 7 7 7 6 2
espresso 34 24 23 23 32 15
gcc 48 34 35 34 31 12
li 43 26 25 27 28 12
SC 39 29 31 29| 24 9
SPEC C Avg 34 19 20 20| 20 9
dodoc 23 19 20 19 16 5
fpppp 42 53 52 52 35 11
hydro2d 28 17 16 16 12 4
mdljsp2 69 41 62 62 64 10
nasa7 8 12 12 11 5 3
ora 46 18 18 18 18 5
spice 16 16 18 14 14 7
su2cor 17 21 20 20 12 10
swm256 1 1 1 1 1 1
tomcatv 44 44 44 44 1 1
waveb 19 27 24 23 21 6
SPEC Fortran Avg 29 24 26 25 18 6
APS 28 30 34 31 26 10
CSss 39 29 40 36| 33 9
LWS 38 32 25 25 18 16
NAS 42 12 22 22 12 4
ocCs 4 6 5 5 4 2
SDS 18 32 25 19 21 12
TFS 12 10 15 13 11 6
TIS 18 26 25 22 16 16
WSS 32 28 26 26| 25 11
Perf Club Avg 26 23 24 22 18 10
[Overall Avg 34] 25| 26 | 25] 20] 8|

Table4: Comparison of using Heuristics in Ball and Larus ordering, Dempster-Shafer Theory and ESP. The first column shows the misprediction
rate of the BTFNT approach. The second column shows the miss rate for our implementation of the APHC method of Ball and Larus. We computed
the Dempster-Shafer miss rates, shown in column three, with the same values for the heuristics used by Wu and Larus as well as the values we
computed, shown in column four. The fifth column is the miss rate for the ESP technique, while the last column is the miss rate for perfect static
profile prediction. In each case, smaller values are better.

od, perl, siod, sort, tex, wdi ff, f pppp, su2cor,
tonctatv, LW5, andTl S), and has significantly worse per-
formance in only one casedl j sp2).

We feel that the ESP results may be improved by expanding
the feature sets used. We used a limited number of “features’
in the feature set to distinguish branches, primarily using the

i

MIPS architecture to our results on the Alpha. This table also
shows the probablilites used in the DSHC results shown in
Table 4. The B&L miss rates were used for the DSHC(B&L)
probabilities and our Overall miss rates in Table 6 were used
for the DSHC(Ours) probablilities in Table 4.

We felt that the differences seen in Table 6 were to be

features described by Ball and Larus. To extend the set of expected, because the two studies used a different collection
features, we need to determine what new features (e.g., infor- of programs with different compilers that implement differ-
mation from the control dependencegraph) we want to include, ent optimizations for different architectures and used different
capture that information during program instrumentation, and runtime libraries. Table 6 supports our position that at least
pass those features to the neural net. This is a simple processsome of Ball and Larus heuristics are quite language dependent.
but we have only examined a small set of the possible features. First, we point out that pointers are very rare in FORTRAN, and

Rather than rely on intuition about the appropriate features
(e.g,. by using the Ball and Larus predictors), we should pro-
vide as much information to the neural network as possible and
let it decide the importance.

5.2 Cross-Architectural Study of A Priori Heuristics

In the paper by Ball and Larus [3], a number mdiction
heuristics were described. These heuristics were the founda-
tion for the prediction scheme in both the study by Ball and
Larus and the study by Wu and Larus. In the study by Wu
and Larus, the values given in [3] were used for the Dempster-
Shafer combination method, even though the study by Wu and
Larus used a different architecture, compiler and runtime sys-
tem. We wondered how sensitive these metrics were to differ-

as suchthe great success of the Pointer heuristic in FORTRAN
is of little consequencebecauseit appliesto very few branches.
Next, we see that while the Store heuristic appears successful
in our FORTRAN programs, it performs much worse in our
C programs. Conversely, the Loop Header heuristic performs
well in C programs, but poorly in FORTRAN programs. Over-
all, four of the nine heuristics show a difference of greater than
10% in their miss rates when our C and Fortran programs are
compared.

