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Abstract

Increases in instruction level parallelism are needed to
exploit the potential parallelism available in future wide is-
sue architectures. Predicated execution is an architectural
mechanism that increases instruction level parallelism by
removing branches and allowing simultaneous execution of
multiple paths of control, only committing instructions from
the correct path. In order for the compiler to expose such
parallelism, traditional compiler data-flow analysis needs
to be extended to predicated code.

In this paper, we present Predicated Static Single As-
signment (PSSA) to enable aggressive predicated optimiza-
tion and instruction scheduling. PSSA removes false de-
pendences by exploiting renaming and information about
the multiple control paths. We demonstrate the usefulness
of PSSA for Predicated Speculation and Control Height Re-
duction. These two predicated code optimizations used dur-
ing instruction scheduling reduce the dependence length of
the critical paths through a predicated region. Our results
show that using PSSA to enable speculation and control
height reduction reduces execution time from 10% to 58%.

1 Introduction

The Explicitly Parallel Instruction Computing (EPIC) ar-
chitecture has been put forth as a viable architecture for
achieving the instruction level parallelism (ILP) needed to
keep increasing future processor performance [7, 15]. The
Merced [1] processor being developed at Intel is an exam-
ple of an EPIC architecture. An EPIC architecture issues
wide instructions, similar to a VLIW architecture, where
each instruction contains many operations.

One of the new features of the EPIC architecture is its
support for predicated execution [21], where each operation
is guarded by one of the predicate registers available in the
architecture. An operation is committed only if the value of
its guarding predicate is true.

One advantage of predicated execution is that it can
eliminate hard-to-predict branches by combining both
paths of a branch into a single path. Another advantage
comes from using predication to combine several smaller
basic blocks into one larger hyperblock [19]. This provides

a larger pool from which to draw ILP for EPIC architec-
tures.

A significant limitation to ILP is the presence of
control-flow and data-flow dependences. Static Single As-
signment (SSA) is an important compiler transformation
used to remove false data dependences across basic block
boundaries in a control flow graph [11]. Removing these
false dependences reveals more ILP, allowing better perfor-
mance of optimizations like instruction scheduling. With-
out performing SSA, the benefit of many optimizations on
traditional code is limited.

Eliminating false dependences is equally important and
a more complex task for predicated code, since multiple
control paths are merged into a single predicated region.
However, the control-flow and data-flow analysis needed to
support predicated compilation is different than traditional
analysis used in compilers for superscalar architectures. A
sequential region of predicated code contains not only data
dependences, but also predicate dependences. A predicate
dependence exists between every operation and the defini-
tion of its guarding predicate. A chain of predicate depen-
dences represents a unique control path through the original
code.

In this paper we describe a predicate-sensitive imple-
mentation of SSA called Predicated Static Single Assign-
ment (PSSA). We extend SSA to handle predicate defini-
tions and the multiple control paths that are merged to-
gether in a single predicated region. We demonstrate that
PSSA allows effective predicated scheduling by (1) elimi-
nating false dependences along paths via renaming, (2) cre-
ating full-path predicates, and (3) providing path-sensitive
data-flow analysis. We show the benefit of using PSSA
to perform Predicated Speculation and Control Height Re-
duction during instruction scheduling. Using PSSA allows
these two optimizations, when applied together, to schedule
all operations at their earliest schedulable cycle. In our im-
plementation, the earliest schedulable cycle takes into con-
sideration true data dependences and load/store constraints.
We conservatively assume that a load is dependent on all
prior stores along a given path, and that a store is depen-
dent on prior stores as well. In addition, we ensure that
all instructions along a path leading to a branch out of the
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hyperblock are executed prior to exiting the hyperblock.
The paper is organized as follows. Section 2 describes

predicated execution. Section 3 presents Predicated Static
Single Assignment. Section 4 shows how PSSA can enable
aggressive Predicated Speculation and Control Height Re-
duction. Section 5 reports the increased ILP and reduced
execution times achieved by applying our algorithms to
predicated code. Section 6 summarizes related work. Sec-
tion 7 discusses using PSSA within the IA-64 framework,
and Section 8 describes our future work. Finally, Section 9
summarizes the contributions of this paper.

2 Predicated Execution

Predicated execution is a feature designed to increase ILP
and remove hard-to-predict branches. Machines with hard-
ware to support predicated code include an additional set
of registers called predicate registers. The process of pred-
ication replaces branches with compare operations that set
predicate registers to either true or false based on the com-
parison in the original branch. Each operation is then as-
sociated with one of these predicate registers (the opera-
tion’s guarding predicate). The operation will be commit-
ted only if its guarding predicate is true, except for pred-
icates defined unconditionally. This process of replacing
branches with compare operations and associating opera-
tions with a predicate defined by that compare is called If-
Conversion [5, 21].

Our work uses the notion of a hyperblock [19]. A
hyperblock is a predicated region of code consisting of a
group of basic blocks with one entry point and possibly
multiple branch points. Branches with both targets in the
hyperblock are eliminated and converted to predicate def-
initions using if-conversion. All remaining branches have
targets outside the hyperblock. Consequently, there are no
cyclic control-flow or data-flow dependences within the hy-
perblock. The selection of basic blocks to be included in the
hyperblock is based on program profiling which includes
information such as execution frequency, basic block size,
operation latencies, and other characteristics.

