
Exploiting Fine-Grained Data Parallelism with
Chip Multiprocessors and Fast Barriers

Jack Sampson∗

CSE Dept. UC San Diego
Rubén González†

Dept. of Comp. Arch. UPC Barcelona

Jean-Francois Collard, Norman P. Jouppi, Mike Schlansker
Hewlett-Packard Laboratories

Palo Alto, California

Brad Calder
CSE Dept. UC San Diego

and Microsoft

Abstract
We examine the ability of CMPs, due to their lower on-

chip communication latencies, to exploit data parallelism at
inner-loop granularities similar to that commonly targeted by
vector machines. Parallelizing code in this manner leads to
a high frequency of barriers, and we explore the impact of
different barrier mechanisms upon the efficiency of this ap-
proach.

To further exploit the potential of CMPs for fine-grained
data parallel tasks, we present barrier filters, a mechanism
for fast barrier synchronization on chip multi-processors
to enable vector computations to be efficiently distributed
across the cores of a CMP. We ensure that all threads arriv-
ing at a barrier require an unavailable cache line to proceed,
and, by placing additional hardware in the shared portions
of the memory subsytem, we starve their requests until they
all have arrived. Specifically, our approach uses invalidation
requests to both make cache lines unavailable and identify
when a thread has reached the barrier. We examine two types
of barrier filters, one synchronizing through instruction cache
lines, and the other through data cache lines.

1. Introduction

Large-scale chip multiprocessors will radically change the
landscape of parallel processing by soon being ubiquitous,
giving ISVs an incentive to exploit parallelism in their appli-
cations through multi-threading.

Historically, most multi-threaded code that exploits paral-
lelism for single-application speedup has targeted multi-chip
processors, where significant inter-chip communication la-
tency has to be overcome, yielding a coarse-grained paral-
lelization. Finer-grained data parallelization, such as over
inner-loops, has more traditionally been exploited by vec-
tor machines. Some scientific applications have dependen-
cies between relatively small amounts of computations, and

∗Started while at HP Labs. Also funded by NSF grant No. CNS-0509546.
†While at HP Labs.

are best expressed using a SIMD or vector style of program-
ming [26]. These dependencies may be implicit stalls within
a processing element on a vector machine. In partitioning
these calculations across multiple cores these dependencies
require explicit synchronization, which may take the form of
barriers. With chip multi-processors, the significantly faster
communication possible on a single chip makes possible the
implementation of very fast barrier synchronization. This
will open the door to a new level of parallelism for multi-
threaded code, exploiting smaller code regions on many-core
CMPs. The goal of our research is to explore how to use
many-core CMPs to exploit fine-grained data parallelism, and
we focus primarily on vector calculations. However, our ap-
proach is more general, since it can work on some codes that
may not be easily vectorizable.

To show the importance of fast barrier synchronization,
consider Table 1, which shows the best speedups achieved
by software-only barriers when distributing kernels across a
16-core CMP. For the Livermore loops, performance num-
bers shown are for vector lengths of 256; when distributed
across 16 cores (in 8-element chunks for good performance
with 64B cache lines), at a vector length of 256, all cores are
kept busy, with each CMP core working on one (Livermore
loop 2) or more chunks per iteration. As can be seen from
the table, speedups using software-only approaches are not
always present. This lack of speedup is primarily due to the
relatively high latency of the software barriers in comparison
to the fine grain parallelism of the distributed computation.
In contrast, the approach we will describe always provides a
speedup for the parallelized code for all of the benchmarks.

In this paper, we study the role of fast barriers in enabling
the distribution and synchronization of fine-grained data par-
allelism on CMPs. We examine the impact of different barrier
implementations on this manner of parallelization, and intro-
duce barrier filters, a new barrier mechanism.

Our barrier filter design focuses on providing a solution
that does not require core modification. This includes not
modifying the pipeline, register file, nor the L1 cache, which
is tightly integrated with the pipeline. Our design also does

Best Software
Kernel Barrier
Livermore loop 2 0.42
Livermore loop 3 1.52
Livermore loop 6 2.08
EEMBC Autocorrelation 3.86
EEMBC Viterbi 0.76

Table 1. Speedups and slowdowns achieved
on kernels distributed across a 16 core CMP
when using the best software barriers, in com-
parison to sequential versions of the kernels
executing on a single core. Numbers less than
1 are slowdowns, and point to the sequential
version of the code as being a better alternative
to parallelism when using software barriers.

not require new instructions, as there are existing ISAs (e.g.,
PowerPC, IA-64) that already provide the necessary func-
tionality. Instead, we leverage the shared nature of CMP re-
sources, and modify the shared portions of the memory sub-
system. The barrier filter relies on one intuitive idea: we
make sure threads at a barrier require an unavailable cache
line to proceed, and we starve their requests until they all
have arrived.