5.2.1 The Influence of Architectures

In certain cases, we had slightly different implementations of
heuristics than Ball and Larus because the Alpha architecture
did not allow us to implement the heuristics as originally stated.

ences in architecture, compiler, runtime system and selection For example, with respect to the Opcode heuristic, the Alpha

of programs.

We use the CFG, dominator, post-dominator and loop infor-
mation to implement the same heuristics in [3], summarized
in Table 1. Our implementation results for these heuristics
are shown in Table 5. This table shows detailed information
about how the branch heuristics performed for each program.

Some of the programs in our suite were also used in the ear-

lier study by Ball [3], and the values in parenthesis show the
equivalent metrics recorded in that study. In general, the val-

architecture has two types of branch instructions; one compares
floating point numbers to zero and the other integer numbers
to zero. The conditional branch instructions always compare
a register to zero. On the MIPS architecture, the “branch if
equal” (BEQ) and “branch if not-equal” (BNE) instructions
compares two registers. To accomplish the same task on the
Alpha, an earlier comparison must be made between the two
registers, and the resulting value is then compared to zero.

However, our implementation of the heuristics took these

ues are quite similar, but there are some small differences thatfactors into account, constructing an abstract syntax tree from
we believe arise from different runtime libraries. For exam- the program binary and using that to determine the outcome
ple, a binary-buddy memory allocator would not contain any of the conditional branch. Clearly, determining this informa-
loops, while a coalescingimplementation may contain several tion at compile time would simplify the analysis, because we
loops. These library routines are part of the native operating could use more information from the program. However, both
system, and not part of the distributed benchmark suite. Note Ball and Larus [3] and our study used binary instrumentation,
that there are considerable differences, in the percentage ofso we felt that other factors must also contribute to the pre-
non-loop branches, particularly egnt ot t . Some of these diction differences. We examined one program for which the
differences are caused by libraries and runtime systems, but Ball and Larus heuristics provided good prediction accuracy,
others can be attributed to architectural features. For example,t ontat v in more detail, since our implementation of those
the Alpha has a “conditional move” operation that obliviates heuristics provided worse prediction accuracy (see Table 5).
the need for many short conditional branches, reducing the On the Alphat ontat v spends 99% of its execution in one
number of conditional branches that are executed. procedure. Furthermore, most of the basic block transitions in

Table 5 further demonstrates that our implementation of the tTh[?t p;ioce(fjure igl\/ol\liegmz_te%b_asiclblocl;)s, skho;vn In Flgure 2.
heuristics listed in [3] appear to be correct. The loop miss rates | '€ €0g€ Irom DIOCK IS & loop back eage, and our
are roughly the same, the heuristics cover approximately the heurl_s_tlcs indicate this correctly. However, the remaining two
same percentage of branches and the overall branch predictionconditional branches only match the “guard” heuristic in the
miss rates are similar. There are some differences, but after.heurIStICS described by Ball and Larus. However, their study

some investigation, we have attributed most of these to different Indicated that ontat v benefited from the "store” heuristic,
architectures, operating systems and compilers. which predicts that basic blocks witt or e instructions fol-

) lowing a conditional branch are not taken. By comparison,
Table 6 shows the comparison of the overall averages for on the Alpha, none of the successors of block 28 (blocks 29
the heuristics comparing the Ball and Larus results on the