A typical code section to include in a hyperblock is one
that contains a hard-to-predict (unbiased) branch [18], as
shown in Figure 1. After predication, the Control Flow
Graph (CFG) in Figure 1(b), which is comprised of five
basic blocks, results in the predicated hyperblock shown
in Figure 1(c). All operations in the hyperblock are now
guarded, either by a predicate register set to the constant
value of true, or by a register that can be defined as ei-
ther true or false by a cmpp (compare and put (result) in
predicate) operation. Operations guarded by the constant
true, such as the operation d=c*2 in Figure 1, will be ex-
ecuted and committed regardless of the path taken. Opera-
tions guarded by a predicate register, such as the operation
b=7, will be put into the pipeline, but only committed if

the value of the operation’s guarding predicate (B for this
operation) is determined to be true. In a hyperblock, a con-
trol flow path is now represented by a chain of predicate
dependences.

In what follows, we describe three types of operations
that can be included in a hyperblock – cmpp operations,
the predicate OR operation, and normal (non-predicate-
defining) operations.

As defined in the Trimaran System [2] (which supports
EPIC computing via the Playdoh ISA [16]), guarding pred-
icates are assigned their values via cmpp operations [7].
Consider the operation B,C cmpp.un.ac a>c if A
as an example. The cmpp operation can define one or two
predicates. This operation will define predicates B and C.
The first tag (.un) applies to the definition of the first pred-
icate B and the second tag (.ac) to C. The first character of
the tag defines how the predicate is to be defined. The char-
acter u means that the predicate will unconditionally get a
value, whether the guarding predicate (A in this case) is true
or false. If A is false, then B is set to false. Otherwise, A
is true and the value of B depends upon the evaluation of
a>c.

The character a in the second tag (.ac) indicates that
the full definition of the related predicate C is contingent
on the value of A, the evaluation of a>c, and the prior
value of C. If A is false, the value of predicate C does not
change. If A is true and either C or a>c evaluate to false,
the new value of C will be false. The second character of
the tag defines whether the normal (n) result of the con-
dition (a>c) or the complement (c) of the condition must
be true to make the related predicate true. For a complete
definition of cmpp statements see the Playdoh architecture
specification [16].

In our implementation of PSSA, we use a new OR oper-
ation currently not defined by Trimaran. The predicate OR
operation defines block predicates by taking the logical OR
of multiple predicates. For example, consider the operation
G = OR(A, B, C) if true where A, B and C are
predicates, each defining a unique path to G. If any one of
them has the value of true, G will receive a value of true,
otherwise G will be assigned false.

When scheduling, we assume that the definition of a
predicate is available for use as a source for another oper-
ation or as a guard to a subsequent cmpp operation in the
cycle following its definition. When used as a guard for all
other operations, the predicate definition is available for use
in the same cycle as it is defined.

We refer to all other operations, which do not define
predicates, as normal operations. Normal operations in-
clude assignments, arithmetic operations, branches, and
memory operations.
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c=rand()
d=c*2
if a>c

b=7
if b>d

exit HB
else

b=6
if b<d

a=b+4
c=a+b

a) Original code

(F)

b) Basic blocks included in hyperblock

c=rand()
d=c*2
a>c

b=7
b>d

b=6
b<d

Exit HB

a=b+4

c=a+b

(A)

(B) (C)

(D)

(E)

c) Predicated hyperblock

c=rand() if true //c=random num
d=c*2 if true //d=c*2

B,C cmpp.un.uc a>c if true //if a>c B=true,
//C=false, else
//B=true,C=false

b=7 if B //if B=true,b=7
//else nullify stmt

D cmpp.un b>d if B //if B=true & b>d
//D=true,else false
//if B=false,D=false

branch out if D //if D=true, exit
//hyperblock

b=6 if C //if C=true, b=6
//else nullify stmt

F cmpp.un b<d if C //if C=true & b<d
//F=true,else false
//if C=false,F=false

a=b+4 if F //if F=true, a=b+4
//else nullify stmt

c=a+b if true //c=a+b

Figure 1: Short code example showing the transformation from non-predicated code to predicated hyperblock.

3 Predicated Static Single Assignment (PSSA)

Static Single Assignment (SSA) [11, 12] provides an ef-
ficient representation of data dependences. Code in SSA
form has only true data dependences remaining, since all
false data dependences have been removed [4, 28]. Remov-
ing false dependences allows more flexibility in scheduling
since data independent operations can move past each other
during instruction scheduling.

In non-predicated code, SSA assigns each target of an
assignment operation a unique variable. At join nodes
(points in the CFG where paths come together), a � func-
tion is inserted to determine which of the multiple versions
of a variable reaches the join. In addition, a newly renamed
version of the variable is assigned using the � function.
This new variable is used to represent the merging of the
different variable names. Figure 2 shows an example con-
trol flow graph and code in SSA form. In the assignment
b3->�(b1,b2), the variable b3 represents the reaching
definition of b which is to be used after the join (b1 or b2).

