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Abstract

The proliferation of the Internet isfueling the devel opment
of mobile computing environments in which mobile code is
executed on remote sites. In such environments, the end user
must often wait while the mobile programis transferred from
the server to the client where it executes. This downloading
can create significant delays, hurting the interactive experi-
ence of users.

We propose Java class file splitting and class file prefetch-
ing optimizationsin order to reducetransfer delay. Classfile
splitting moves the infrequently used part of a class file into
a corresponding cold class file to reduce the number of bytes
transferred. Java class file prefetching is used to overlap
program transfer delays with program execution. Our split-
ting and prefetching compiler optimizations do not require
any change to the Java Virtual Machine, and thus can be
used with existing Java implementations. Class file splitting
reduces the startup time for Java programs by 10% on av-
erage, and class file splitting used with prefetching reduces
the overall transfer delay encountered during a mobile pro-
gram’s execution by 25% to 30% on average.
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ing power. For example, a typical user might be connected
at less than 1 Mbit/s while running programs on a machine
capable of executing several hundred millions of instructions
per second.

Mobile applications use the resources of the Internet to
perform computation; in this context they are programs that
transfer over networks for remote execution. These pro-
grams, e.g., Java applets, are commonly downloaded on de-
mand as opposed to being stored locally. The performance of
mobile programs depends upon both the network latency and
bandwidth available as well as the processor speed through-
out the execution. Given the gap between processor and
network speeds, mechanisms are needed to compensate for
network performance in order to maintain acceptable perfor-
mance of mobile programs.

Program performance is commonly measured by the time
for overall program execution. However, Internet applica-
tions frequently include interactive participation by the user.
For such programs, performance can be measured by the
amount of delay a user experiences during the interactive
session. For example, if a user presses an arbitrary button
on an applet, execution should proceed accordingly as if the
program is stored locally. When files must be downloaded
in order to continue, the user instead experiences a delay in
execution. If delays are long and frequent, as is common

The Internet today provides access to distributed resourcesfor applet execution, performance is greatly degraded. Re-
throughout the world. The network performance available to search has shown that these delays are a crucial factor in a
an arbitrary user program in this environment is highly var- user’s perception of overall application performance. Early
ied and relatively modest compared to the available process-work investigated the effect of time-sharing systems on pro-
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ductivity (e.g., see [2]), and concluded, among other things,
that delays in system response time disrupted user thought
processes.

In this paper, we focus ofiransfer Delays, i.e., the de-
lays created when an application is stalled waiting for code
or data to arrive over a network connection. Our goal is to
eliminate transfer delays in mobile Java programs by reduc-
ing the size of the class files transferred and by overlapping
transfer with execution. To accomplish this, we propose the
use of two new Java compiler optimizations — Java class file
splitting and class file prefetching. Both optimizations are



implemented purely at the Java level and require no modifi- must transfer in order to continue execution and class file
cation to the Java Virtual Machine. prefetching to enable file transfer to occur concurrently with
Class file splitting partitions a class file into separate hot program execution. Both optimizations decrease transfer de-
and cold class files, to avoid transferring code that is never lay in mobile Java programs.
or rarely used. Class file splitting helps reduce the overall
transfer delay and invocation latendywocation Latency is
the time required to begin execution of a program. In Java,
this includes the time for transfer and loading as well as any Verification in Java is a security mechanism used to ensure
additional file processing required by the execution environ- that a program is structurally correct, does not violate its
ment, e.g. verification. stack limits, implements correct data type semantics, and re-
Class file prefetching inserts prefetch commands into the  spects information hiding assertions in the fornpabl i ¢
bytecode instruction stream in order to overlap transfer with andpr i vat e variable qualifiers. To reduce the complex-
execution. The goal is to prefetch the class file far enough in ity of these tasks, the verifier requires that each class file be
advance to remove part or all of the transfer delay associatedpresent at the execution site in its entirety before the class
with loading the class file. is verified and executed for the first time. Verification may
In section 2, we describe the execution and verification require additional classes to be loaded (without regard to
model currently employed by the commonly available Java whether or not they are executed) in order to check for secu-
execution environments. Section 3 describes our implemen-rity violations across class boundaries. We refer to this pro-
tation of class file splitting to reduce transfer delay. Sec- cess awerified transfer. Verification is performed on each
tion 4 then describes our approach for class file prefetching. untrusted class in the class-loader prior to the first use of the
Section 5 describes the programs examined and our simu-class; this additional processing increases the delay in exe-
lation methodology, and section 6 provides performance re- cution imposed by dynamic loading.
sults when using verification. Section 7 shows the perfor- In contrast, verification can be turned off using the
mance of our optimizations if no verification is used in a - noveri fy runtime flag if all classes are trusted. We refer
trusted environment. Section 8 examines the distance be-to this option agrusted transfer. In this work, we focus on
tween initialization of a class reference and the first time the verified transfer but include the resulting performance using
reference is actually manipulated by the user program. Sec-trusted transfer with our optimizations. For our results using
tion 9 provides related work for reducing transfer delay, and verification, we modeled the verification mechanism in JDK
section 10 summarizes the contributions of this paper. 1.2. We clarify this process here with two small examples.
Java guarantees that types are used consistently during ex-
) ecution, i.e., each assignment of a variable is consistent with
2 Java Execution its defined type. If a code body contains variables with non-
primitive types for which assignments are inconsistent, the
Java programs are organized as independast files, each verifier must check each class file used in the assignments.
of which contains the methods and state variables requiredFor example, in Figure 1, clasé must be transferred and
to implement a class. Before any method can be executed owverified at program invocation. The class, however, contains
any state variable can be modified within a class file, the en- a variable of clasZSuper , calledvar Z. This variable may
tire class must be transferred to the location where executionbe assigned an instance of cla&sr of classZSuper de-
takes place. pending on the value gf. In order to verify classX, the
Most JVM implementations load classes on demand at the verifier must transfer both clag&Super and clas< in or-
time of the first reference to each class. This is catled der to perform the necessary consistency checks on variable
namic loading. References that cause a class to be dynami-var Z.
cally loaded include object instance creation and static mem-  Verification also requires loading and verification of an en-
ber (class method or field) access. Such accesses are calletire superclass chain in order to verify that a subclass (a class
first-use references, since they cause a non-local class file tothat extends another) is correct. For example, in the above
be transferred for dynamic loading. Dynamic loading causes scenario, when clasg is loaded, verification requires that
a delay in execution each time a class file load request is is-its ancestors, class file&Super andZSuper Super , are
sued, since the thread triggering the load stalls until the classloaded and verified.
has been loaded, verified, resolved, and initialized. Hence, Another example is shown in Figure 2. In this case, class
users experience thesansfer delays intermittently during file A will be transferred and verified at program invoca-
execution as well as upon program invocation. tion. Class fileB will only transfer when it is first usedhgw
In this paper we concentrate on techniques to reduce theseB( ) ), since all uses ofar B consistently use the same type,
intermittent delays caused by class file loading. We intro- classB, throughout the code in class fife Class fileC will
duce class file splitting to reduce the number of bytes that also be transferred on its first-use; it transfers when the con-

