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Abstract

Dynamic optimization has the potential to adapt the program’s
behavior at run-time to deliver performance improvements
over static optimization. Dynamic optimization systems usu-
ally perform their optimization in series with the application’s
execution. This incurs overhead which reduces the benefit
of dynamic optimization, and prevents some aggressive op-
timizations from being performed.

In this paper we propose a new dynamic optimization
framework called Trident. Concurrent with the program’s ex-
ecution, the framework uses hardware support to identify op-
timization opportunities, and uses spare threads on a mul-
tithreaded processor to perform dynamic optimizations for
these optimization events. We evaluate the benefit of using
Trident to guide code layout, basic compiler optimizations,
and value specialization. Our results show that using Trident
with these optimizations achieves an average 20% speedup,
and is complementary with other memory latency tolerant
techniques, such as prefetching.

1 Introduction

It is increasingly difficult for static compilation to tailor the
code to all of the potential behaviors that occur during exe-
cution. Dynamic optimization [2, 9, 13, 26, 3, 10, 32, 33, 4,
27, 34] has emerged as a technique to adapt the program to its
current execution behavior. Since a program is dynamically
optimized while it runs, it can automatically adapt to the pro-
gram’s changing behavior at run-time.

This paper describes a dynamic optimization system called
Trident which exploits two features present in many mod-
ern processor architectures: increasing hardware support for
runtime monitoring of execution, and the ability to execute
multiple threads of execution, either through chip multipro-
cessing [18], hardware multithreading [37], or a combina-
tion [22]. This system allows execution and optimization to
take place concurrently, significantly reducing overheads in-
herent to most prior systems.

Trident builds on the continuous optimization work done
in ADORE [25, 26], which uses an additional software thread
to profile and optimize hot traces. Our approach reduces
the overhead of profiling and optimization by using hardware
support to identify optimization events, and using dedicated

helper threads to guide and perform the optimization. The two
key features of our optimization system are:

• Performance and event monitoring can be done with no
software overhead. This allows more frequent monitor-
ing and higher coverage of the executable. It also allows
monitoring to continue with no overhead during and after
optimization, allowing more opportunities to repair or back
out of bad optimizations.

• Event-driven, low-overhead optimization. Because op-
timization happens in response to hardware events, they
are easily handled by spawning a lightweight helper thread,
which does not interrupt the main thread’s execution. This
allows the framework to employ much more aggressive op-
timizations without significant fear of performance loss,
even if the part of execution being optimized is short lived.

Our framework focuses on efficient dynamic optimiza-
tion for a multithreaded processor – in this paper, the hard-
ware platform we examine is Simultaneous Multithreaded
(SMT) [37]. In addition to describing Trident, we examine
the benefit of using Trident to guide code layout, basic com-
piler optimizations, and a more advanced optimization, dy-
namic value specialization. Trident is flexible enough to en-
able a variety of optimizations at once, and we demonstrate
it in this paper with value specialization combined with these
basic dynamic optimizations.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 describes the simula-
tion methodology. Section 4 describes the Trident architec-
ture. Section 5 gives details of the system implementation and
demonstrates the framework with the base optimizations. Sec-
tion 6 presents a more aggressive optimization, dynamic value
specialization, using the Trident framework. We conclude the
paper in Section 7.

2 Related work
Our framework is based in part on a large body of prior re-
search in dynamic optimization. In this section we focus on
summarizing research on dynamic optimization in both soft-
ware and hardware based systems.

2.1 Software-based Dynamic Optimization
We will first summarize the software dynamic optimizations
breaking them into two groups – those that optimize native
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binaries and those that optimize while performing ISA trans-
lation.

Native binary optimization systems There have been
several software dynamic optimization systems proposed,
such as Dynamo [2], DynamoRIO [4], and Mojo [9]. Dy-
namo provides transparent dynamic optimization on binaries.
Dynamo detects a program’s hot traces via interpretation. As
such, Dynamo exploits optimistic design strategies to detect
hot traces quickly in order to reduce the costly overhead of
interpretation. Mojo [9] is similar to Dynamo, but it targets
multithreaded Windows applications. A common attribute of
these systems is that optimization is typically performed in
the same thread as the main execution within a single hard-
ware context. Sharing the same hardware context requires
pausing the current program’s execution to perform optimiza-
tion. This also introduces additional runtime overhead due to
heavyweight user-level context switching between execution,
profiling, and optimization.

The binary optimization framework proposed by Ootsu, et
al. [30], focuses on detecting parallelizable loops in a single-
threaded binary to speed up loop execution on multithreaded
processors. The framework uses two phases of translation and
optimization: static translation and optimization (STO) ana-
lyzes the binary to identify control and data flow informa-
tion, and instruments the binary to collect profiles at runtime;
dynamic translation and optimization (DTO) performs further
optimizations partially done by STO. Trident performs all of
its analysis on a code fragment in a parallel helper thread, so
it requires no static analysis and instrumentation. In addition,
rather than relying on statically identified events for optimiza-
tion, Trident triggers optimizations from dynamically identi-
fied hardware events.

The ADORE framework [26, 7] is the closest runtime op-
timization system to the Trident framework. ADORE uses a
separate OS level thread to perform profiling and optimiza-
tions (e.g. prefetching) by taking advantage of Intel Itanium
specific hardware counters [20]. In contrast, our current Tri-
dent framework focuses on adding lightweight hardware to
perform all of the profiling needed to guide our dynamic op-
timizations. The hardware interacts with the optimization
framework by generating events that our helper threads con-
sume to make optimization decisions as well as to perform the
optimizations. In comparison to ADORE, our event-driven
hardware profiling support avoids context switching to the ad-
ditional thread for profiling, allows continuous monitoring of
more complex behavior, and allows our framework to react
immediately to events and thus adapt to shorter phases.