In this paper we make the following contributions:

• We show the potential of CMPs as a platform well-suited
to exploiting fine-grained data parallelism for vector
computations.

• We introduce a new method for barrier synchronization,
which will allow parallelism at finer granularities than
traditionally associated with software barriers.

• The hardware support required by the method is less in-
trusive than other hardware schemes: no dedicated net-
works are needed, and changes are limited to portions of
the memory subsystem shared among cores, making the
method well suited to the way CMPs are designed today.

2. Related Work

Hardware implementations of barriers have been around
for a long time; most conceptually rely on a wired-AND
line connecting cores or processors [8]. Other combining
networks for synchronization include multi-stage and single-
stage shuffle-exchange networks [12] and wired-NOR cir-
cuits [22, 3]. Beckmann and Polychronopolous [3] assume a
dedicated interconnect network for transmission of messages
consisting of (Barrier ID, Barrier enable) and (Barrier ID, Set
Processor Status) from each processor to a globally visible ar-
ray of bit-vectors, each bit-vector corresponding to a barrier.
For each barrier, zero-detect logic (wired-NOR) associated
with each bit-vector then generates a signal upon the barrier
condition being satisfied, passes the signal to a switch-box

programmed by the last Barrier ID sent from each processor,
and resets the global bit-vector associated with the satisfied
barrier. The switch-box then distributes the signal, via an ad-
ditional dedicated interconnect network, to the participating
subset of processors.

Dedicated interconnect networks for barrier synchro-
nizations are not uncommon among massively parallel
computers, appearing in the Ultracomputer’s fetch-and-
add-combining switches [11], Sequent’s synchronization’s
bus [2], the CM-5’s control network [16], the Cray T3D [21],
and the global interrupt bus in Blue Gene/L[1, 7]. Our
work is primarily focused on much smaller scale systems,
namely CMPs, with a more commodity nature. On a smaller
scale system, although not commodity in nature, Keckler,
et. al. [14] discuss a barrier instruction on the MIT Multi-
ALU Processor that utilizes six global wires per thread to per-
form rapid barrier synchronizations between multiple execu-
tion clusters on the same chip. However, in contrast to all the
above approaches, we do not require additional interconnect
networks for our new barrier mechanism, instead we focus on
using the existing memory interconnect network. We require
neither additional processor state registers, nor that our core
pipeline be subject to control from additional interrupt lines.

The Cray T3E [21], another massively parallel computer,
abandoned the dedicated physical barrier network of its pre-
decessor, the T3D, and instead allowed for the barrier/eureka
synchronization units(BSUs), to be connected via a virtual
network over the interconnect already used for communica-
tion between the processing nodes. The position of a par-
ticular BSU within a barrier tree was configurable via reg-
isters in the network router associated with a given node’s
BSUs. Processing nodes would communicate with a local
BSU, which would send a barrier packet to their parent in
the barrier tree when all of the BSU’s children had signaled
arrival, and forward release notifications from the BSU’s par-
ent to the children. Barrier packets were then given preferen-
tial routing priority over other network traffic, so as to mimic
having their own network. Blocking and restarting of threads
using the T3E barrier hardware requires either polling the sta-
tus of the BSU or arranging to receive an interrupt when BSU
status changes. Blocking and restarting of threads using our
barrier filter mechanism is more lightweight, requiring nei-
ther polling of external registers nor the execution of an in-
terrupt handler, instead directly stalling a processor through
data starvation, and restarting via cache-fill.

Tullsen, et al. [24] examine hardware support for locks,
but do not examine barriers, at both SMT (integrated with
the load-store unit), and CMP (integrated with the shared L2
cache) levels. In contrast to this work, we do not introduce
new synchronization primitives to access our hardware struc-
tures and alter pipeline flow, but instead make use of proper-
ties from existing instructions.

Dedicated interconnection networks may also have
special-purpose cache hardware to maintain a queue of pro-
cessors waiting for the same lock [10]. The principal purpose

of these hardware primitives is to reduce the impact of busy
waiting. In contrast, our mechanism does not perform any
busy waiting, nor does it rely on locks. By eliminating busy
waiting, we can also reduce core power dissipation.

Saglam and Mooney [20] addressed hardware synchro-
nization support on SoCs. That work offers fast atomic access
to lock variables via a dedicated hardware unit. When a core
fails to acquire a lock, its request is logged in the hardware
unit. When the lock is released, an interrupt will be generated
to notify the core. ([20] does not report barrier timings.)