Loop Brancheg| Non-Loop Branches
Miss Rate Miss Rate %Non-Loop | %Branches| Miss Rate | Miss Rate|| Overall
For Loops Branches | Covered By For With Miss
Heuristics | Hueristics| Default Rate

bc 39 74 80 30 36 37

bison 12 64 84 15 18 15

burg 22 66 80 39 42 35

flex 15 60 58 38 46 33

grep 9 60 89 36 39 27

gzip 4 48 31 45 62 32
indent 27 69 77 23 27 27

od 56 83 74 43 42 44

perl 43 69 80 34 38 39

sed 19 54 78 19 25 22

siod 34 74 59 29 34 34

sort 17 63 66 50 45 35

tex 33 51 78 40 41 37

wdiff 11 65 100 44 44 32

yacr 4 37 85 24 31 14

Other C Avg 23 62 75 34 38 31

alvinn 0 3 65 40 42 2
compress 8 (12) || 57 (66)| 80 (90)| 38 (39)|38 (40)| 25 (30)
ear 2 17 96 41 41 8
eqntott 2 3| 11 (49)| 75 (5)| 40 (A7) 45 (BO)|| 7 (26)
espresso 17 (18) || 45 B7)| 73 (44)| 26 (25)|33 (26) | 24 (21)
gcc 25 (22) || 72 (73)| 79 (79)| 33 (32)|37 ((37)| 34 (33)
li 28 (28) || 61 (62)| 87 (90)| 22 (25)| 25 (28)| 26 (28)
SC 10 64 76 40 40 29
SPEC C Avg 11 41 79 35 38 19

doduc 10 8) || 42 52)] 69 (©2){ 23 @) |31 @319 (21)
fpppp 28 (34) || 70 (86)| 61 (82)| 63 (40)| 64 (42)| 53 (41)
hydro2d 3 52 88 25 31 17
mdljsp2 9 81 33 38 49 41
nasa7 3 1) || 24 (10)| 66 (95)| 33 (29)|38 (32)||12 (4
ora 3 64 57 15 27 18

spice 9 9) || 23 (21)| 61 (75)| 27 (33)|38 (36)| 16 (14)
su2cor 1 44 78 46 47 21
swm256 1 1 65 9 13 1
tomcatv 1 1) | 43 (38) | 100 (100)| 99 1) | 99 @144 @
waveb 10 50 82 45 44 27

SPEC Fortran Avg| 7 45 69 39 44 24

APS 26 52 62 25 33 30

CSSs 22 62 57 35 34 29

LWS 15 60 62 26 44 32

NAS 5 74 38 10 14 12

ocCs 3 10 54 15 31 6

SDS 22 36 58 26 48 32

TFS 6 24 76 14 23 10

TIS 22 40 44 20 32 26

WSS 18 40 56 33 43 28

Perf Club Avg 16 44 56 23 34 23
Common Avg 13 14)]| 45 49)] 75 (75)]41 (29)| 45 (33)] 26 (22)
Overall Avg 15 50 70 33 38 25

Table5: Results for the Program-Based Heuristic Approaches. The first column lists the miss rate for loop branches. The second column shows
the percentage of non-loop branches. The third column shows the dynamic percentage of non-loop branches that can be predicted using one of
the heuristics, while the fourth column shows the miss rate achieved when using those heuristics. For example, 80% of the non-loop branches in
conpr ess can be predicted using some heuristic, and those heuristics have a 38% miss rate. Branches that can not be predicted using the heuristics
are predicted using a uniform random distribution. The fifth column shows the prediction miss rate for the execution of all non-loop branches,
combining the predictions from the heuristics and the random predictions. Lastly, the sixth column lists the misprediction rate when both loop and
non-loop branches are included.

Table6: Comparison of Branch Miss Rates for Prediction Heuristics. These averages are for all the programs we simulated and a program is

Branch Prediction Miss Rates
Heuristic | B&L (MIPS) | Our Implementation (ALPHA
C [FORTRAN]| Overall

Loop Branch 12% | 17% 12% 15%
Pointer 40% | 58% 1% 55%
Call 22% | 23% 44% 31%
Opcode 16% | 33% 29% 32%
Loop Exit 20% | 28% 30% 29%
Return 28% | 29% 30% 30%
Store 45% | 52% 30% 42%
Loop Header| 25% | 33% 48% 40%
Guard 38% | 34% 31% 33%

only included in a heuristic’s average if the heuristic applies to at least 1% of the branches in the program.