Translation optimization systems Dynamic optimiza-
tion is commonly seen in dynamic translation systems [14, 15,
3] through just-in-time compilation. Translation occurs from
one ISA to another existing or proprietary ISA. These systems
usually focus on compatibility or power efficiency issues. Op-
timization is often limited to the basic block level. Binary
translation is discussed more thoroughly by Altman, et al. [1].

In the Java Virtual Machine (JVM) [31, 5, 11], the JIT
compiler interprets/compiles abstract Java bytecode and op-
timizes it to run on native machines. Optimization is usu-
ally tightly coupled with the virtual machine semantics. The
Jrpm system [8], with a similar motivation as [30], specula-
tively parallelizes a single-threaded Java program to run on a
CMP with thread-level speculation [18]. Background com-
pilation [24] reduces runtime overhead of lazy compilation
within a JVM by using an extra dedicated thread to perform
just-in-time compilation. Our approach builds on this by using
helper threads to provide low overhead dynamic optimization
of any binary running on the processor.

In parallel with our Trident framework, Shankar, et al. [34]
designed a runtime specialization system under the Jikes
RVM. This system profiles both load values and store ad-
dresses to find semi-invariant loads and heap locations. Mul-
tiple traces are then specialized from the same dispatch point
using each of these constants. Trident differs from this work
by identifying one hot value for each load instruction and cre-
ating a single specialized trace using potentially multiple hot
values.

2.2 Hardware-based Dynamic Optimization
Pure hardware optimization systems are often based on the
trace cache architecture. These systems perform lightweight
optimizations such as constant propagation, register re-
association, and move instruction elimination via renaming
logic [16, 21]. The inflexibility of hardware optimization
systems can be partially overcome using instruction-path co-
processors [10]. The ROAR architecture [29] greatly improves
the effectiveness of dynamic optimization via hardware sup-
port of precise speculation, which is similar in spirit to the
Transmeta Crusoe processor [14].

More recent work on hardware based optimizations are
represented by the RePlay [32] and PARROT [33] frameworks.
In these frameworks, control dependencies are speculatively
removed to form long and atomic traces so that very aggres-
sive code reduction and optimization can be performed. Ad-
ditionally, several hardware acceleration schemes, such as hot
spot detector [27] and control transfer in the code cache [23],
are proposed to speed up dynamic optimization.

The pure hardware optimization systems (e.g., RePlay and
PARROT) usually store optimized traces in a dedicated hard-
ware trace cache. This can restrict how long the optimized
traces are or require additional solutions to allow for longer
traces, since the trace is not stored in the program’s virtual ad-
dress space. Additionally, variable-length traces may need to
be truncated into fixed segments to store into different trace
cache locations. These segments need to be chained together,
but chaining introduces some complexity for instruction fetch-
ing and trace invalidation. Trident differs from these pure
hardware optimization systems by storing optimized hot traces
in the memory-based code cache, and the traces can have ar-
bitrary sizes. This avoids the difficulty of managing the traces
in the hardware trace cache, and the optimized traces live
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Pipeline 20-stage, 256-entry ROB, 224 registers
Queue Sizes 64 entries each IQ, FQ, and MQ
Fetch Bandwidth 8 total instructions
Issue Bandwidth 8 instructions per cycle

up to 6 Integer, 3 FP, 4 load/store
Branch Predictor 2bcgskew, 64K entry Meta and gshare

16K entry bimodal table
ICache size & latency 64 KB 2-way associative, 2 cycles
L1 size & latency 64 KB 2-way associative, 2 cycles
L2 size & latency 512 KB 8-way associative, 20 cycles
L3 size & latency 4 MB 16-way associative, 50 cycles
Memory Latency 600 cycles

Table 1: baseline SMTSIM configuration.

Branch profiler 256-entry 4-way associative and each entry
has a 4-bit counter.
Three standalone 16-bit bitmaps

Value profiler 32-entry 2-way associative; each entry has
five values and one stride value.
Each value has a 4-bit confidence counter.
Confidence scheme: <15,1,7>

Table 2: Trident profiler configurations.

across interrupts and context switches. In addition, many of
the above hardware systems use a dedicated, hard-wired op-
timization engine to perform optimizations. Trident provides
a more flexible, scalable optimization scheme, which enables
user-level code to perform the optimization in the program’s
address space.

3 Methodology
Trident is simulated on a modified version of the SMTSIM
multithreading simulator [37]. The baseline processor is a
20-staged superscalar with 2 hardware contexts. The baseline
configuration is shown in Table 1.

To support the Trident framework, we propose a few new,
small hardware structures which monitor the program’s execu-
tion. These hardware structures can generate hot events upon
detection of certain program behaviors, and trigger Trident to
perform dynamic optimization. The configurations of the ma-
jor hardware structures – the branch profiler and the value pro-
filer – are shown in Table 2. More details on these hardware
structures are in Section 4.

SPEC2000int benchmarks with reference inputs are used
for evaluation. All benchmarks are compiled on the Alpha
platform (Digital Unix V4.0F) with the highest optimization
options. Each benchmark is simulated for 100 million instruc-
tions beyond the single simulation points from SimPoint [35].
The simulator is warmed up with 5 million instructions be-
fore the true simulation starts. Dynamic optimization and
related structures are not enabled until after warmup is fin-
ished. 100 million instructions are simulated to demonstrate
Trident’s ability to quickly capture and then benefit from con-
current optimization. We expect even better performance im-
provement when simulating more instructions because the dy-
namic compilation cost and ramp-up time will be amortized,
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Figure 1: Performance on the baseline SMT processor.
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Figure 2: Trident dynamic optimization architecture

since we start simulation with no hot trace nor value special-
ization profiles. Figure 1 shows the base performance of each
benchmark when executed alone on the baseline architecture.
The base performance is used for future performance compar-
ison.