There is continued interest in improving the performance
of software based barriers, especially on large multiproces-
sor and multicomputer systems, where traditional hardware
based solutions may encounter implementation cost, scalabil-
ity, or flexibility issues [18]. Nikolopolous et al. [19] improve
the performance of existing algorithms by using hardware
primitives for uncacheable remote read-modify-write for the
high-contention acquire phases of synchronization opera-
tions, obviating coherence traffic, while using cache-coherent
operations for polling of the release condition. Cheng and
Carter [5] exploit the increasing difference between local and
remote references in large shared memory systems with a bar-
rier algorithm tuned to minimize round-trip message laten-
cies, and demonstrate the performance improvements possi-
ble through utilizing a coherence protocol that supports hard-
ware write-update primitives. Our focus, unlike the above
and most prior work concerning barriers, is on CMPs, rather
than large collections of processors. We therefore have rather
different scalability concerns, but the low latency of commu-
nication on CMPs allows us to explore finer grained paral-
lelism than is traditionally exploited via thread level paral-
lelism.

3. Barrier Filter

3.1. Barrier Filter Overview

The goal of our approach is to find a good performance vs.
design cost trade-off for fast global barrier synchronization.
Our design is based on the observation that all memory ac-
cess requests that go through a cache stall until the cache fill
occurs. We can extend this mechanism to stall later memory
requests and thus perform synchronization. We can provide
barrier synchronization for a set of threads by making those
threads access specific cache lines, which are not filled until
the criteria for the barrier occurs. A thread using this barrier
mechanism proceeds through the following three steps: (1)
a signaling step, to denote the thread’s arrival at the barrier,
(2) a synchronizing step, to make sure the thread does not
continue to execute instructions after the arrival at the barrier,
until the barrier access completes, and (3) upon resuming ex-
ecution, a second signaling step, to denote that the thread has
proceeded past the barrier.

We achieve global barrier synchronization by having each
thread access a specific address, called an arrival address.

Each thread is assigned a distinct arrival address by the oper-
ating system, which maps to a different cache line. A barrier
filter, a hardware structure consisting of a state table and as-
sociated state machines, is placed in the controller for some
shared level of memory, potentially even main memory. As
increased distance from the core implies increased communi-
cation latency, we envision the most likely placement of the
barrier filter to be in the controller for the first shared level of
memory. The barrier filter keeps track of the arrival address
assigned to each thread. The filter listens for invalidation re-
quests for these arrival addresses, which signal that a thread
has arrived at a barrier. After a thread has arrived at a barrier,
it is blocked until all of the threads have arrived at the barrier.

To perform the barrier, each thread executes an instruction
that invalidates the arrival address, and then attempts to ac-
cess (load) the arrival address. The invalidate instruction re-
moves any cache block containing this address from the cache
hierarchy above the barrier filter, and indicates to the barrier
filter that the thread has reached the barrier. The thread then
does a fill request, which the barrier filter will filter and not
service, as long as that thread is blocked at the barrier. This
prevents the thread from making forward progress until all of
the threads have arrived at the barrier. Once all of the threads
have arrived, the barrier filter will allow the fill requests to be
serviced.

After the fill request to the arrival address is resolved, a
thread needs to inform the filter that it has proceeded past the
barrier and is now eligible to enter a barrier again. One way to
do so is to have the thread access a second address called an
exit address.Thus, along with the arrival address, each thread
is also assigned an exit address, which represents a distinct
cache-line and is also kept track of in the barrier filter.

3.2. Barrier Filter Architecture

We now describe the barrier filter architecture and the
baseline multi-core architecture we assume. Figure 1 shows a
representative CMP organization, where each core has a pri-
vate L1 cache and accesses a shared L2 spread over multiple
banks. This abstract organization was also selected in [4].
The number of banks does not necessarily equal the num-
ber of cores: The Power5 processor contains two cores, each
providing support for two threads, and its L2 consists of 3
banks [13]; the Niagara processor has 8 cores, supporting 4
threads each, and a 4-way banked L2 cache [15]. In Niagara,
the interconnect linking cores to L2 banks is a crossbar.

The barrier filter architecture is shown in Figure 1 to be
incorporated into the L2 cache controllers at each bank. As
memory requests are directed to memory channels depending
on their physical target addresses, the operating system must
make sure that all arrival and exit addresses it provides for
a given barrier map to the same filter. For our design, the
hardware can hold up to B barrier filters associated with each
L2 bank.