Eliminating false dependences is equally important and
a more complex task for predicated code, since multiple
control paths are merged. To address this problem we de-
veloped a predicate-sensitive implementation of SSA called
Predicated Static Single Assignment (PSSA).

PSSA seeks to accomplish the same objectives as SSA
for a predicated hyperblock. First, it must assign each tar-
get of an assignment operation in the hyperblock a unique
variable. Second, at points in the hyperblock where multi-

c=rand()
a>c

b=7 b=6

c=a+b

c1=rand()
if a1>c1
     b1=7
else
     b2=6
b3->Ø(b1,b2)
c2=a1+b3

a) Control Flow Graph b) Code in SSA form

Figure 2: Static Single Assignment

ple paths come together it must summarize under what con-
ditions each of the multiple versions of a variable reaches
that join. The second function is accomplished through the
creation of full-path predicates and path-sensitive analysis.

Consider the sample predicated code shown in Figure 3
using traditional hyperblock predication [19]. In this predi-
cated example, all branches have been replaced (except the
one leaving the hyperblock) with predicate-defining com-
pare operations using if-conversion. The predicates that are
defined in this example correspond to the two edges exiting
each conditional branch in the CFG in Figure 3. Figure 4
shows this example after PSSA has been applied and dis-
plays a graph showing the post-PSSA dependence relation-
ships.

The PSSA transformation has 2 phases. Hyperblocks
are converted to PSSA form before optimization. After op-
timization, PSSA inserts clean-up code, copying renamed
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a=rand()
d=a*2
d>c

b=7
a=4
b>d

a=6
c=a+c
c>a

Exit
HB

a=5

c=a+b
d=c+4
e=d+7
d>b

a=3+d a=4+a

(A)

(B) (C)

(D)

(E)

(F) (G)

(L)

a) Control Flow Graph (CFG)

a=rand() if true
d=a*2 if true

B,C cmpp.un.uc d>c if true
b=7 if B
a=4 if B

L cmpp.un b>d if B
branch out if L
a=6 if C
c=a+c if C

D cmpp.un c>a if C
a=5 if D
c=a+b if true
d=c+4 if true
e=d+7 if true

F,G cmpp.un.uc d>b if true
a=3+d if F
a=4+a if G

b) Predicated Hyperblock

Figure 3: Extended example of transformation from non-
predicated CFG to predicated hyperblock

variables back to their original names and removes any un-
used predicate definitions.

3.1 Converting to PSSA Form

PSSA conversion takes two forms. Control PSSA is ap-
plied to predicate-defining operations, and Normal PSSA is
applied to all other operations. When converting to PSSA
form, each operation is processed in turn beginning at the
top of the hyperblock and proceeding to the end.

When a normal operation is encountered, Normal PSSA
is invoked. If the operation is an assignment, the variable
defined is renamed. The third operation d1=a0*2 in Fig-
ure 4(b) is an example. All operands are adjusted to reflect
previously renamed variables (e.g. a becomes a0). If the
operation is part of a join block, multiple versions of the
operands may be live. The first operation (c=a+b) in block
E of Figure 3(a) provides an example. In this situation, the
operation will be duplicated for each path leading to the
join and the correct operand versions for each path will
be used in the duplicate statement as seen in Figure 4 (in
the multiple definitions of c2). The duplicates are guarded
by the full-path predicate (described in the next paragraph)
associated with the path along which the operands are de-
fined. Though there are 3 definitions of c2, there is only
one definition of c2 on any given path. These definitions
are predicated on disjoint predicates; only one of them can
possibly be true, and only one of them will be committed.

When a cmpp operation is processed, Control PSSA is
invoked. The single cmpp operation that defined one or
two block predicates (such as the definitions of F and G in
Figure 3) is replaced by one or morecmpp operations, each
associated with a particular path leading to that block. As

can be seen in Figure 4(b) there are now three cmpp op-
erations defining FEBA and GEBA, FECA and GECA, and
FEDCA and GEDCA. These new predicates are called full-
path predicates (FPPs). Each FPP definition has the ap-
propriate operand versions for its path and each is guarded
by the FPP that defined the path prior to reaching the new
block. For example, the cmpp defining GEBA and FEBA is
predicated on EBA.

An FPP specifies the unique path along which an oper-
ation is valid for execution, enabling PSSA to provide cor-
rect guarding predicates for the duplicate statements pre-
viously described. For example, the use of a in operation
a=4+a in block G of Figure 3(a) could originate from 3 dif-
ferent definitions as renamed in Figure 4 (a1, a2, a3).
It might appear that we could predicate the duplicate as-
signment statements as follows:

(1) a5=4+a1 if B
(2) a5=4+a2 if C
(3) a5=4+a3 if D

However, all three of these statements could cause erro-
neous execution. The first statement could cause a schedul-
ing problem. A scheduler might assume that once the pred-
icate B was defined and the operand a1 was defined, all
dependences had been met and a5=4+a1 if B could be
scheduled. If the branch out of the hyperblock was taken,
this would result in an incorrect modification of a5. Predi-
cating the operation on GEBA instead of B, avoids this error.
The operation would be executed only if block predicates
G,E,B and A are true. In the case of statements (2) and (3)
predicated on if C and if D, note that both C and D can be
true. Without the more specific path information given by
using the FPPs GECA and GEDCA, both assignments to a5
could be made. Full path predicates are used to avoid these
problems.