2.1 Java Verification



public class X ({ class Z extends ZSuper {
public static void nmain(String args[]) { public int meth() {
ZSuper varZ = null; return 15;
int j = Integer.parselnt(args[0]); } }
if (j > 10) {
varZ = new Z(); class ZSuper extends ZSuper Super {
} elseif (j >5) { public int neth() {
varZ = new ZSuper(); return 10;
} }
}
if (j >5) {
int i =varZ meth(); cl ass ZSuper Super {
Systemerr.println("answer: " + i); public int meth() {
} return 5;
} }
} }

Figure 1: First Java example to demonstrate class file transfer and its interaction with verification when using superclasses.

structor,B() , is executed. Each class in this example is techniques, a class is split into two: a hot class containing

transferred and verified on first use. Notice also that cdass used fields and methods; and a cold class containing never or
contains methods that are executed conditionally. For exam-rarely used fields and methods. We create a reference in the
ple,error () will only be executed if an error occurs. De- hot class through which the cold class members are accessed.

spite this conditional execution, the methexdr or () must If a cold member is used, the use triggers the loading and
still be transferred as part of cla8sWe will use this second  verification of the cold class on demand. If the cold mem-
example throughout the remainder of our paper. bers are not used, they will not be transfered, which reduces

The first example above indicates that verification may re- transfer delay. In contrast, the class file splitting by Chilimbi
guire many additional class files to be transferred for verifi- et. al. [1] always transfers and loads cold class files.
cation whether or not they are used during execution. The
second example requires entire class files to transfer eveng 1 Splitting Algorithm
though some fields or methods may never be used. These
cases commonly occur in Java programs and thus motivate ugclass file splitting occurs once Java programs have been
to investigate optimizations that reduce the amount of code compiled from source into bytecode. The splitting algo-
and data that must transfer in order to continue execution rithm relies on profile information of field and method usage
(thereby reducing transfer delay). We focus on optimizations counts. With the profile information as input, a static byte-
that do not require modification to the Java Virtual Machine. code tool performs the splitting. For this paper, we classify a
In the next section, we examine class file splitting. field or method as cold if it is not used at all during profiling.

In addition, we only perform splitting when it is beneficial

Lo . to do so, e.g., when the total size of cold fields and methods
3 Splitting Java Class Files is greater than the overhead for creating a cold class. The
minimum number of bytes to represent an empty class file
Java class file splitting was recently proposed by Chilimbi, js approximately 200 bytes. In this section, we explain the
et. al., in [1] to improve memory performance. The goal of primary steps for class file splitting using Figure 3 to exem-

their research was to split infrequently used fields of a class plify the algorithm and to expose the potential benefits of our
into a separate class. When a split class is allocated, the im-approach. The steps are:

portant fields are located next to each other in memory space
and in the cache for better performance. Separating fields in
class files according to the predicted usage patterns improves
data memory locality in the same manner as procedure split- 2. Construct cold class files for each class selected for
ting improves code memory performance [11]. splitting

The goal of our class file splitting is different than this ] o
prior approach, since we are optimizing to reduce transfer 3- Move unused fields and methods from original (hot)

1. Create execution profiles for multiple inputs and iden-
tify classes to split

delay and not to improve memory performaricewith our class to cold class
Limproved memory performance may be a side affect of our splitting but 4~ Create references from hot class to cold class and vice
we leave this analysis to future work. versa



class A { class B { class C{
ublic B varB; ublic C varC
publ B B public C C;
public int varl; c() {...}
A {...} private int var2;
. private int var3; foobar() {...}
malfn()(g protected int var4;
o0 ();
_ , B() H_ _ }
varB = new B(); varl = 0;
var3 = 0;
} }varC: new C();
foo () {...}
bar ()
munbl e() {...} varl = var2*var4;
var C. f oobar () ;
error() {...}
} }

Figure 2: Second Java example to demonstrate class file transfer and its interaction with verification. This example will be used
in the remainder of the paper.