G

28
LDT F20,0(R22)
FABS F8F11
FABS F20,F10

CMPTLT F10,F11,F11
FBNE F11,Node30

29

FMOV F20,F8
BIS R31,R21,R12
BIS R31,R7,R13 -

21

\

12

LDT

FBNE

FABS
FABS
CMPTLT F14,F28,F28

30
F26,0(R20)
F9,F28
F26,F14

F28,Node32

/

21

31

FMOV F26F9 | °
BIS R31,R21,R14 -
BIS R31,R7,R1§ -

‘21

33
ADDL

BNE

R7#1,R7
CMPLE R7,R27,R26
R26,Node34

Node34

Figure2: Sample code fragment from TOMCATV benchmark that

\a;

2
LDA R22,8(R22)
CMPLE R22,R17,R

ADDL R21,#1,R21
LDA R20,8(R20)
BNE R2, Node28

and 30) or block 30 (blocks 31 and 32) contain store instruc-
tions. This difference may be attributed to different register
scheduling or register saving conventions, requiring a store
on the MIPS, but not on the Alpha. The “guard” heuristic
still applies, but predicts both branches in blocks 28 and 30
incorrectly.

5.2.2 The Influence of Compilers and Optimizations

To further validate our belief that the choice of compilers in-
fluences the prediction accuracy of the various heuristics, we
compiled one progranespr esso, with the following com-
pilers: cc on OSF/1V1.2¢cc on OSF/1 V2.0, the DEC GEM

C compiler and the Gnu C compiler. The results are shown
in Table 7. In terms of the overall miss rate, the compilers all
show different behavior. Also note that the DEC GEM C com-
piler produced significantly fewer loop branches, and resulted
in a program approximately 15% faster than the other compil-
ers. The GEM compiler unrolled one loop in the main routine,
inserting more forward branches and reducing the dynamic
frequency of loop edges.

This simple optimization changed the characteristics of the
branches in the program and the efficacy of the APHC branch
prediction technique. The difference caused by loop-unrolling
is significant if we want to use branch probabilities after tradi-
tional optimizations have been applied. However, many pro-
grammers unroll loops “by hand” and other programmers use
source-to-source restructuring tools, such as KAP or VAST.
The differences evinced by these applications may render the
fixed ordering of heuristics inappropriate for some programs.

Our validation study confirmed an underlying assumption
in our work: heuristic-based branch prediction rates vary with
programs, program style, compiler, architecture, and runtime
system. Rather than choosing a set of heuristics based on the
intuition of a few people, we have devised a program-based
prediction mechanism that can be adapted to the techniques,
style and mechanisms of different programmers, languages and

continues most of the branches in the program. The numbers on the SySteéms. Furthermore, the corpus-based approach means our
edges indicate the percentage of all edge transitions attributed to a Prediction technique can be customized to specific groups or

particular edge. The dotted edges indicate taken branches.

customers.

Program| O/S | Compiler | Loop Branches Non-Loop Branches Overall Perfect

Miss Rate %Non-Loop | Heuristic | Miss Rate| Miss Rate

Branches | Miss Rate
Espressg 1.2 cc 17 45 26 24 15
Espressg 2.0 cc 18 46 27 25 15
Espressgq 20| GEMC 25 57 26 32 12
Espressg 2.0 GnuC 17 46 23 22 15

Table7: Comparison of Accuracy of Prediction Heuristics Using Different Compilers