In addition to the cmpp statements added to define
FPPs, cmpp statements are included to rename join blocks
whose statements were originally predicated on true. A and
E and their associated FPPs are examples. The operations
in Figure 3(b) predicated on true, are predicated on A and E
in the PSSA version of the code shown in Figure 4. This is
necessary to maintain exact path information.

We could have used the FPPs to implement � functions
as in SSA. For example, instead of the 3 definitions of a5
found in Figure 4, we could have used:

a7=a1 if GEBA;
a7=a2 if GECA;
a7=a3 if GEDCA;
a5=a7+4 if G;

However, this would add additional dependences
lengthening the schedule of the hyperblock. Since the goal
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a0=rand()
d1=a*2
d1>c

b1=7
a1=4
b1>d1

a2=6
c1=a2+c
c1>a2

Exit HB

a3=5

a6=3+d2
a=a6

a5=4+a1

(A)

(BA) (CA)

(EDCA)

(E)

(F)

(LBA)

d2=c2+4
e1=d2+7
e=e1

c2=a1+b1 c2=a2+b

d2>b1 d2>b d2>b

a5=4+a3 a5=4+a2

(EBA) (ECA)

(GEBA)
(GEDCA) (GECA)

(EBA) (EDCA) (ECA)

a=a1
b=b1
d=d1

a=a5(G)

c2=a3+b

(DCA)

cycle available
for scheduling

A cmpp.un TRUE if true 1
a0=rand() if A 1
d1=a0*2 if A 2

BA,CA cmpp.un.uc d1>c if A 3
B OR (BA) if true 4
C OR (CA) if true 4

b1=7 if BA 3
a1=4 if BA 3

LBA,EBA cmpp.un.uc b1>d1 if BA 4
branch out if LBA 4
a2=6 if CA 3
c1=a2+c if CA 4

EDCA,ECA cmpp.un.uc c1>a2 if CA 5
D OR (EDCA) if true 6

a3=5 if EDCA 5
E OR (EBA,ECA,EDCA) if true 6

c2=a1+b1 if EBA 4
c2=a2+b if ECA 5
c2=a3+b if EDCA 6
d2=c2+4 if E 7
e1=d2+7 if E 8

FEBA,GEBA cmpp.un.uc d2>b1 if EBA 8
FECA,GECA cmpp.un.uc d2>b if ECA 8
FEDCA,GEDCA cmpp.un.uc d2>b if EDCA 8
F OR (FEBA,FECA,FEDCA) if true 9
G OR (GEBA,GECA,GEDCA) if true 9

a6=3+d2 if F 9
a5=4+a1 if GEBA 8
a5=4+a2 if GECA 8
a5=4+a3 if GEDCA 8
a=a5 if G 9
a=a6 if F 10
e=e1 if E 9

a) PSSA dependence graph b) PSSA transformed code

Figure 4: The PSSA dependence graph shows the flow of data and control through the PSSA-transformed code. Blocks
labeled with full-path predicates (indicated by multiple letters) contain statements that are only executed along that path.
Blocks labeled with block predicates (single letters) contain statements that will be executed along several paths.

of this study was to show an implementation of PSSA that
could schedule each operation at its earliest cycle, we do
not use any � functions. For future work, we are exam-
ining using � functions for non-critical paths through the
hyperblock.

Block predicates are also important to the PSSA trans-
formation. PSSA uses predicate OR statements to redefine
the block predicates as the union of the FPPs associated
with the paths that reach the block. PSSA does not simply
duplicate every path through the hyperblock. Duplication
only occurs when necessary to remove false dependences.
When there is only one version of all operands reaching
a statement, only one version of the statement is required.
This is the case with a6=3+d2 in Figure 4. The variable
d2 is the only version live going into node F. This statement
is guarded by F, a block predicate created by taking the log-
ical OR of FEBA, FECA and FEDCA. As long as control
reaches node F, regardless of the path taken, we will exe-
cute and commit the statement a6=3+d2.

3.2 Post-Optimization Clean-up

After optimization is applied to code in PSSA form, a
clean-up phase is run to remove unnecessary code and to
assure consistent code outside of the hyperblock.

The earliest cycle PSSA implementation described in
this paper generates cmpp statements for every path and
block. These are entered into the PSSA data structure that
maintains information about the relationships between the
predicates they define, which provides maximum flexibility
during optimization. However, some of these FPP defini-
tions may not be used, and the corresponding cmpp opera-
tions will be discarded, reducing the code size significantly.

Finally, to assure correct execution following the hy-
perblock, PSSA inserts copy operations assigning the orig-
inal variable names to all renamed definitions that are live
out of the hyperblock. In Figure 4, definitions a and e are
assumed to be live out of the hyperblock and so the copy
operations have been inserted.
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4 Hyperblock Scheduling Optimizations

In this section, we describe how PSSA enables Predicated
Speculation (PSpec) and Control Height Reduction (CHR)
for aggressive instruction scheduling. PSpec allows oper-
ations to be executed before their guarding predicates are
determined and CHR allows the guarding predicates to be
determined as soon as possible, reducing the number of op-
erations that need to be speculated. Used together with
PSSA, we demonstrate that we can schedule the code at
its earliest schedulable cycle, assuming a machine with un-
limited resources.