Trident exploits helper threads to perform dynamic opti-
mization on hot traces. The runtime optimization code exe-
cuted by helper threads is written in C and compiled with gcc
-O5. Special care is taken to make the runtime code thread
safe. When a helper thread is triggered to run, we simulate
all but the startup of the thread in detail on our SMT simu-
lator. We therefore add a 4000 cycle latency when starting a
helper thread. This consists of executing our run-time system
to initialize the helper thread’s registration structure for the op-
timization to be performed, which sets the PC, stack pointer,
global data pointer, and sets the thread’s priority. This regis-
tration structure is described in detail in the next section.

4 Dynamic Optimization Architecture

Trident is an event-driven optimization system. It employs
the hardware structures to monitor the program’s execution
behavior, and generates hot events to trigger optimizations.
These structures and the mechanism to trigger helper threads
on events are mostly general-purpose – we anticipate a system
with a wider set of hardware-supported optimizations than are
evaluated in this paper. In this section we give an overview of
Trident’s optimization architecture, and describe the generic
hardware structures to support the Trident framework.
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4.1 Trident’s Optimization Architecture and Run-time
Support

Figure 2 provides an overview of the Trident architecture. The
major hardware components include the hardware event moni-
tors, hardware event queue, event management and support for
triggering the helper thread. To describe the architecture we
will use the example of a dynamic optimization system that
focuses on finding hot paths, and then performs code layout
for those hot paths.

To apply Trident’s optimization system, the OS loader
calls run-time routines to specify that a given main thread is to
be monitored and optimized for hot path code layout. In our
current simulation infrastructure, the hardware monitoring is
assigned to one running thread at a time.

When starting the monitoring and optimization process,
the run-time support communicates to the event manager that
certain hardware events are to be monitored. In our example,
the hardware event is to find the starting PC and the subse-
quent hot path. Along with the hardware structures to find this
information, the hardware provides an event queue. When an
event occurs, the data found is put into the hardware event
queue to be consumed by an optimizing helper thread. In our
example, the helper thread will perform hot path code layout
when a hot path event is inserted into the event queue.

At the same time the run-time support registers the hard-
ware monitoring of a thread, it also creates (but does not run)
a generic helper thread to process the hardware events from
the event queue. During this registration the run-time support
allocates in the program’s address space the dynamic optimiz-
ing compiler code, a stack and some global data space. This is
similar to loading a shared library into a program.

When registering an optimization helper thread, the run-
time system creates a helper thread Registration Structure in
the program’s address space. The registration structure con-
tains a pointer to the starting code of the helper thread, as well
as the stack pointer, global data pointer, pointer to its code
cache structure, and thread priority. The code cache structure
keeps track of the free and allocated space for the code cache,
since all of our optimizations in this paper interact with the
code cache. The priority may affect the helper thread’s instruc-
tion fetch throughput, to control its impact on other threads.

On a context switch of the main thread, we do not save
the current hardware profiling nor the optimization state of the
helper thread. Instead, the hardware event queue and struc-
tures are flushed, and the helper thread’s execution is stopped.
When the main thread resumes execution, the hardware moni-
toring of events will start again, the event queue will be popu-
lated, which will in turn trigger the execution of the optimizing
helper thread on a new event. This is possible because the only
thing we need to start executing the helper thread is a pointer
to the registration structure. The thread registration structure
provides a fast mechanism for spawning a thread to handle
the associated event, and an efficient mechanism to keep track
of state across context switches and helper thread invocations.

The only state that remains from one run to the next of the
helper thread is the code cache state.

In our example, when a hardware event identifies a hot
path, it dumps the event related data (starting PC and the sub-
sequent path) into the hardware event queue – when the event
queue fills up, new events overwrite older events. The hot path
is a series of bits indicating conditional branch outcomes. If
the helper thread assigned to this queue is not running, the
hardware signals the run-time system, which consults the reg-
istration structure to identify the helper thread parameters cor-
responding to the hot event. This initiates the helper thread to
run in a spare hardware context having access to the applica-
tion’s virtual address space for optimization. When the helper
thread starts, or when it finishes processing its current event,
the helper thread reads the next event data from the hardware
queue. In our example, it reads the PC and branch history,
performs code layout for that hot path and stores the new code
into the code cache. It then updates the code cache data struc-
ture, and finally it links the execution in the main thread’s
code to the code cache, and subsequent fetches to that hot path
would execute from the code cache.

4.2 Hardware Monitors to Support Trident’s Optimiza-
tion System

For the optimizations we examine in this paper Trident sup-
ports the following hardware monitors. Some of these can
trigger events, and others are just used by Trident during opti-
mization.

Hot Path Profiler This profiler identifies the frequently
executed branches and generates Hot Branch events. The pro-
filer includes two components: a set-associative cache used to
identify hot branches, and B global history bitmaps used to
find the dominant path for the hot branch.

Each cache entry has a small counter to indicate how many
times a branch has been executed. When a taken branch is
committed, its PC is used to index into the cache and the
counter in the cache entry is incremented. The least occurring
branch is replaced when the cache is full. When the counter
exceeds a predefined threshold T , a hot branch is detected.