6 Summary this branch probability data to perform program-based profile
estimation using ESP. It is simple to add more “features” into
Branch prediction is very important in modern computer ar- OUr training information; for example, we plan on indicating
chitectures. In this paper, we investigate methods for static branches in library subroutines, since that those subroutines
program-based branch prediction. Such methods are impor- My have similar behavior across a number of programs. We
tant because they do not require complex hardware or time- &S0 plan to gather large bodies of programs in other pro-
consuming profiling. We propose a new, general approach 9ramming languages, such as C++ and Scheme, and evaluate
to program-based behavior estimation called evidence-basedn®W ESP branch prediction works for those languages. We are
static prediction (ESP). We then show how our general ap- a!somterested in seeing how effective c_)ther class_lf_lcatlontech_-
proach can be applied specifically to the problem of program- Niques, suchas me_moryibased reasoning or deC|_S|ontrees,_ will
based branch prediction. The main idea of ESP is that the b€ for ESP prediction. Finally, we are interested in comparing
behavior of a corpus of programs can be used to infer the the effectl_/eness of using ESP prediction technlque_s against
behavior of new programs. In this paper, we use a neural net- USing profile-based methods across a range of optimization
work to map static features associated with each branch to the Problems.
probability that the branch will be taken. We also see other possible uses of the ESP approach that
ESP has the following advantages over existing program- SuPplement profile-based prediction techniques. We expect
based approaches to branch prediction. First, instead of being that organizations and workgroups might use their own pro-
based on heuristics, itis based on a corpus of information about 9rams to “train” the ESP system. They could then use program-
actual program behavior and structure. We have observed that2@Sed information for most compilations, and use profile-based
the effectiveness of heuristic approaches to branch prediction information for performance-critical compilations. Likewise,
can be architecture, compiler, and language dependent. Thus,computer vendors may provide several trained ESP predictors,
ESP can be specialized easily to work with new and different ©as&d on program type or language.
programming languages, compilers, computer architectures, or
runtime systems. It is our hope that it can even be customized
for specific application domains, or workgroups with a modest
amount of effort.

Acknowledgements

We would like to thank Alan Eustace and Amitabh Srivastava
for developing ATOM, and James Larus for motivating this
) . e 'Y paper. Brad Calder was supported by an ARPA Fellowship
data. The neural netwe use is capable of ignoring information ', pigh performance Computing administered by the Institute
thatisirrelevant and such information does not degrade the per- for Advanced Computer Studies, University of Maryland. This
formance of the predicted branch probabilities. On the other ;o \wasfundedin part by NSF érantNo. ASC-9217394. NSF
hand, with heuristic methods, trial-and-error is often required grant No. CCR-9404669, ARPA contract ARMY DABT631-94-
to find heuristics that are effective. C-0029 and a software grant from Digital Equipment Corp.

Finally, we have shown that the ESP approach results
in branch prediction miss rates that are better than the best
program-based heuristic approaches. Over a collection of 43
C and Fortran programs, the overall miss rate of ESP branch [1] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porter-
prediction was 20%, which compares againstthe 25% miss rate field. and B. Smith. The tera computer éyétem | riter national
using a fixed ordering of the Ball and Larus heuristics (the best Conferenceon Supercomputing, pages 16, June 1990.
heuristic method), and the overall 8% miss rate of the perfect
static-profile predictor.

Second, the ESP approach does not require careful consid-
eration when deciding what features to include in the training

References

[2] Vasanth Balasundaram, Geoffrey Fox, Ken Kennedy, and Ulrich
Kremer. A static performance estimator to guide data partitioning

We see many future directions to take with this work. Cur- decisions. InThird ACM SIGPLAN Symposiumon Principles &
rently, the neural network we use not only provides a prediction Practice of Parallel Programming, pages 213-223, July 1991.
for each branch, but also provides its estimate of the branch [3] Thomas Ball and James R. Larus. Branch prediction for free. In
probability. If that probability is> 50% we estimate that the Proceedings of the SGPLAN 93 Conference on Programming
branch will be taken. Our next goal will be to incorporate Language Design and Implementation, pages 300-313, June

1993.