4.1 Predicated Speculation

This section describes how to perform speculation on
PSSA-transformed code. In general, speculation is used
to relieve constraints which control dependences place
on scheduling. One can speculatively execute operations
from the likely-taken path of a highly-predictable branch,
by scheduling those operations before their controlling
branch [17]. Similarly, Predicated Speculation (PSpec) will
schedule a normal operation above the cmpp it is depen-
dent upon, optimizing a hyperblock’s execution time.

PSpec handles placement of the speculated predicated
operation in a uniform manner. PSpec schedules a normal
operation at its earliest schedulable cycle. When speculat-
ing an operation, the operation is scheduled earlier than the
operation it is control dependent on, and is predicated on
true. We assume that any exceptions raised by the spec-
ulated operations will be taken care of using architecture
features such as poison bits [9].

4.1.1 Instruction Scheduling with Speculation

To demonstrate the usefulness of PSSA in enabling PSpec,
Figure 5 shows the code from Figure 4 after the PSpec op-
timization has been applied. The assignments to a1, a2
and a3 are examples of speculated operations. Notice that
based on dependences, they could all be scheduled at cycle
one which would have been impossible without renaming.

During predicated speculation, each operation is con-
sidered sequentially, beginning with the first instruction in
the hyperblock. If it is a normal, non-store operation, PSpec
compares its earliest schedulable cycle with the cycle in
which its guarding predicate is currently defined. If the op-
eration can be scheduled earlier than its guarding predicate,
the operation is predicated on true and scheduled at its ear-
liest schedulable cycle.

Recall that PSSA has not performed full renaming, so
further renaming may be required by PSpec. An example
is the definition of c2 in Figure 4. If we speculate any
of the definitions of c2 by predicating them on true with-
out renaming, incorrect code can result. Consequently, we
must rename the operations being speculated. The results

cycle available
for scheduling

A cmpp.un TRUE if true 1
a0=rand() if A 1
d1=a0*2 if A 2

BA,CA cmpp.un.uc d1>c if A 3
B OR (BA) if true 4
C OR (CA) if true 4

b1=7 if true 1
a1=4 if true 1

LBA,EBA cmpp.un.uc b1>d1 if BA 4
branch out if LBA 4
a2=6 if true 1
c1=a2+c if true 2

EDCA,ECA cmpp.un.uc c1>a2 if CA 4
D OR (EDCA) if true 5

a3=5 if true 1
E OR (EBA,ECA,EDCA) if true 5

c2=a1+b1 if true 2
c3=a2+b if true 2
c4=a3+b if true 2
d2=c2+4 if true 3
d3=c3+4 if true 3
d4=c4+4 if true 3
e1=d2+7 if EBA 4
e1=d3+7 if ECA 4
e1=d4+7 if EDCA 4

FEBA,GEBA cmpp.un.uc d2>b1 if EBA 5
FECA,GECA cmpp.un.uc d2>b if ECA 5
FEDCA,GEDCA cmpp.un.uc d2>b if EDCA 5
F OR (FEBA,FECA,FEDCA) if true 6
G OR (GEBA,GECA,GEDCA) if true 6

a9=3+d2 if true 4

a7=3+d3 if true 4
a8=3+d4 if true 4
a4=4+a1 if true 2
a5=4+a2 if true 2
a6=4+a3 if true 2
a=a9 if FEBA 5
a=a7 if FECA 5
a=a8 if FEDCA 5
a=a4 if GEBA 5
a=a5 if GECA 5
a=a6 if GEDCA 5

Figure 5: Extended code example after PSpec optimization
has been applied.

of applying this to the 3 definitions of c2 (now c2, c3, and
c4) appear in Figure 5. Speculation and renaming may re-
quire the duplication of operations using the definition be-
ing speculated, since there may now be multiple reaching
definitions. When speculating c2, the operation d2=c2+4
had to be duplicated and guarded on the appropriate FPP as
shown in Figure 5. This is made possible, since PSSA al-
ready created all the necessary FPPs and path information.

If the guarding predicate has been defined by the opera-
tion’s earliest schedulable cycle, we do not apply PSpec. It
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PSpec(normal op)
f

if (normal op.guarding predicate not defined by
normal op.earliest schedulable cycle)

f
if (multiple defs of normal op.target exist
f

rename(normal op.target);
g
normal op.schedule(earliest schedulable cycle);
normal op.set predicate(true);

g
else
f

normal op.schedule(earliest schedulable cycle);
g

g

Figure 6: Basic PSpec Algorithm.

is again scheduled at the cycle equal to its earliest schedu-
lable cycle, but guarded by the guarding predicate assigned
by PSSA. The algorithm for PSpec instruction scheduling
is shown in Figure 6.

Using PSpec, the hyperblock can now be scheduled in 6
cycles as compared to 10 cycles in Figure 4. Since PSpec is
applied whenever the definition of the operation’s guarding
predicate occurs later than the earliest schedulable cycle of
the operation, we could reduce the number of operations
that need to be speculated by moving the definition of the
guarding predicates earlier. The goal of the next optimiza-
tion, Control Height Reduction, is to allow predicates to be
defined as early as possible.