Once a hot branch has been identified, we then start to
keep track of the global history paths that occur after that
branch. We do this by keeping track of the next B different
global history bitmaps of length L that occur during execu-
tion for each hot branch. For this study, we set L to be 16
branches. A 0 for not-taken and 1 for taken is stored into the
global history bitmap for the 16 branches that occur after the
hot branch. Once we have B executed paths for a hot branch
in this bit history form, we then vote to identify the dominant
path among these. The dominant path is the longest common
subsequence across the different global history bitmaps. This
is chosen by starting at the 1st branch after the hot branch, and
voting across the different global history branch positions to
see if the trace should follow the taken or not-taken path. This
is done by a majority vote across the different histories. Dur-
ing this voting, as soon as a given path history disagrees with
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the majority it is no longer eligible to vote. In addition, once a
majority can no longer be established, we stop expanding the
hot path.

For our results, the best configuration we found was to
keep track of 3 bitmaps. Using this design, assume for a
hot branch we have the following 3 global history paths of
length 8 (our results use length 16) – 10010100, 10110100,
and 10110000 – to illustrate how the voting works. When
picking the dominant path, the first two branch directions 10
are in agreement among the 3 sampled paths. The 3rd branch
history has a majority vote of taken (1). At this point we have
a dominant path of 101 and we only consider 10110100 and
10110000 for voting on the next branch, since 10010100 dis-
agreed with the majority vote for the 3rd branch. In continuing
down the path, these two histories differ at the 6th branch, and
at this point a majority cannot be reached, so the hot branch is
queued up as an event with the path of 10110. This will then
be used by the helper thread to create optimized hot traces.

Hot Value Profiler For the optimizations we examine
in this paper, we use a hardware value profiler to identify fre-
quently occurring values from load instructions. To accom-
plish this we adapted the software value profiler from [6]. The
profiler is organized as a set-associative cache, where each en-
try is assigned to track the top values for a load. Each profiler
entry keeps track of a small number (e.g. six) of load values
that are tracked, and one entry to keep track of the dominant
stride seen between the values for the load.

Each value has associated with it a confidence counter
(typically 4 bits). The confidence scheme is represented by
a tuple of <max confidence, increment, decrement>. For in-
stance, our default scheme is <15, 1, 7>, where a value’s con-
fidence is incremented by 1 if the same value occurs again,
and if a different value occurs the confidence for that entry is
decremented by 7. The confidence is saturated at 15. When-
ever a value’s confidence reaches 15, it is claimed hot. When
this occurs, a hardware event is generated to indicate that the
load is value predictable for that value.

Similarly for the stride entry, we use the same confidence
scheme. Here we calculate the stride between the last value
and the current value, and we compare the stride to the one
stored. We increment if the stride is the same as the last one
encountered, decrement if it is different. If the confidence
counter is 0, we replace the stride, and if it is saturated at the
max confidence then a hardware event is generated to indicate
that a load has a stride predictable value.

When a load instruction is committed, its PC is used to
index into the cache. Each time a load PC gets a tag hit, we
update all of the confidence counters for that load PC. If the
value is not present, then the least confident value is replaced.

In this paper, we use the hot value profiler to only monitor
load instructions in the scope of the most recent hot trace spec-
ified by the hot branch profiler. Therefore, the value profiler
only needs a small number of entries. To specify what to value
profile, load instruction PCs are put into the value profiler via

a special profiling instruction, which is described later. If there
is no room in the cache, then the least recently inserted entry
is replaced.

Cache access counters Trident polls I-Cache access
counters that estimate which cache blocks are hot. This is
used to make decisions as to where to place optimized traces
in the code cache in order to reduce cache misses. Similar
counters are already available on modern processors like the
Itanium [20].

Optimized trace watch table This hardware table mon-
itors the performance of optimized hot traces. The goal is to
identify when an optimized trace is deviating from the path for
which it was optimized. Each table entry stores the hot trace’s
starting virtual address in the code cache and a completion
threshold. The threshold specifies the number of sequential
instructions that need to be used from the trace in order for
the trace to be beneficial. The value of the threshold is differ-
ent for every trace, since the traces can be of different lengths.
Therefore, the threshold is set to be a percentage (e.g., 60%)
of the optimized trace length, which is passed in when initial-
izing the table entry. The watch table knows when a trace is
prematurely exited if it sees a taken branch commit before the
completion threshold is reached. Each table entry also con-
tains an invalidation counter to identify when the trace should
be invalidated. The counter starts out at 0, and each time the
trace is exited before the completion threshold is met, the in-
validation counter is incremented. Each time it executes that
many instructions or more it is decremented. If the invalida-
tion counter reaches a threshold, then a hardware trace invali-
dation event is inserted into the event queue.

Note that on a context switch all of the hardware struc-
tures are flushed, so we need a way to specify which optimized
traces are to be monitored when the thread resumes. This is
accomplished through a special instruction that is inserted at
the start of each optimized trace. The instruction says to insert
the current PC and the trace length into the Trace Watch Table,
if it is not already there. We found that this instruction does
not impact performance, since there are no dependencies on
it. We expect only a small number of entries in the watch table
because a typical application has a relatively small working
set. The table may be replaced via a simple FIFO policy.

4.3 Trident’s Optimization Flow
In this section we describe the different hardware events that
can occur in more detail. An example of Trident’s optimiza-
tion flow, when applying all of our current optimizations, is
shown in Figure 3. Optimization is driven by the hot events
which are listed in Table 3.

The first step shown in Figure 3 is for the run-time sys-
tem to turn on hot branch path profiling for a given thread and
to allocate a helper thread registration structure as described
above. When a Hot Path event is triggered and inserted into
the hardware event queue, the event manager takes these ac-
tions: (1) copies the branch profile into the hardware event
queue, and (2) checks to see if a Thread Trigger needs to oc-

5



Helper thread 
Value 
Specialization

Value 
Profiling

Helper thread
 Trace 
Construction

Code Cache

Branch 
Profiling

Figure 3: The dynamic optimization flow

Event Source Actions

Hot Path Path profiler helper thread spawned
to construct a hot trace

Hot Value Value profiler helper thread spawned to perform
value specialization on a hot trace

Code Cache Watch table invalidate the hot trace
Invalidation corresponding to the virtual address

in the watch table

Table 3: Trident hot events

cur. If a helper thread is not already running, then the registra-
tion structure is used to start the execution of the helper thread
on a free context.