[4]

[5

—

[6

—

[7

—

[8

[l

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

M. Berry. The Perfect Club Benchmarks: Effective performance
evaluation of supercomputer$he International Journal of Su-
percomputer Applications, 3(3):5-40, Fall 1989.

Brad Calder and Dirk Grunwald. Fast & accurate instruction fetch
and branch prediction. IB1st Annual International Symposium
on Computer Architecture, pages 2—11. ACM, April 1994.

Brad Calder and Dirk Grunwald. Reducing branch costs via
branch alignment. IrSx International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, pages 242—-251. ACM, 1994.

Brad Calder, Dirk Grunwald, and Benjamin Zorn. Quantifying
behavioral differences between C and C++ progralms:.nal of
Programming Languages, 2(4), 1994. Also available as Univer-
sity of Colorado Technical Report CU-CS-698-94.

P. P. Chang and W. W. Hwu. Profile-guided automatic inline
expansion for C programsSoftware Practice and Experience,
22(5):349-376, 1992.

P. P. Chang, S. A. Mahlke, and W. W. Hwu. Using profile infor-
mation to assist classic compiler code optimizatioSsftware
Practice and Experience, 21(12):1301-1321, 1991.

A. P. Dempster. A generalization of bayesian inferedoarnal
of the Royal Satistical Society, 30:205-247, 1968.

J. A. Fisher and S. M. Freudenberger. Predicting conditional
branch directions from previous runs of a program. Pio-
ceedings of the Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOSV), pages 85-95, Boston, Mass., October 1992. ACM.

Joseph A. Fisher. Trace scheduling: A technique for global
microcode compactionl EEE Transactions on Computers, C-
30(7):478-490, July 1981.

Wen-mei W. Hwu and Pohua P. Chang. Achieving high instruc-
tion cache performance with an optimizing compilerl6th An-

nual International Symposiumon Computer Architecture, pages
242-251. ACM, 1989.

Scott McFarling and John Hennessy. Reducing the cost of
branches. Inl3th Annual International Symposium of Com-
puter Architecture, pages 396—403. Association for Computing
Machinery, 1986.

Judea PearProbabilistic Reasoningin Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann, San Mateo,
CA, 1988.

D. E. Rumelhart, G. E. Hinton, and R. J. WillianRarallel dis-
tributed processing: Explorationsin the microstructureof cogni-

tion. Volume |: Foundations, chapter Learning internal represen-
tations by error propagation, pages 318-362. MIT Press/Bradford
Books, Cambridge, MA, 1986. D. E. Rumelhart and J. L. Mc-
Clelland, editors.

G. Shafer.A Mathematical Theory of Evidence. Princeton Uni-
versity Press, Princeton, NJ, 1976.

J. E. Smith. A study of branch prediction strategies®thmAnnual
Inter national Symposium of Computer Architecture, pages 135—
148. ACM, 1981.

P. Smolensky, M. C. Mozer, and D. E. Rumelhart, editdath-
ematical perspectives on neural networks. Erlbaum, 1994. In
press.

Amitabh Srivastava and Alan Eustace. ATOM: A system for
building customized program analysis tools. Rroceedings of
the SSGPLAN’ 94 Conferenceon Programming LanguageDesign

and Implementation, pages 196—205. ACM, 1994.

[21]

[22]

[23]

Tim A. Wagner, Vance Maverick, Susan Graham, and Michael
Harrison. Accurate static estimators for program optimization.
In Proceedingsof the SIGPLAN'’ 94 Conferenceon Programming
Language Design and Implementation, pages 85-96, Orlando,
Florida, June 1994. ACM.

Youfeng Wu and James R. Larus. Static branch frequency and
program profile analysis. 187th International Symposium on
Microarchitecture, San Jose, Ca, November 1994. IEEE.

Tse-Yu Yeh and Yale N. Patt. A comparison of dynamic branch
predictors that use two levels of branch history.20th Annual

Inter national Symposiumon Computer Architecture, pages 257—
266, San Diego, CA, May 1993. ACM.