5. Update variable usages in hot and cold class code tothe cold class would be triggered prematurely (prior to the
access relocated fields/methods via the new reference actual first use of the class), negating any benefit from split-
ting. Instead, we delay transfer of cold class files until first
The original code, shown in Figure 3(a), contains class  use (if it ever occurs). For example, in Figure 3@®)) d$A
with a field reference to clad®, and clas$8 that references  will only be transferred if either methodsunbl e() or
classCin its constructor. The first step of the algorithm pro- error () are executed. LikewiseCol d$B will only be
files the use patterns of fields and methods during execution.transferred if metho8ar () is invoked.
Classes containing unused fields and methods are appended In the final step of the algorithm, we modify the code sec-
to a list of classes to be split. In the example, the profile de- tions of both the hot and the cold class. For each access to
termines thatrunbl e() ander r or () inclassAare rarely a cold method or field in the hot class, we modify the code
used, as well as methdir () in classB. Both classA and so that the access is performed through the cold class refer-
classB are added to the list of classes to split. ence. The same is done for the accesses to hot fields by the
The next step of the algorithm, using the list as input, splits cold class. At this point the field and method access flags
classAinto classA and clas€ol d$A. A similar splitis done are modified as necessary to enable package access to pri-
for classB into classB and clas€ol d$B. The constantpool,  vate members between the hot and cold classes. For exam-
method table, and field table entries are constructed for theple, originally clas8 contained a private qualifier forar 2.
cold classes, with any other necessary class file information.Since clasCol d$B must be able to accessr 2, the per-
All cold code and data is then inserted into each cold class in missions on the variable are changed to package access (pub-
the third step of the algorithm. lic to the package). We address the security implications of
Next, a fieldcl dRef is added to both original classes; this decision below.
this field holds a direct reference to the respective cold class. In the example, our splitting algorithm also finds that the
This field enables access to the cold class from within eachreference to class, var C, in classB is only used in proce-
hot class. In addition, the cold classes have a fieltdRef , durebar () , which was marked and split into the cold class.
which holds a reference to the hot class for the reverse ac-Our compiler analysis discovers this, and movas Cto the
cess. In the hot class| dRef is assigned an instance of cold class as shown in Figure 3(b).
the cold class when one of the cold fields or methods is ac-
cessed for the first time. Upon each refgrenpe to cold fie]ds 3.2 Maintaining Privacy When Class File
and methods a check is added to determine if the cold object Splitting
pointed to bycl dRef has been instantiated. A new instance
of the cold class will only be created during execution if one As described above, a hot class must contain a reference to
does not already exist. When the cold class is instantiated,the cold class so that cold members can be accessed. The
the constructor of the cold class initializest Ref to refer- members of the hot class must be able to access the cold
ence the hot class. members as if they were local to the hot class. Likewise the
We emphasize that this new cold class reference is not cre-object instance of the cold class must be able to reference all
ated in the constructor of the respective hot class. If cold fields and methods in the hot class according to the semantics
class instantiation is performed in the constructor, transfer of defined by the original, unmodified application.



class A { class A {
public B varB; public B varB;
private Col d$A cl dRef = nul|; class Col d$A {
A {...} AO { - .
) ) private A hotRef;
mai n() mai n()
foo (); foo (); Col d$A(A ref) {
varB = new B(); = ref
y varB = new B();
munbl e() {
foo () {...} foo () {...} ,
munbl e error
01 I |ff?dkef == null) k ...(){
error() {...} dRef = new Col d$ (this); }
Lo }cIdRef.rruane(). y o
error() {
|f cl dRef == &
dRef = new Col d$A(t his);
z_l\ cl dRef . error();
—Vv
}
Clasng{C C ol ass Bt{ Col d$B cl dRef I
ublic C varC, =
BUDHC int vari; BlrJlbY?ce int var(]:. n class Col d$B {
Drivaie int vars3 te |nt var2 public C varC
r n r
Brotected int var4d private :nt ¥2r4 prlvate B hot B;
B B Col d$B(B ref) {
\(/?arazo; (2/a§1=0; hotB = ref,
var3 = 0; var3 = 0; varC = new )
varC = new () } }
bar
bar () { barp £| drRef == nu ht()z B{varl = hot B. var 2*hot B. var 4
varl = var2*var4; deef = new CoI d$E(th| s); var C. f oobar () ;
var C. f oobar () }
cl dRef . bar () ; }
}
}
- OR AN (R AN
foobar () {...} foobar() {...}
y y

(8) Original Classes

(b) Class Files after Class File Splitting

Figure 3: Class file splitting example.

The problem with this constraint is that if a class mem-
ber is defined as private, it is only accessible by methods
within the classitself. To retain the semantics of the original
program during splitting, hot class members must be able to
access cold class members and vice versa.

In our implementation, we change &l cross referenced
(cold members used by hot and vice versa) private and pro-
tected members to package access. Thisis accomplished by
removingthe privateand protected access flagsfor thesefield
variablesas showninFigure3for var 2 andvar 4. Package
access means that members are public to all of the routines
in the package, but not visible outside the package.

As previously stated, we apply our Java class file splitting
optimization after compilation using a binary modification
tool called BIT [9]. The origina application has been com-
piled cleanly and is without access violations before splitting

is performed. Therefore, changing the access of private or
protected fields to package access happens after the compiler
has performed its necessary type checking.

If package access is used during splitting, then splitting
does not provide complete security, and may not be suit-
able for all class files in an application. For a secure ap-
plication, we propose that the bytecode optimizer perform-
ing the splitting be given a list of classes for which split-
ting is disallowed. These are classes with private/protected
fieldsthat must remain private/protected for security reasons.
Thedevel oper can then specify the classes for which splitting
should not be used.



4 Prefetching Java Class Files

In this section, we introduce class file prefetching as an
optimization that is complementary to class file splitting.
Prefetching class files masks the transfer delay by overlap-
ping transfer with computation, i.e., classfilesaretransferred
over the network while the program is executing. In the opti-
mal case, this overlap can eliminate the transfer delay a user
experiences. Effective prefetching reguires (1) a policy for
determining at what point during program execution each
load request should be made so that overlap is maximized,
and (2) a mechanism for triggering the class file load to per-
form the prefetch.

Figure 4 shows the benefit of prefetching, for the prior
code examplein Figure 2. Thefirst classto be transferredis
class A, and execution starts with the mai n routine. While
executing mai n, a prefetch request initiates the loading of
class B. We insert a prefetch request for class B, since it is
needed when the first-use for class B is executed at the new
B() instruction in mai n. If class A executes long enough
prior to this first reference to class B, the statement new
B() will execute without waiting on the transfer of B. On
the other hand, if there are not enough useful compute cy-
cles to hide class B's transfer (that is, the time to transfer
class B is greater than the number of cycles executed prior
to A'sinstantiation of B), then the program must wait for the
transfer of class B to complete before performing the exe-
cution of new B() . In either case, prefetching reduces the
transfer delay since without prefetching execution stalls for
the full amount of time necessary to transfer class B.

4.1 Overview of Prefetching Algorithm
The prefetch algorithm contains five main steps:
1. Build basic block control flow graph
2. Find first-use references
3. Find cycle in which each basic block is first executed
4. Estimate transfer time for each class
5. Insert a prefetch request for each first-use reference

First, the algorithm builds abasic block control flow graph
for the entire program, with interprocedural edges between
the basic blocks at call and return sites. The next step of the
algorithm finds all first-use references to class files. These
arethefirst referencesthat cause aclassfileto be transferred
if it has not already. When afirst-use referenceto class B is
found, the algorithm constructs alist of the classfiles needed
in order to perform verification on class B; class B'sfirst-use
reference causes these class files to be transferred.