When a helper thread processes an event form the hard-
ware queue it first determines what type of event it has, in
order to invoke the correct routines. When a hot path event is
consumed, the helper thread will start running the Trace Con-
struction code to build an optimized sequential trace for the
hot path found. This will be inserted into the code cache as
shown in Figure 3, and then linked into the original code. The
hot path trace generated will be terminated at the beginning of
an existing hot trace, a self loop, or any indirect jumps. How-
ever, a return instruction doesn’t terminate the trace when its
matching call instruction is within the trace. The thread per-
forms basic optimizations on the trace as explained in the next
section.

The Trace Construction thread will then execute instruc-
tions to insert the PCs that it wants to value profile in the gen-
erated hot trace into the hot value profiler hardware structure.
The value profiler will then raise a Hot Value event when hot
values are detected.

When a hot value event is consumed by a helper thread, the
Value Specialization code is run. The thread performs more
aggressive optimizations (such as dynamic value specializa-
tion, described in Section 6). When the specialization is done,
the helper thread stores the optimized value specialized trace
into the code cache, and alters the original source binary code
to jump to this newly optimized version. Note, that this re-
places the link to the optimized hot trace that was earlier cre-
ated by the Trace Construction code. Therefore, that trace can
now be invalidated, and is marked to be removed later during
code garbage collection.

When a code cache invalidation event is consumed by the
helper thread, it will unlink the trace so that the original code
jumps to its original branch destination. This is made possible
since anytime we insert a trace, the instruction which is re-

placed by the jump and other information (i.e. the optimized
trace’s original source starting address, virtual address in the
code cache, and length) are stored in the bookkeeping direc-
tory of the code cache. This allows us to invalidate a trace or
to replace a trace with a more optimized version.

When a helper thread is done processing an event, it
checks to see if there is an event in the queue and if so, it
processes it. If the event queue is empty, then it stops running.
Later, when a new event arises the event manager will enable
the helper thread to process the new events.

5 Trident Implementation
Trident is designed to quickly respond to hardware events and
perform dynamic optimizations with very low overhead. The
performance of generic dynamic optimization depends on de-
sign strategies in three major areas: hot trace selection, code
cache management, and trace optimizations. These strategies
have been studied by many research groups [2, 9, 4, 26, 19].
In this section, we describe our techniques to adapt or improve
on some of these design strategies for our framework, and ad-
dress difficult issues which have not been studied in most ex-
isting software dynamic optimization systems.

5.1 Trace Formation Optimizations
The basic optimization performed by most dynamic optimiza-
tion systems is to create optimized hot traces, which by itself
helps improve fetch throughput and branch prediction accu-
racy. When Trident forms a hot trace it gets an event with a
starting PC, and a dominant branch history from the hot path
profiler as described in Section 4.2. The trace includes all of
the basic blocks along the hot path found. The trace our opti-
mizer creates is only terminated earlier than this if an indirect
jump is encountered.

After a hot trace is constructed, conditional branches in
the trace are adjusted to match their target addresses within
the trace. All unconditional branches are removed, but their
effects are preserved. For example, if a call instruction and its
matched return instruction are on the trace, both instructions
can be removed. However, the return address is still moved
into the calling register. This allows the trace to branch out
before the return is reached.

On top of trace formation we perform basic optimizations
such as constant propagation, copy propagation, and redun-
dant instruction removal. Redundant loads are removed if
there are no intermediate store instructions between them in
the trace. A move instruction is removed if it has been copy
propagated and its destination register is redefined in the same
basic block. This allows the hot trace to branch out at the
end of any basic block. Trident does not perform register re-
allocation during basic optimizations, so we scavenge free reg-
isters to be used only within the basic block in which they are
redefined.

We measure the amount of time the dynamic optimizing
helper threads spend executing hardware events. Figure 4
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Figure 4: Percent of the main thread’s execution in which the
helper threads are running (processing hardware events).

shows the percent of time relative to the main thread’s exe-
cution, in which the helper thread is processing the hardware
events. This is the amount of time needed to perform the base
optimizations described above along with value specialization
described in Section 6. The average execution ratio is less than
2%. Our simulation shows that each event on average takes
40,000 cycles to process. Since the optimization thread runs
in parallel on the SMT processor, the actual negative impact
on main thread execution is small, because our helper threads
are spawned with lower priorities for instruction fetching.

5.2 Candidate Hot Path Starting Points and Trace Link-
ing

Trident uses the hot path hardware profiler described in Sec-
tion 4.2 to find the potential starting points for the traces and
the path to be optimized. As described there, the hot branches
are first identified when a branch occurs for T times while
in the hot path profiler. After a hot branch is identified, the
path profiler keeps track of B paths that occur after a candi-
date hot path starting point. It then uses a voting scheme to
determine the longest dominant path. In Figure 5 we show the
performance speedup results for different values of B and T
when applying full optimization (including value specializa-
tion). The scheme is represented as a pair, <B.T>, where B
stands for the number of path instances tracked, and T for the
hot branch threshold. We simulated various combinations of B
and T, and the scheme <3.08> performed the best. Since hot
traces are likely executed more frequently, voting among three
instances of paths boosts the possibility of detecting the dom-
inant hot trace. Consequently, we can lower the hot branch
threshold to 8. The scheme of <3.08> is used in subsequent
evaluations.