4.2 Control Height Reduction

Control Height Reduction (CHR) eases control constraints
between multiple control statements. CHR allows succes-
sive control operations on the control path to be scheduled
in the same cycle, effectively reducing control dependence
height. For example, in the code in Figure 5, the control
comparisons for d1>c and b1>d1 are scheduled in cy-
cles 3 and 4, respectively. However, the second comparison
is only waiting for the definition of its guarding predicate
BA.

To schedule it earlier, consider the PSSA dependence
graph in Figure 4. The definition of EBA (defined by the
condition b1>d1), is control dependent on the definition
of BA (defined by the condition d1>c). We could also
define EBA directly as the logical AND of the conditions
b1>d1 and d1>c removing the dependence on the defini-
tion of BA. This AND expression could also be scheduled
in cycle 3.

Control Height Reduction was proposed in [24]. It
was successfully used to reduce the height of control re-
currences found in loops when applied to superblocks. A

cycle available
for scheduling

A cmpp.un TRUE if true 1
a0=rand() if A 1
d1=a0*2 if A 2

BA,CA cmpp.un.uc d1>c if A 3
B OR (BA) if true 4
C OR (CA) if true 4

b1=7 if true 1
a1=4 if true 1

LBA,EBA cmpp.an.an d1>c if A 3
LBA,EBA cmpp.an.ac b1>d1 if A 3

branch out if LBA 3
a2=6 if true 1
c1=a2+c if true 2

EDCA,ECA cmpp.ac.ac d1>c if A 3
EDCA,ECA cmpp.an.ac c1>a2 if A 3
D OR (EDCA) if true 5

a3=5 if true 1
E OR (EBA,ECA,EDCA) if true 4

c2=a1+b1 if true 2
c3=a2+b if true 2
c4=a3+b if true 2
d2=c2+4 if EBA 3
d2=c3+4 if ECA 3
d2=c4+4 if EDCA 3
e1=d2+7 if E 4

FEBA,GEBA cmpp.un.uc d2>b1 if EBA 4
FECA,GECA cmpp.un.uc d2>b if ECA 4
FEDCA,GEDCA cmpp.un.uc d2>b if EDCA 4
F OR (FEBA,FECA,FEDCA) if true 5
G OR (GEBA,GECA,GEDCA) if true 5

a7=3+d2 if true 4
a4=4+a1 if true 2
a5=4+a2 if true 2
a6=4+a3 if true 2
a=a7 if F 5
a=a4 if GEBA 5
a=a5 if GECA 5
a=a6 if GEDCA 5
e=e1 if E 5

Figure 7: Extended example after PSpec and CHR opti-
mizations have been applied. Cmpp instructions displayed
in gray define predicates that are not used after optimiza-
tion. Therefore, the statements can be removed from the
final code.

superblock is a selected trace of basic blocks through the
control flow graph containing only one path of control [23].
The path defining aspects of PSSA allow our algorithm to
efficiently apply CHR to predicated hyperblocks, since the
full-path predicates expose all of the original separate paths
throughout the hyperblock.

Schlansker et. al. [25] expanded on their previous re-
search, applying speculation prior to attempting height re-
duction. Speculation can remove dependences between the
branch conditions that need to be combined to accomplish
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the reduction. However, in that work, speculation was lim-
ited to operations that would not overwrite a live register or
memory value if speculated, since they did not use renam-
ing. In Figure 4, the cmpp operation defining EDCA and
ECA is shown scheduled at cycle 5 due to dependences on
a2 and c1. PSSA allows us to apply PSpec and schedule
these definitions in cycles 1 and 2 respectively, making the
cmpp available for CHR as shown in Figure 7.

4.2.1 Instruction Scheduling with PSpec and CHR

During instruction scheduling, PSpec is performed as de-
scribed in Section 4.1.1. For each control operation
(cmpp), CHR is performed if possible.

Recall that the operations in Figure 4 are scheduled in
the order given in the PSSA hyperblock. Like PSpec, CHR
compares when the operation could be scheduled based on
its earliest schedulable cycle with when it must be sched-
uled if it waited for its guarding predicate to be defined. If it
does not need to wait on the definition of its guarding predi-
cate, it is simply scheduled at its earliest schedulable cycle.
For example, consider the definitions of FEBA and GEBA
in Figure 7. The definition of EBA (the guarding predicate
of this cmpp operation) is scheduled at cycle 3, but the ear-
liest schedulable cycle of this cmpp operation is 4 because
of its true data dependency on the definition of d2 in cycle
3.

If the cmpp operation must wait for the definition of
the guarding predicate it is beneficial to CHR. By AND-
ing the conditions of the current definition with that of its
guarding predicate, we can schedule this definition earlier.
If the definition of the guarding predicate involved condi-
tions that were ANDed as well, all of the conditions must
be included, so the number of cmpp statements needed to
define the current operation increases. The .a tag on each
of these cmpp statements indicates that all of them are re-
quired for the final definition.