Thethird step of the algorithm estimates the time at which
each basic block in the program is first executed (measured

in cycles since the start of the program). This start time de-
terminesthe order in which first-use references are processed
and the position at which to place a prefetch request for each
class. Next we estimate the number of cycles required to
transfer each class file. We use this figure to determine how
early in the CFG the prefetches need to be placed in order to
mask the entiretransfer delay. Thefinal step of the algorithm
processesthefirst-use referencesin the predicted order of ex-
ecution and inserts prefetch requests for the class file being
referenced. The following sections discuss all of these steps
in more detail.

4.2 Finding First-Use References

We use program analysis to find each point in the program
where first-use references are made. A first-use referenceis
any referenceto aclassthat causesthe classfile to beloaded.
Therefore, for aclass B referenceto be considered afirst-use
reference, there must exist an execution path from the main
routine to that reference, such that there are no other refer-
encesto class B along that path. All of thefirst-usereferences
to class files are found using a modified depth-first search of
the basic block control flow graph (CFG). A description of
this algorithm can be found in [6].

4.3 First-Execution Ordering and Cycle Time
of First-Use References

Onceall first-use references are found we need to order them
so that prefetch requests can be appropriately inserted. Ide-
ally, we should prioritize according to the order in which the
references will be encountered during execution. This first-
execution order is the sequential ordering of basic blocks
(and thus first-use references in those basic blocks) based on
thefirst time each basic block isfirst executed. Sincewe can-
not predict program execution exactly, we need to estimate
the cycle in which each basic block is first executed. To do
this we use profilesto determine this first-execution order of
references and cycle of execution.

In this paper we used profiles to determine the order of
processing the first-use references. During a profile run, we
keep track of the order of procedure invocations and basic
block executions during program execution for a particular
input. The order of the first-use references during the profile
run determines the order in which we place prefetches for
the Java class files. We also keep track of which class files
are transferred using the JDK 1.2 verification mechanism,
when executing each first-use reference. This provides us
with alist of additional classfiles that need to be transferred
to perform verification. All procedures and basic blocks that
are not executed are given an invocation ordering and first
cycle of execution based on a traversal of the control flow
graph using the same static heuristicsin [6].
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Figure 4: The benefit of Java classfile prefetching. A prefetchto classfile B isinserted into classfile A. Thefull transfer delay
will be masked if classfile B has fully transferred by the time the command new B() is executed.

Profiles can accurately determine the relative distance in
cycles between basic blocks. When calculating thefirst cycle
of execution for each basic block, we use the average num-
ber of cycles per bytecode instruction (CPB) over the entire
program execution to estimate the number of cyclesrequired
to execute the bytecodes in each basic block.

4.4 Prefetch Insertion Policy

In the fifth step of the prefetching algorithm, we determine
the basic blocks in which to place the prefetch requests.
Prefetch requests must be made early enough so that the
transfer delay is overlapped. Finding the optimal place to
insert a prefetch can be difficult. The two (possibly conflict-
ing) goals of prefetch request placement are to (1) prefetch
as early as possible to eliminate or reduce the delay when
the actual referenceis made, and (2) ensure that the prefetch
is not put on a path which causes the prefetch to be per-
formed too early. If a prefetch starts too early, it may inter-
fere with classes that are needed earlier than the class being
prefetched. Inthis case, the prefetch can introduce delays by
using up available network bandwidth.

Figure 5 is the algorithm we use for this step. We clar-
ify it with the example shown in Figure 6. In the example,
we wish to insert two prefetches for the first-use references
to class B and class C. Figure 6 shows part of a basic block
control flow graph for a procedurein class A. Nodes are ba-
sic blockswith the name of the basic block inside each node.
The dark edges represent the first traversal through this CFG
during execution, and the lighter dashed edges represent a
later traversal through the CFG. Thefirst part of the prefetch

placement algorithm determinesthefirst-execution cycle and
order of the basic blocks. This indicates that a prefetch for
the first-use reference (in basic block Z) to class B needs to
be inserted before the prefetch for first-use reference (in ba-
sic block Q) to class C. We process the classes in increasing
order of first use reference.

The algorithm inserts a prefetch for each first-use refer-
ence (twice in our example). When placing a prefetch, the
basic block variable bb is initialy set to the basic block
containing the first-use reference (node Z for class B, and
node Q for class C), and cycl es_| eft is initialized to
the estimated number of cycles required to transfer the class
files. The algorithm examines each parent of the current ba-
sic block to determine prefetch placement for each path in
the CFG. The estimated number of cycles each basic block
executes is subtracted from cycl es| ef t during exami-
nation. The algorithm follows the edge from bb to each
par ent inthe CFG until either (1) cycl es_ | eft isre
ducedto zero, or (2) the parent lies on a prefetched or already
encountered path. Otherwise, we keep searching up the CFG
and recursively call this routine on the parent of the current
basic block.

For class B in our example, the algorithm starts at basic
block U and performsareversetraversa of the CFG process-
ing the parents of each basic block. At each basic block en-
countered, cycl es | ef t isdecremented by the estimated
cycletime of the current basic block. In our example, enough
cycles execute during the loop between X and T to reduce
cycl es_| ef t tozero. Sincetherelative distancein cycles
between the first-use reference of B and basic block W is



Procedure: find_bb_to_add. prefetch(
Reference ref,BasicBlock bb, int cycles left)

[* ref - apointer to the first use reference for aclassfile X */

/* bb - the current basic block to try and place the prefetch */

[* cycles_left - number of cycles|eft to mask when prefetching
the classfiles for thisfirst-use */

bb.processed = TRUE;
bb.prefetch_path_name = ref.class file_name;

I* get one of the parent basic blocks of bb in the CFG */
parent = bb.parent_list;

while (parent ! = NULL) {

if Sparmt.process_ed{){ )
* if parent basic block already is on a path for a prefetch
_ theninsert the prefetch at the start of basic block bb */
insert_prefetch_at_start_bb(ref, bb);

else
} I* pérent is not yet on a prefetch path, so calculate the
number of cyclesthat can be masked if the prefetch was
placed in the parent basic block */ i
cycles_between_bb = parent.first. cycle - bbfirst cycle;

if (cycles_between_bb >= cycles left) {
[* @l the transfer cycles will be masked by placi ng the
prefetch at the beginning of basic block parent */
i nsert_prefetch_at_be%nni ng.bb(ref,parent);
parent.processed = TRUE;
parent.prefetch_path-name = ref.class file_name;

else {
if (cycles_between_bb > 0) {
/* need to keep traversing up the CFG, because the
first time parent is executed is not far enough
_inthe past to mask all the transfer delay */
find_bb_to_add_prefetch(
ref, parent, cycles |eft - cycles between bb);

else{ _

[* donothing */

[* the parent was first executed * after* the current bb,
so don't put a prefetch up this parent’s path */

}
}
}

[* process next parent of basic block bb */
parent = parent.next

Figure 5: Algorithm for finding the basic block to place the
prefetch.