Most software dynamic optimization systems allow exit
branches from a hot trace to form new hot traces. This will
not happen in our system because only branches in the origi-
nal code are profiled by the hot path profiler. This is enforced
by filtering the branches through the Trace Watch Table be-
fore indexing them into the hot path profiler. As described in
Section 4.2, the trace watch table keeps track of all of the cur-
rently executing traces from the code cache, so the hardware
knows if the branch being committed is from the code cache
or not.
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Figure 5: Comparison of hot path selection schemes.
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Figure 6: Performance with and without linking.

Because we don’t let branches in the code cache become
candidates for starting a trace, it might be worthwhile to apply
linking among optimized traces so that one hot trace can jump
directly to another optimized hot trace in the code cache with-
out going back to the original code. Figure 6 shows the perfor-
mance benefit due to hot trace linking. Unlike most existing
software dynamic optimization systems where linking could
impact performance by as much as 40X [2], we only observe
1.5% performance slowdown without trace linking. This is
because moving between traces without linking only incurs a
couple of extra jumps. With good branch prediction accuracy,
the corresponding penalty is small. In other systems, switch-
ing from hot traces to original execution typically incurs an
expensive, user-level context switch.

5.3 Hot Trace Invalidation
Trident exploits the watch table described in Section 4.2
to generate Code Cache Invalidation events which trigger a
helper thread to remove the under-performing traces from the
code cache. Trident’s invalidation mechanism is fine-grained,
and adapts to the program’s changing phase quickly.

When a trace is formed, a watch table insertion instruc-
tion is put at the front of the trace, which inserts the starting
PC into the table along with the trace length. The watch ta-
ble then monitors the amount of the trace used, to see if it is
above or below a completion threshold. This is used to main-
tain an invalidation counter to determine when the trace should
be invalidated. If the amount of the trace used is below the
completion threshold (e.g., 60%) enough times, then the cor-
responding trace is a candidate for invalidation, because not
enough of it is being used and there potentially are better or
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Figure 7: Code cache invalidation with different thresholds.

more dominate paths that can be represented. Invalidation in-
volves repatching the original code with the original instruc-
tion stored in the code cache directory and flushing the corre-
sponding I-Cache blocks.

Figure 7 shows the performance impact using different
trace completion thresholds on the x-axis. The first bar shows
the result when hot traces are never invalidated, and the rest
of the bars show when a completion threshold of at least 20%
to 90% of execution is needed in order for the trace to not
be invalidated. Our simulation shows that the dynamic opti-
mization performance is fairly insensitive to the invalidation
threshold until it is really aggressive (e.g., requiring 90% trace
completion threshold). At that point, overhead increases due
to frequent trace removal and regeneration.

5.4 Color-based Code Placement
One of the most important benefits from dynamic optimization
is instruction relayout. Streamlined instruction blocks should
improve the instruction cache behavior. But a naive imple-
mentation of code layout does not realize the full benefit if it
does not control instruction cache conflict misses. Most dis-
cussions of dynamic optimization from the literature do not
provide details on how to avoid the I-cache conflict between
the optimized code and un-optimized code.

Here, we evaluate three different policies to layout the op-
timized code in the code cache. The base of these policies
is cache block coloring. I-Cache blocks are partitioned into
different colors. For example, if the I-cache has 512 cache
blocks, we may partition it into 128 colors with 4 blocks in
each color.

The first code placement policy, called same color, is to
let the optimized code map to the same I-cache block as the
original binary code. The original binary code may occupy
non-contiguous memory blocks. In this policy, the optimized
code is stored to a code cache location whose virtual address
maps to the first I-cache block of the original binary code, and
continues to occupy subsequent I-cache blocks as needed. The
second policy is called color bin-hopping. In this policy, each
trace created is assigned the next sequential color/bin where
the prior trace created left off. The last policy, called the cold-
est color, maps a new trace to the coldest color whose corre-
sponding I-Cache blocks are least accessed.

Figure 8 shows the instruction cache misses for these dif-
ferent policies. Cache misses are measured in every million
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Figure 8: I-Cache misses on various placement policies.

committed instructions from the original binary. The coldest
color policy achieves the equivalent, or fewer, I-Cache misses
than the original binary running alone. The other two policies
have higher miss counts due to conflict between optimized and
un-optimized code or between different parts of the optimized
code. It can be seen that these schemes can differ by orders of
magnitude in the number of conflict misses.

The amount of code generated and placed in our code
caches varied from 1KByte (mcf) to 280KBytes (gcc). When
using the cold color scheme (which spreads out the code to
avoid conflicts) the continuous virtual address space used was
up to 1.5 MBytes for gcc.

5.5 Optimizations to Reduce Branch Misprediction

Software based dynamic optimization often results in high
misprediction rates when using the traditional return address
prediction stack (RAS) supported by most processors. The
RAS uses a stack to predict return addresses, based on the
prior sequence of procedure calls. During the basic optimiza-
tion, both call and return instructions for inlined procedures
are eliminated within hot traces. However, if the control flow
exits the hot trace before the removed return is reached, the
original code at the target of the exiting branch is executed.
Since the return instruction in the original code may pop the
RAS predictor (without a matched push), the RAS may pre-
dict wrong return addresses for many future predictions once
it gets mis-aligned. Execution will be correct, but the mis-
prediction cost will be high. This is a performance issue for
any dynamic optimization scheme that eliminates calls and re-
turns.

Kim and Smith [23] proposed a dual-address hardware
prediction stack to tackle this problem, but the problem has
not yet been explicitly addressed in most software dynamic
optimization systems.

To solve this problem, Trident adds a compensation block
in the optimized code for all exit branches which lay between a
removed call instruction and the removed return instruction (if
present). The compensation block contains a new instruction
which does nothing but implicitly push the return address on
the RAS. So, whether an inlined procedure is executed com-
pletely or not, Trident always keeps the RAS predictor in a
consistent state.
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Figure 9: RAS mispredictions due to dynamic optimization.