Consider the operations d1>c and c1>a2 in Figure 4.
We control height reduce these operations in Figure 7, since
they are both schedulable in cycle 3 based on our schedul-
ing constraints. The definition of EDCA now describes the
combination of d1>c being false AND c1>a2 having a
value of true. We implement this logical AND, using the
.ac and .an qualifiers. The definition of EDCA requires
that both the complement of the condition d1>c and the
conditionc1>a2 evaluate to true for the FPP to get a value
of true. If one or both of the requirements are not met, the
FPP will be set to false. The compares can architecturally
be performed in the same cycle [16] allowing multiple links
in a control path to be defined simultaneously. The algo-
rithm for CHR is found in Figure 8.

Using PSpec and CHR on PSSA-transformed code re-
sults in the 4 cycle schedule shown in Figure 7. One ad-
ditional cycle is required to resolve renamed variables that

CHR(cmpp op)
f

if (cmpp op.guarding pred defined
by cmpp op.earliest schedulable cycle)

f
cmpp op.schedule(cmpp op.earliest schedulable cycle)

f
/* Apply Control Height Reduction */

else
f

while (more stmts defining(cmpp op.guarding pred))
f

next def=next defining stmt(cmpp op.guarding pred)
copy=duplicate(next def)
copy.schedule(next def.get scheduling time())
copy.predicate on(next def.get guarding pred())
copy.set define(cmpp op.get pred defined())
copy.set tag to(a)

g
cmpp op.schedule(next def.get scheduling time())
cmpp op.predicate on(next def.get guarding pred())
cmpp op.set tag to(a)

g
g

Figure 8: Basic Control Height Reduction Algorithm.

are live out. Note that this last version of the code has fewer
operations than the previous version in Figure 5 and the op-
erations shown in gray can be removed in a post-pass be-
cause these operations define predicates that are never used.
Using predicated speculation and control height reduction
together on PSSA-transformed code allows every operation
to be scheduled at its earliest schedulable cycle.

5 Results

We have implemented algorithms to perform PSSA, CHR
and PSpec on hyperblocks in the Trimaran System (Ver-
sion 1.00). We collect profile-based execution weights for
operations in the codes and schedule operations with an
assumed one-cycle latency in order to calculate execution
time.

Figure 9 shows normalized execution time when ap-
plying our optimizations for several Trimaran bench-
marks: compress (from SPECINT95), alvinn (from
SPECFP92), fib and matrix multiply (mm) (from
Trimaran), and qsort. The original execution times are
created from the default Trimaran settings, with the excep-
tion that the architecture issue rate is set to 16. Execution
time is estimated by summing together the frequency of ex-
ecution of each hyperblock multiplied by the number of cy-
cles it takes to execute the hyperblock, and a perfect mem-
ory system is assumed. The results are normalized to the
original schedule generated by Trimaran for a 16 issue ma-
chine. The infinite results show the normalized execution
time assuming an infinite issue architecture. The optimized
results show the performance after applying PSSA, PSpec,
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Figure 9: Executed cycles normalized to the number of cy-
cles to execute the original code produced by Trimaran for
a 16 issue machine.
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Figure 10: Weighted average number of operations sched-
uled per cycle for hyperblocks when using PSSA with Pred-
icated Speculation and Control Height Reduction.

and CHR. The results show that using PSSA with PSpec
and CHR results in a significant reduction in executed cy-
cles.

Figure 10 shows the average number of operations exe-
cuted per cycle for the configurations examined in Figure 9.
In comparing the two graphs for the 16-way results, 3 to 4
times as many instructions are issued per cycle after apply-
ing PSSA, PSpec, and CHR, and this resulted in a reduction
in execution time ranging from 10% to 58%.

The renaming required by PSSA and PSpec also signif-
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Figure 11: Weighted average register pressure in hyper-
blocks when using PSSA with Predicated Speculation and
Control Height Reduction.

icantly increases register pressure. Trimaran’s ISA (Play-
doh) supports 4 register files: general purpose, floating
point, branch, and predicate [2] [16]. Figure 11 shows the
average number of live registers for the original code and
the optimized code using PSSA, PSpec and CHR. The av-
erage live register results are weighted by the frequency of
hyperblock execution. For example, matrix multiply
has on average 18 live general purpose registers in the orig-
inal code, and 50 live general purpose registers after opti-
mization. Though the increase in utilization of all these reg-
ister files is notable, the weighted average utilization still
remains well within the reported IA-64 register file sizes
(128 general purpose, 128 floating point, 8 branch, and 64
predicate) [3].

6 Related Work

Predicated execution presents challenges and prospects that
researchers have addressed in a variety of ways. Mahlke
et. al. [18] showed that predicated execution can be used
to remove an average of 27% of the executed branches and
56% of the branch mispredictions. Tyson also found similar
results and correlated the relationship between predication
and branch prediction [26].