Prefetch C

Figure 6: Prefetch Insertion Example. Nodes represent ba-
sic blocks in the control flow graph. Solid edges represent
the basic blocks executed on the first traversal through the
CFG. The dashed edges represent a later traversal through
the CFG. Class B is first referenced in basic block Z, and
class Cisfirst referenced in basic block Q.

large enough to mask the transfer of B, the prefetch to class
B isinserted immediately before basic block X.

The agorithm stops searching up a path when the basic
block being processed is aready on a prefetched path. A
prefetched path is one that contains a prefetch request for
a previously processed class. Placing a new prefetch on
a prefetched path consumes available bandwidth for more
important class prefetches and imposes unnecessary trans-
fer delay on the class. When a prefetch is inserted onto a
path, al of the basic blocks on that path are marked with the
class file name of the prefetch and a processed flag. These
flags are used to prevent later first-use prefetchesfrom being
placed on the same path. In our example, once the prefetch
for first-use reference B is inserted, the algorithm continues
with the next first-use reference for class C. When inserting
the prefetch to class C, the prefetch does not propagate up
into basic block U, since basic block U is on the prefetch
path for B. Therefore, the prefetch to class C isinserted right
before entering basic block V.

45 Prefetch Implementation

Once we determine all points in the program at which
prefetch requests should be made, we insert prefetch instruc-
tionsinto the original application. For prefetching to be cost
effective, the prefetch mechanism must have low-overhead
and must not cause the main thread of execution to stall and



BIT Bytecode | nstrumentation Tool: Each basic block in the input program
isinstrumented to report its class and method name

Jack Spec Benchmark: Java parser generator based on the Purdue Compiler Construction Tool Set

Layer-3 audio specification

JavaC Spec Java Compiler Benchmark: javac-Java source to bytecode compiler

JavaCup LALR Parser Generator: A parser is created to parse simple mathematics expressions
Jess Spec Expert System Shell Benchmark: Computes solutions to rule based puzzles
JLex Lexical Analyzer Generator

MPegAudio | Audio File Decompression Benchmark: Conformsto the ISO MPEG

Table 1: Description of Benchmarks Used.

wait for the file being prefetched to transfer. To prefetch a
classfile B, we use the standard Javal oadC ass method.

When adding prefetching to a package, we create one sep-
arate prefetch thread to perform the loading and resol ution of
each classfile. Aninserted prefetch request theninsertsalist
of classfilesonto aprefetch queue, which the prefetch thread
consumes. The prefetch thread prevents the main threads
of execution from stalling unnecessarily while the class file
is transferring. Therefore, this solution allows computation
(performed by one or more of the main threads) and class
transfer (initiated by the prefetch thread) to occur simultane-
ously.

Most existing JVMs (including the Sun JDK VM) only
block the requesting thread when loading a class, and allow
multiple threads to load classes concurrently. Therefore, our
approach does not require any changes to these VMs. If the
prefetch of a class is successful, the VM will have loaded
the class based on the request issued by the prefetch thread
before any main thread needs that class. Alternatively, if a
main thread of execution runs out of useful work before a
required class is fully loaded, the VM will automatically
block this thread until the class becomes available.

A prefetch inserted for a first-use of class B may actually
prefetch several class files as needed to perform verification
for class B as described in section 2.1. Before each prefetch
request, aflag test is used to determineif aclassis local or
has already been fetched. If theflag indicatesthat no prefetch
is necessary than the overhead of our prefetch mechanismis
equivalent to a compare and branch instruction.

5 Methodology

We implemented our prefetching and splitting optimizations
using abytecode modificationtool called BIT [8, 9]. BIT en-
ables elements of Java class files, such as bytecode instruc-
tions, basi c blocks, and procedures, to be queried and manip-
ulated. We use thistool for the simulation of our prefetching
and splitting optimizations and to model their efficacy for
programsin a mobile environment.

For our Java implementation, we use JDK version 1.2 to
model the verification used in our simulations. We executed
each benchmark with the - ver bose -verify flags to
force verification to occur as well as output to be generated
about each file as it is loaded by the Java Virtua Machine.
In addition, each benchmark was first instrumented to re-
port each time a class is first used by the program. From
the parsed output, we are able to determine the point in the
program execution at which each file is loaded by the Java
Virtual Machine. This provides us with alist of verification
dependencies for each class file used. The list is then used
by our simulator to determine when files must transfer.

Each benchmark simulation is executed on a 500 MHz
DEC Alpha 21164 running operating system OSF V4.0. We
present results for the Java programs described in Table 1.
The programs listed in Table 1 are from the SPECjvm98
suite and other programs that have been used in previous
studiesto evaluatetools such as Javacompilers, decompilers,
profilers, bytecode to binary, and bytecode to source transla-
tors[9, 12].

Table 2 shows the genera statistics for the benchmarks.
For each benchmark we use two inputs, alarger input (Ref)
used for all of the results and a smaller input (Test) used to
construct our across-input profiles. The static data shown
in Table 2 apply to both inputs, and the dynamic data apply
to the Ref input, with the dynamic data for the Test input
shown in parenthesis. The second column shows the number
of class files in each program’s package. The next column
shows the total size of all the class files in kilobytes. The
fourth column shows the number of bytecode instructions
executed for each program. The next two columns show the
number and percentage of static bytecode instructions exe-
cuted. Thefinal column shows the number of classfiles used
during execution for each input.