Figure 9 shows the number of RAS mispredictions with
and without our fix on the RAS predictor. We observed that
the RAS misprediction rate can be as high as 97%, causing on
average over 10% performance slowdown. Trident achieves
RAS mispredictions equal to or less than the baseline, and it
occasionally beats the baseline due to return elimination for
inlined procedures.

6 Value Specialization
Trident’s fast event handling and low overhead make it suit-
able for more aggressive optimizations such as dynamic Value
Specialization (VS). Value specialization [6, 28, 17], some-
times done by a static compiler in a very conservative manner,
is typically applied at the procedure level. A procedure may
be cloned and individually specialized on typical input val-
ues which may be constants or have relatively small ranges.
Trident can perform value specialization on any hot trace via
semi-invariant load values found via the hot load profiler. We
focus on loads because a key advantage of the specialization
is that it decouples a (potentially high latency) load from the
dependent code. Prior research has shown significant potential
from load value specialization [6].

As described in Section 4, Trident exploits the value pro-
filer to watch load instructions only within the hot traces. Due
to Trident’s event-driven nature, performance is highly insen-
sitive to the latency of the optimizer. This allows us to opti-
mize with more frequency, and to ultimately target more ex-
pensive optimizations than other systems.

6.1 Dynamic Value Specialization
As described in Section 4, Trident employs the hot value
profiler to detect semi-invariant values of loads which are in
the range of hot traces. A helper thread is triggered by Hot
Value events to perform value specialization using these “con-
stants”. Value specialization, which includes constant prop-
agation, copy propagation, and redundant code elimination,
takes the following steps:
1. Construct a def-use chain on the trace. Hot values are then
propagated along the chain. Any new constants generated dur-
ing the propagation are further propagated.
2. If the load values are special integers (such as 0 and 1), con-
sumer instructions of these values may be strength reduced.

The move instructions generated after the strength reduction
are copy propagated along the trace. Branch instructions de-
pending on these “constants” may be eliminated.
3. After the copy propagation is done, move instructions may
be eliminated if their destination register are redefined inside
the same basic block as the move instruction.

6.2 Verifying the Specialized Load Value
The loads that are value specialized need to be checked against
the semi-invariant value. Trident directly embeds the pre-
dicted values into the newly created specialized trace, as in [6].
This allows the load’s dependency chain to be broken and re-
sults in reducing instructions on the hot trace critical path with
the above optimizations. In addition, code below the value
specialized load (and below the check and branch) can specu-
latively execute above it in out-of-order processors.

The following code sequence is generated for each load
instruction which is value predicted during specialization:

• Perform the original load into a scratch register.

• move the predicted value into the load’s original register.

• compare-and-jump: compare the load value with the pre-
dicted value registers. If different, jump to recovery code
at the end of the trace.

The recovery code at the end of the trace will be:

• move the original load value in the scratch register into the
original load’s destination register.

• jump back to the next instruction after the load in the orig-
inal binary. This effectively prematurely ends the trace,
which will be seen by the watch table, and if this occurs
enough times the trace will be invalidated.

The above does put restrictions on instruction scheduling,
since instructions cannot be hoisted above value specialized
loads. If the predicted values are correct, the compare-and-
jump should not be taken. In case of an incorrect value, since
the load destination register is re-set with the correct value all
subsequent instructions (after we branch back to the original
trace) will get the correct value.

A register can be used as a scratch register if it is redefined
in the same basic block as the load instruction, and hasn’t been
used between its redefinition and the load verification. If such
a scratch register is unavailable, the predicted value cannot
be efficiently verified, so this load instruction is skipped for
specialization. For our results, we rarely had to skip the spe-
cialization. For architectures with more register constraints in
their ISA, more aggressive register scavenging might need to
be performed.

6.3 Exploring Stride Values
Trident’s speculative value specialization is also able to ex-
plore run-time values with semi-invariant strides. To the
best of our knowledge, this is the first time stride values are
exploited in software-based value specialization. We found
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that stride prediction is particularly useful for certain pointer-
chasing codes, as also seen in [12, 36]. This is due to the fact
that some programs’ allocation of data and its traversal over
the data are through highly strided access patterns.

To benefit from this, Trident’s value profiler keeps track of
the confidence of a load instruction’s value stride as described
in Section 4.2. If the stride is confident, it can be used for
specialization if no other top values are confident. For a load
instruction exhibiting a stride value pattern, its true value is
the sum of its base value and the stride. To calculate a load’s
true value, we store its base value in a separate main mem-
ory buffer, called the Base Value Memory Buffer (BVB), and
directly embed the stride value into the hot trace in the code
cache. The true value is verified via the following code se-
quence. However, the predicted value is not propagated for
further optimization.

• Perform the original load into a scratch register.

• load the predicted value from the BVB into the load’s orig-
inal register.

• compare-and-jump: compare the load value with the pre-
dicted value. If different, jump to the recovery code ap-
pended at the end of the trace.

• add the scratch register with the constant stride from the
value profiler and store the sum into the BVB.

The recovery code at the end of the trace will be:

• move the original load value in the scratch register into the
original load’s destination register.

• add the scratch register with the constant stride from the
value profiler and store the sum into the BVB.

• jump back to the next instruction after the load in the orig-
inal binary. This effectively prematurely ends the trace,
which will be seen by the watch table, and if this occurs
enough times the trace will be invalidated.