In an effort to relieve some of the difficulties related to
applying compiler techniques to predicated code, Mahlke
et. al. [19] defined the hyperblock as a single-entry,
multiple-exit structure to help support effective predicated
compilation. These hyperblocks are formed via selective if-
conversion [5, 21] – a technique that replaces branches with
predicate define instructions. The success of predicated ex-
ecution can depend greatly on the region of the code se-
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lected to be included in the predicated hyperblock. August
et. al. [8] relates the pitfalls and potentials of hyperblock
formation heuristics that can be used to guide the inclusion
or exclusion of paths in a hyperblock. Warter et. al. [27] ex-
plore the use of reverse-if-conversion for exposing schedul-
ing opportunities in architectures lacking support for pred-
icated execution as well as for re-forming hyperblocks to
increase efficiency for predicated code [8, 27].

The challenges of doing data-flow and control-flow
analysis on hyperblocks have also been addressed. Since
hyperblocks include multiple paths of control in one block,
traditional compiler techniques are often too conserva-
tive or inefficient when applied to them. Methods of
predicate-sensitive analysis have been devised to make tra-
ditional optimization techniques more effective for pred-
icated code [13, 22]. Our research has extended this
predicate-sensitive analysis, as well as incorporated path-
sensitive analysis for predicated code which has previously
been found useful for traditional data-flow analysis [6, 10,
14]. We use this specialized information to accomplish
PSSA (a predicate-sensitive form of SSA [12, 11]) which
enables Predicated Speculation and Control Height Reduc-
tion for hyperblocks that have previously been examined
only in the presence of the single path of control found in
superblocks [23, 24, 25].

Moon and Ebcioglu [20] have implemented selective
scheduling algorithms, which can schedule operations at
their earliest possible cycle for non-predicated code. Our
work extends theirs for predicated code, by allowing ear-
liest possible cycle scheduling using predicated renaming
with full-path predicates.

7 Implementing PSSA in IA-64

Implementing PSSA using the IA-64 ISA [3] would be
straightforward with the exception of the predicate OR
statement we introduced. The OR instruction can be im-
plemented by transferring the predicate register file into a
general register using the move from predicate instruction
in IA-64. The general purpose masking instruction would
then be used to mask all but the bits corresponding to the
sources of the predicate OR instruction. A result of zero
evaluates to false, and anything else evaluates to true.

IA-64 places limits on compare instructions not found
in the Playdoh ISA. For example, conditions that are in-
cluded in logical AND compare statements can only com-
pare a variable to zero. Specifically, the statement LBA,
EBA cmpp.an.ac b1>d1 in Figure 7 would not be
permitted. In implementing CHR, we would have to trans-
form the prior expression into the following 2 statements:

temp = b1-d1;
LBA, EBA cmpp.an.ac temp>0;

8 Future Work

When constructing a hyperblock schedule for a specific
processor implementation, resource limits will mandate
how many operations can be performed in each cycle. Ar-
chitectural characteristics such as issue width, resource uti-
lization, number of available predicate registers, and num-
ber of available rename registers all need to be considered
when creating an architecture-specific schedule. The goal
of a hyperblock scheduler is to reduce the execution-height
while taking these architectural features into consideration.

In this paper, our goal was to show that PSSA pro-
vided an efficient form of renaming and ample path infor-
mation to allow all operations to be scheduled at their earli-
est schedulable cycle. We are currently examining different
PSSA representations to reduce code duplication and the
number of full-path predicates created. Since various con-
trol paths through a hyperblock may have different true data
dependence heights, it may provide no advantage to specu-
late operations that are not on the critical path through the
hyperblock. PSSA could concentrate on only the critical
paths through the hyperblock (reducing code duplication),
since these are the optimized paths. For non-critical paths,
it may be advantageous in PSSA to implement � functions
combining different variable names, instead of maintaining
renamed variables for each full-path in the hyperblock. At
a point in the hyperblock where all paths join, copy opera-
tions could be used to return renamed definitions to original
names. Path definitions could then be restarted at this point.
This would reduce the amount of duplication required for
a given operation to use correctly renamed variables. Our
future research concentrates on these issues and creating a
more efficient implementation of PSSA.

We have presented only two of the optimizations that
benefit from PSSA. Many classical optimizations for tradi-
tional code would benefit from a more predicate-sensitive
implementation using the information provided by PSSA,
and for future work we are applying PSSA to other code
optimizations.

9 Conclusions

This paper presented Predicated Static Single Assignment,
a predicate-sensitive implementation of SSA, to eliminate
false dependences for predicated code. We showed the ben-
efit of using PSSA to perform Predicated Speculation and
Control Height Reduction during scheduling. Predicated
Speculation allows operations to be executed at the cycle of
their earliest schedulable cycle, even before their guarding
predicates are determined. CHR allows guarding predicates
to be defined as soon as possible, reducing the amount of
speculation needed.

By maintaining information about each of the control
paths that exist in a hyperblock, PSSA can provide infor-
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mation that allows precise placement of renamed and spec-
ulated code, and allows the correct, renamed values to be
propagated to subsequent operations. The renaming used
by PSSA allows more aggressive speculation, as overwrit-
ing live registers and memory values is no longer a con-
cern. In addition, PSSA supports Control Height Reduction
along every control path using full-path predicates, reduc-
ing control dependence depth throughout the hyperblock.

Our experiments show that PSSA is an effective tool for
optimizing predicated code. Using PSSA with PSpec and
CHR results in a reduction in executed cycles ranging from
10% to 58% for a 16 issue machine.
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