Our simulation results are in terms of the number of pro-
cessor cycles needed to execute a program, taking into ac-
count the cycles for transferring the program (“delay” or
“lost” cyclesin which no computation is performed) and the
actual computation cycles. To establish a baseline for the
number of cycles required to accomplish each computation



Dynamic Instrs Static Instructions Total
Total Size In Thousands In Thousands Classes
Program Classes | inKB Ref (Test) Total | 9% Executed | Executed
BIT 48 104 47163 (7814) 11 65 32(32)
Jack 56 131 27448 (13729) 19 80 46 (46)
Javac 176 561 24689 (518) 41 24 132 (59)
JavaCup 35 116 381 (278) 17 72 31(31)
Jess 151 397 15147 (3438) 18 43 | 135 (133)
Jlex 20 87 28346 (12128) 12 68 18 (18)
MPegAudio 55 120 | 121998 (115514) 34 88 28 (28)

Table 2: Benchmark Statistics. The columns represent the program name, the number of class files, the number of bytes for
all classfiles, the number of instructions executed for a given input, the number of static instructions in the programs and the
percent of these executed, and the number of classes executed for a given input.

Verified Transfer: Timein Seconds for Execution and Transfer Delay

Exe Time w/ No T1Link 28.8 Modem
Program Transfer Delay Invocation | Overdll Invocation | Overal
BIT 0.848 0.044 0.742 1.537 26.065
Jack 7.849 0.323 1.014 11.335 35.627
Javac 5.710 0.008 4.813 0.293 | 169.097
JavaCup 0.965 0.434 1.107 15.256 38.905
Jess 0.711 0.007 3.070 0.249 | 107.879
JLex 12.999 0.007 0.831 0.260 29.184
MPegAudio 0.080 0.013 1.288 0.442 45.259
Average 4.166 0.119 1.838 4.196 64.574

Table 3: Verified Transfer.

The first column shows the execution time in seconds for each program if there was no transfer

delay. Thetime (in seconds) is then shown for invocation latency and overall transfer delay for both the T2 link and the 28.8

baud modem.

(without any transfer delay) wefirst timed each programon a
500 MHz Alpha 21164 processor to calcul ate the average cy-
cles per bytecode (CPB) for each program. We then use the
average CPB to model the number of cyclesit takes to exe-
cute each bytecode instruction when performing our smula-
tions. To evaluate the performanceof our prefetching model,
we assume transfer of programs over a T1 link (1Mb/sec)
and a 28.8 Khits/sec modem. The T1 link takes approxi-
mately 3,815 cycles to transfer each byte, and the modem
link takes 134,698 cycles per byte.

6 Resultsfor Verified Transfer

To evaluate splitting and prefetching, we measure improve-
ment in terms of the percentage of transfer delay eliminated.
Asmentioned before, thetransfer delay isthetotal number of
cycles an application spends waiting for class files to trans-
fer during execution. Performanceresults are shownfor only
running the Ref input in Table 2. The results with Diff in the
name use the Test input to perform profiling, and the results
with Same use the Ref input to perform profiling.

Table 3 shows the time in seconds to execute each of the
programs locally and remotely using verification. The first
column showsthetimefor local execution. Invocation shows
the time in seconds required to start executing the program.

The invocation delay includes the time to transfer the first
classfile and to performits verification. Therefore, thistime
includes the transfer of al of the class files needed to verify
thefirst classfile. The Overall columnsshowsthetotal trans-
fer delay of the original program in seconds. The remainder
of our performance results are shown in terms of the percent
of invocation latency and overall transfer cycles that can be
eliminated due to class file splitting and prefetching.

Figure 7 shows the reduction in invocation latency dueto
class file splitting, where larger percentages are better. The
results show a 9% reduction in invocation latency on aver-
age, and that similar results are found between inputs.

Figure 8 showsthereductionin overall transfer latency for
the 28.8 modem due to prefetching alone, class file splitting
alone, and classfile prefetching and splitting combined. Fig-
ure 9 provides the same scenarios for the T1 Link. These
results show that prefetching by itself can provide a 6% re-
duction in transfer delay for the T1 link. Class file splitting
on the other hand eliminated 25% of the overall transfer de-
lay. Combining class file splitting with prefetching results
in a 30% reduction in transfer delay. The Diff results for
Bl T show that the difference in the method usage patterns
between the two inputs reduces the benefit of our algorithm
by half. For the other benchmarks, methods that are unused
by one input are most likely unused by other inputs for the
benchmarks and inputs we studied.
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Figure 7: Percent reduction in Invocation latency after class file splitting when verification is used.
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Figure 8: Percent of reduction in overall transfer delay for the 28.8 baud modem when verification is used.
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Figure 9: Percent reductionin overall transfer delay for the T1 link verification is used.
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Trusted Transfer: Timein Seconds for Execution and Transfer Delay

Exe Time w/ No T1Link 28.8 Modem
Program Transfer Delay Invocation | Overdll Invocation | Overal
BIT 0.848 0.044 0.742 1.537 26.065
Jack 7.849 0.014 0.998 0.490 35.056
Javac 5.710 0.008 4.357 0.293 | 153.092
JavaCup 0.965 0.133 1.102 4.667 38.720
Jess 0.711 0.007 3.070 0.249 | 107.879
Jlex 12.999 0.007 0.831 0.260 29.184
MPegAudio 0.080 0.013 1.288 0.442 45.259
Average 4.166 0.032 1.770 1134 62.179

Table 4: Trusted Transfer. The first column shows the execution time in seconds for each program if there was no transfer
delay. Thetime (in seconds) is then shown for invocation latency and overall transfer delay for both the T2 link and the 28.8

baud modem.

For the programs we examined, the transfer delay using
the modem link (Table 3) dwarfs the execution time of the
programs. Prefetching improves performancewhen thereare
enough execution cycles between uses of classfilesavailable
to overlap communication. Thisisthe casefor Jack, where
prefetching alone does better than splitting alone for the T1
link results. For Jack, alarge amount of computation oc-
curs early in the program after only a small number of class
files have been loaded, providing us with time to prefetch
class files used later in the execution. However, most of the
programs we studied initialize most of their classes/objects
early in the program reducing the number of cyclesavailable
for overlap with transfer. We address this issue further in
Section 8.