The key idea of this scheme is the assumption that the pre-
dicted next stride value stored in BVB, which is used in the hot
value specialized trace, should rarely miss in the data cache.
This will provide the predicted stride value when accessing
it, and if it is a hit in the L1 it should be significantly faster
than traversing through pointer-chains. To aid this, our value
specializer picks a data address for the BVB that maps to a
cold color based upon the cache access counters. For results
in this paper we only needed eight entries in a BVB for a given
program.

6.4 The performance of value specialization
Trident performs value specialization using profiled hot load
values. In this section, we evaluate the performance of Tri-
dent’s value specialization (VS), and compare it with tradi-
tional (hardware based) value prediction. In VS, the value
confidence scheme in Section 4.2 is used to identify hot val-
ues. All speedups quoted are relative instruction throughput
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Figure 10: Comparison of value specialization with value pre-
diction [38].

of just the main program, using instruction counts that corre-
spond to original program execution.

One of Trident’s advantages is that a value-specialized hot
trace may embed many value predictions. In contrast, the
complexity of conventional hardware value predictors would
likely limit how many predictions can be made each cycle. We
compare Trident’s value specialization with an efficient hybrid
predictor proposed by Wang, et al. [38]. The predictor has a
value history table (VHT) of 4K entries, where each entry has
seven values. The VHT entry is used as an index into a pattern
history table (PHT) of 32K entries. Each PHT table entry then
has seven counters, which are used to keep track of which of
the seven values in the VHT entry to use for the prediction.
Each cycle, the hybrid predictor is assumed to make up to 4 or
8 predictions. For example, the predictor may try to make pre-
dictions only for the first four load instructions encountered
per fetch. Note that this predictor likely makes an unrealistic
number of predictions per cycle. Also, the nature of this pre-
dictor should allow it to identify patterns our system cannot
predict.

Trident’s performance is shown in Figure 10. The first and
second bars show the performance of the hardware predictor
with 4 and 8 predictions per cycle, respectively. The third
bar shows basic dynamic optimization, which involves basic
block inlining and redundant instruction elimination. The last
bar shows the benefit from value specialization.

We make several observations from this data. First, we
see that the performance gains from our basic dynamic op-
timization implementation are relatively low. However, this
provides the framework for further optimizations – in this case
it enables the dynamic value specialization, where we see sig-
nificant performance gains, averaging over 20%. We also see
that our value specialization significantly outperforms aggres-
sive hardware value prediction. While hardware value predic-
tion can break dependencies between the load and its depen-
dences, beyond that the knowledge that the value is a constant
is lost. However, with our dynamic value specialization the
knowledge is propagated down the dependence chain, allow-
ing gains well beyond the initial prediction.

Figure 11 shows the breakdown of load instructions that
are covered by the hot traces with value specialization. The
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Figure 11: Breakdown of dynamic load instructions.

lower light gray shows what percentage of the loads were not
value specialized in the hot trace, and the dark gray shows
what percentage were value specialized. The rest of the loads
(top part of each bar) were not executed from hot traces. About
70% of the dynamic load instructions are within hot traces,
and among them 16% are value specialized. mcf shows
that it spends most of its execution time in the optimized hot
traces. It benefits from value prediction which decouples the
load from the dependent instructions, and it also benefits from
stride value specialization for providing pointer-chaining ad-
dresses. The stride value specialization accounts for 105% of
the 236% speedup seen for mcf. These optimizations allow
subsequent (previously dependent) loads to overlap.

6.5 Comparison with Load Prefetching
One significant benefit of our dynamic value specialization is
that it tolerates long memory latencies by decoupling them
from the dependent computation. However, other memory la-
tency tolerant solutions may already provide the same benefit.
A common mechanism is hardware prefetching. We want to
see if Trident is still effective in the presence of these mech-
anisms. As such, we implemented a very aggressive load
stream prefetcher proposed by Sherwood, et al. [36]. The
prefetcher has 8 stream buffers, which each have 16 entries.
The PC-stride predictor table has 256 entries, and it has a small
Markov predictor with 2048 entries. Performance comparison
between predictor-directed stream prefetching and Trident is
shown in Figure 12. The first bar shows the IPC improvement
from stream prefetching. The last bar shows the performance
improvement from value specialization when combined with
stream prefetching. Comparing Figure 10 with Figure 12, Tri-
dent’s VS alone outperforms the hardware prefetching. Fur-
thermore, Trident’s value specialization is complementary to
hardware prefetching, showing strong gains on top of that
available to prefetching alone.

7 Conclusion
This paper presents an event-driven dynamic optimization
framework, called Trident, with results applied to a simulta-
neous multithreading processor. Trident takes advantage of
the additional hardware contexts and event counters available
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Figure 12: Performance of Value Specialization with Prefetch-
ing [36].

in modern processors. This allows execution and optimiza-
tion to take place concurrently. With the support of some pro-
posed new small hardware profiling structures, Trident spawns
helper threads on hot profiling events to perform dynamic op-
timization on hot traces. Hot event registration, event moni-
toring, and helper thread triggering provide a seamless mech-
anism for transparent dynamic optimization.

Due to the parallel execution of helper threads with the
main execution thread, Trident introduces very little negative
performance impact on the application. In this paper, we im-
prove the hot trace detection scheme over previous systems,
and use a color-based layout policy to minimize I-cache con-
flicts between optimized and un-optimized code. Trident’s op-
timization is also aware of the underlying microarchitecture,
reducing mispredictions of the return address prediction stack
due to code optimization.

We demonstrate Trident’s effectiveness via software-based
value specialization. Trident is able to exploit semi-invariant
runtime values and stride values to specialize hot traces. Our
simulation shows that value specialization can achieve over
20% speedup on average. It has been shown to be a promising
technique for tolerating memory latencies, even in the pres-
ence of aggressive hardware prefetching, and extends the ben-
efit of value locality further down the dependence chain than
proposed hardware prediction mechanisms.
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