7 Trusted Transfer

In atrusted environment the Java interpreter can skip part of
the verification phase. If either the Java class file is com-
piled without verification or the interpreter is run with veri-
fication turned off (the - noveri fy option), then the inter-
preter skips the type verification phase when loading a class
file. We call thismodel of transfer trusted transfer.

In this mode, additional class files will not be transferred
for verification. Only those class files used during execution
will transfer upon each first use, thereby reducing the trans-
fer delay imposed by those classes with verification depen-
dencies. Using trusted transfer can also reduce the startup
time for a Java program in which the first class file requires
additional files to be transferred when verification is turned
on.

Weimplemented a trusted version of our prefetching opti-
mization, to model execution without verification. The same
algorithm is used as described in section 4. The only differ-
ence is that when we process afirst-use for aclass, we insert
aprefetch to load only that class. In comparison, the verified
transfer algorithm prefetches all the class files needed to ver-

ify aclass. The splitting algorithm used for trusted transfer
isidentical to that used for verified transfer.

7.1 Resultsfor Trusted Transfer

Table 4 shows the time in seconds to execute each of the
programs with and without transfer delay for trusted trans-
fer. Thistable is the same as Table 3, but without verifica-
tion. The difference in time between these two tables shows
the reduction in transfer delay when class files are trusted as
opposed to requiring verification.

Figure 10 shows the percent reduction in invocation la-
tency (larger percentages are better) dueto class file splitting
for trusted transfer. The Diff bars show results when the Test
input is used to profile the program and the Ref input is used
to gather the simulation results. The Same results show the
performance with the same input (Ref) is used to both pro-
file and gather the smulation results. The startup latency is
much smaller with trusted transfer and splitting provides a
largereduction for Bl T and JavaCup.

Figure 11 shows the reduction in overall transfer latency
for the 28.8 modem due to prefetching by itself, class file
splitting, and class file splitting with prefetching; Figure 12
shows the same results for the T1 link. Prefetching provides
6% improvement over splitting for the T1 link results shown
in Table 4, sincethe overall transfer delay does not dwarf the
execution time of the program. In general, splitting provides
the largest gain in performance, but prefetching provides a
large reduction in transfer delay for JavaCup, Jack, and
JLex.

In the following section, we examine the potential of an-
other compiler optimization to improve the impact of our
prefetching optimization.
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Figure 10: Percent reduction in Invocation latency after class file splitting for trusted transfer.
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Figure 11: Percent reduction in overall transfer delay for the 28.8 baud modem for trusted transfer.
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Figure 12: Percent reduction in overall transfer delay for the T1 link for trusted transfer.
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Program Count
BIT 25
Jack 36
Javac 45
JavaCup 19
Jess 128
Jlex 15
MPegAudio 21
Average 41

Average Median
Distance | Distance
22031.4 1075.5
319947.6 41.0
33445.1 3176.0
23575.3 4300.6
20526.7 17.6
210502.1 4.0
192527.2 91776.6
117507.9 | 14341.61

Table 5: Initialization to First-Use Distance. The first column contains the number of class files for which there is a distance
in cycles between the initiaization and the first-use of the class. Column two presents this distance as an average over all such
classes in the application. The final column is the median value of the distance. The distance numbers are given in thousands

of instructions.

8 Distance Between Initialization and
First Real Use

Many timesin Java, aswell asin C++, constructorsinitialize
all fields of theinstance being created. In Java, thisinitializa
tion may cause other class files to be transferred and |oaded,
even though the class members may not be used (except for
initialization) until thousands or millions of cycles later in
the program’s execution. Thiswas shown in Figure 2, where
an instance of class Cis alocated in class B's constructor,
even though variable var C might not be used at all or re-
main unused for many cycles. Optimizations may be able
to reduce transfer delay by moving the instructions for the
creation of instances of as-yet-unloaded classes to immedi-
ately beforethe first real use of the class. This postponement
would avoid stalling the main thread of execution until it is
absolutely necessary. It also potentially improves the effi-
cacy of our prefetching optimization by making additional
cycles available for overlap of transfer with execution.

To determine the potential of techniques that address the
problem of premature initialization in Java, we measured the
number of cycles executed between the initialization of a
class file and the first real use of the classfile. Initialization,
inthis context, is object allocation and creation; including as-
signment of initial values as necessary to fields. In Java, this
is indicated by the execution of the <i ni t > routine upon
object creation. Thefirst real use of an object is the instruc-
tion in the user’s application that first manipul atesthe object,
i.e., thefirst time afield is read or written, or the first time a
method isinvoked. In Figure 2, thefirst real use of class Chy
class B is the statement var C. f oobar () in method bar ,
even though field var Cisinitialized in B's constructor.

The results are shown in Table 5. The first column shows
the number of class files that are initialized but are not used
right away. The second column is the average number of
cycles in thousands between initialization and the first real
use for these classes. Thelast column is the median number
of cycles (in thousands) between initiaization and the first
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real use for these classes. The results show that for many
class files, millions of cycles occur between class initiadiza-
tion and the first real use; approximately 50% of the class
files in Javacup and BIT exhibit this behavior. The data as-
sumes that classes incur no transfer delay, i.e., this distance
is not caused by network delays. We are currently looking at
compiler optimizationsto movetheinitialization to the point
inthe program of first real use, and to use thisin combination
with prefetching to reduce transfer delay.

9 Related Work

Prior work has offered solutions to reducing the effect of
transfer delay. Thefirst is non-strict execution: aJVM modi-
fication that enables execution at the method level. Thistech-
nigue masks network latency by overlapping execution with
computation. The second research area is code compres-
sion. Code compression reduces the amount of data trans-
ferred thereby avoiding network latency. Lastly there has
been some recent effort to reduce the startup delay for appli-
cations.

9.1 Non-Strict Execution

In recent work [6], we proposed reducing the cost of trans-
fer delays by overlapping classfile transfer with execution at
the procedure level using non-strict execution. The existing
JVM imposes strict semantics. Each class file must transfer
to completion prior to being executed. With non-strict exe-
cution, the unit of transfer is the procedure (method). When
transferring a class file, execution is alowed to continue
when the required method and data has finished transferring.
To enable this, we added procedure delimiters and runtime
checks to the VM to identify when each procedure and its
code has transferred. For short running programs, non-strict
execution enables substantial performance improvementsin
both overall execution time (25% to 40% on average) and



program startup time (31% to 56% on average) [6]. Trans-
fer schedules were used to indicate when to start transferring
each classfile to best overlap transfer with execution.

The use of the non-strict execution model can provide per-
formance benefits, but it requires major modifications to the
current design of the Java Virtual Machine (JVM). Themodi-
fications range from adding procedure delimitersto the wire-
transfer format to modifying JVM verification to performin-
cremental verification at the procedure level.

Our splitting and prefetching work in this paper is very
different. Prefetching represents a pull model of fetching
classfiles to eliminate transfer delay, whereas non-strict ex-
ecution uses a push mode with a transfer schedule [6]. In
addition, prefetching and splitting require no modification of
the VM or the server and work in existing Java execution
environments.

9.2 Code Compression

For class file prefetching, we advocate maximizing the over-
lap between execution and network transfer as a way to re-
duce the overhead introduced by network delay (i.e., latency
tolerance). An aternative and complementary approach is
to reduce the quantity of data transferred with compression
(i.e., latency avoidance). Several approachesto compression
have been proposed to reduce network delay in mobile exe-
cution and we discuss them here.

Pugh describes a wire format that reduces a collection of
individually compressed class files 50% to 20% the size of
compressed jar files on average [13]. The wire format uses
the gzip compression utility but incorporates a very efficient
and compact representation of class file information. In ad-
dition, it organizes the files into a single file that makes the
gzip utility more effective. He determines when sharing can
be performed within an application so that additional redun-
dant information is not transferred.

Other compression techniques have been created for
machine-specific binary representations. In one such project,
Ernst et. al. [3] describe an executable representation called
BRISC that is comparablein size to gzipped x86 executables
and can be interpreted without decompression. The group
describes a second format, which they call the wire-format,
that compresses the size of executables by almost a factor of
five (gzip typically reduces the code size by a factor of two
to three). Both of these approaches are directed at reducing
the size of the actual code, and do not attempt to compress
the associated data.

Other attempts to reduce the size of program code include
work at Acorn Computers to dramatically reduce the size of
a 4.3 BSD port so that it fits on small personal computer
systems[15]. A major focus of thiswork isto use code com-
pression to reduce disk utilization and transfers. Fraser and
Proebsting also exploreinstruction set designsfor code com-
pression, where the “instruction set” is organized as a tree
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and is generated on a per-program basis [5]. Fraser has re-
cently extended this work to incorporate machine learning
techniques to automate decisions about instruction encoding
in [4]. In other recent work, Lefurgy et. a. [10] describe
a code compression method based on replacing common in-
struction sequences with “codewords’ that are then recon-
structed into the original instructions by the hardware in the
decode stage.

Our optimizations are distinct from, and complementary
to, code compression. Code compression can significantly
reduce the transfer delay by decreasing the number of bits
that need to transfer; it however, does not eliminate all of
the delay. In contrast, class file prefetching can mask addi-
tional delay when the prefetch can be performed far enough
in advance. Using compression, splitting, and prefetching to-
gether will alow prefetching to more easily mask the trans-
fer delay, especialy the transfer delay imposed by invoca-
tion. Examining the performance of using compression with
prefetching and splitting is part of our future research.

9.3 Reducing Invocation Time

In research concurrent and independent of ours, Sirer
et.al. [14] described an optimization for reducing the startup
time for mobile programs executed on thin client and hyper-
text systems. The optimization repartitions Java classfilesto
enable more effective utilization of the available bandwidth
during transfer of such programs to remote sites. Methods
distinguished as unused by profileinformation are split out to
form new cold class files declared with Java'sf i nal modi-
fier to enable optimization. In this study, the authors concen-
trate on improving the startup time of amobile program. The
optimizationis quite similar to our splitting techniquein that
we reduce the invocation latency as well as the overall exe-
cutiontime. Theresultsthey achieveare similar to ours. Our
technique differsin that we distinguish between verified and
trusted transfer. In addition, we include classfile prefetching
to improve the overall performance of mobile programs by
overlapping the transfer with useful work.

Other recent work by Leeet.al. [7], decreases programin-
vocation time by packing application code pages more effec-
tively for remote execution. The optimization extends Non-
Strict execution (described above) to architecture-specific bi-
naries of Web and desktop applications. Programs are re-
ordered into contiguous blocks according to predicted use
of procedures (using profiles). Programs are divided into a
global data file and page-size files containing code. When a
web engine executes aremote binary, it loads each file on de-
mand and is able to continue execution once each page-size
file arrives. The technique, when combined with demand
paging, can reduce startup latency for the benchmarkstested
by 45% to 58%. In contrast, our work concentrates on Java
applications and applets and does not require a specia exe-
cution engine to achieve performance. In addition, they do



not provide prefetching in their approach, so no overlap of
computation and communicationis performed and execution
is stalled while each pageis dynamically loaded.

10 Conclusions

The increased interest in the Internet as a computational
paradigm has sparked demands for the immediate perfor-
mance improvement of mobile applications. The perfor-
mance of mobile programs depend both on the time to trans-
fer the program for remote execution as well as the actua
execution at the remote site.  Since the reduction rate in
network latencies has not paralleled that of processor cycle
time, mechanisms for masking and eliminating transfer de-
lays are important for the viability and performance of Inter-
net applications.

In this work, we presented an optimization to split Java
classfilesto reducethe size of classfilestransferred. In addi-
tion, we presented alatency-hiding technique that prefetches
a Java classfile prior to the first reference to the class by an
application. Prefetching enables overlap of execution cycles
with the transfer of class files. The results showed that class
file splitting reduces the invocation latency by 10%. The
overal transfer delay isreduced by 25% on averagewhen us-
ing class file splitting. Prefetching provided its largest gains
when using a T1 Link. Using prefetching with splitting for
this configuration resulted in an average reduction in overall
transfer delay of 30%.

The implementation of splitting and prefetching we
present does not require any modification of the VM. The
optimizations use compile-time analysis and heuristics with
profilesto guide selection of classesto split and placement of
prefetch requests. Once the class files are modified, Java ap-
plications execute with improved performance and the same
semantics of the original execution without optimization.
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