Each L2 controller can contain multiple barrier filters,

Figure 1. Organization of a standard multi-core
augmented with a replicated filter integrated
with the L2 cache controller.

each supporting a different barrier being used by a program.
Figure 2 shows the state kept track of for a single barrier fil-
ter. The barrier filter has an arrival address tag and an exit ad-
dress tag and a table containing T entries, where T is the max-
imum number of threads supported for a barrier. The operat-
ing system allocates the cache line addresses for a barrier fil-
ter in such a way that the lower bits of the arrival and exit ad-
dress can be used to distinguish which thread is accessing the
barrier filter. This also means that only one arrival address tag
needs to be stored to represent all of the arrival addresses, and
similarly only one exit address tag needs to be used to identify
all of the exit addresses. Therefore, the tags are used to iden-
tify the addresses, and the lower bits are used to index into the
T entries. Each thread entry contains a valid bit, a pending
fill bit, indicating for the arrival address if a fill request is cur-
rently blocked, and a two bit state machine representing the
state of the thread at the barrier. A thread is represented in a
barrier filter by its state being in either the Waiting-on-arrival
(Waiting), Blocked-until-release (Blocking) or Service-until-
exit (Servicing) states. This state is associated with both
the arrival and exit address for the thread, which were as-
signed to this thread by the operating system. Each barrier
filter also contains a field called num-threads, which is
the number of threads participating in the barrier, a counter
representing the number of threads that arrived at the barrier
(arrived-counter), and a last valid entry pointer used
when registering threads with the barrier filter.

Each thread will execute the following abstract code se-
quence to perform the barrier. Some of the steps can be
merged or removed depending upon the particulars of the ISA
used for a given implementation:

memory fence
invalidate arrival address
discard prefetched data (flush stale copies)

Figure 2. A Barrier Filter Table.

load or execute arrival address
memory fence (needed only for some implementations)
invalidate exit address
Note that all of the above instructions exist on some mod-

ern ISAs (e.g., PowerPC), so for those ISAs, no new instruc-
tions would have to be added. These architectures contain
invalidate instructions as well as memory fence or synchron-
ization instructions.

We assume throughout the rest of this paper that the mem-
ory fence ensures that the invalidation of the arrival address
only occurs after all prior fetched memory instructions ex-
ecute. This is achieved, for example, on the Power PC, by
executing the sync instruction, which guarantees that the
following invalidate instruction does not execute before any
prior memory instructions. This ordering is enforced to allow
the barrier filter to work for out-of-order architectures.

After this code is executed, the thread must tell the barrier
filter that it has made it past the barrier. One way to inform
the barrier filter is to invalidate the exit address. The exit
address is needed because the filter cannot otherwise know
that a given thread has received the data from the fill request
serviced by the filter. The barrier filter needs to know when
each thread has been correctly notified, so that it can then start
listening for future arrival invalidations from those threads.

When a barrier is created, it starts off with
arrived-counter set to zero, num-threads set
to the number of threads in the barrier, and the Arrival
Address and Exit Address tags initialized by the operating
system. All of the threads in the barrier start out in the
Waiting state as shown in Figure 3.

Figure 3. Finite State Automaton that imple-
ments the filter for one thread in a given barrier.
Both arcs to the Servicing state are described
by the lowermost annotation.

The barrier filter then examines invalidate messages that
the L2 cache sees. When an address invalidate is seen, an
associative lookup is performed in each barrier filter to see
if the address matches the arrival or exit address for any of
the filters. This lookup is done in parallel with the L2 cache
access, and due to the small size of the barrier filter state,
the latency of this lookup is much smaller than the L2 access
latency. Thus, overall L2 access time would not be adversely
affected. In our simulations, we therefore keep L2 latency
fixed for both the base and filter variants.

As shown in Figure 3, if the barrier sees the invalidate
of an arrival address and the thread’s state is Waiting, then
the thread’s state will transition to the Blocking state, and
arrived-counter is incremented. If the barrier sees the
invalidate of an arrival address and the thread’s state is Block-
ing, then the thread’s will stay in the Blocking state.

As shown in the code above, after a thread executes an in-
validate for the arrival address, it will then access that address
to do a fill request. If a fill request is seen by the barrier filter
and the state of the thread is Blocking, then the state will stay
blocked, and the pending fill bit for that thread will be set.
The fill will not be serviced, because we will only service
these fills once all of the threads have accessed the barrier.
This pending fill is what blocks the thread’s execution wait-
ing for the barrier.

When a thread in state Waiting sees an arrival address in-
validation, and arrived-counter is one less than num-threads,
we know all of the threads have blocked. We therefore clear
the arrived-counter and set all of the states for the threads to
Servicing. In addition, we process all of the pending fill re-
quests for the threads. If a fill request comes in for the arrival
address and we are in state Servicing, then the fill request is
serviced. If the barrier sees the invalidate of an exit address
and the thread’s state is Servicing, then the thread’s state tran-
sitions to the Waiting state.

3.2.1 MSHR Utilization

Miss Status Holding Registers (MSHRs) in cores keep track
of addresses of outstanding memory references and map them

to pending instruction destination registers [9]. Outstanding
fill requests to barrier filters thus occupy an MSHR slot in
the core originating the request. The MSHR is released once
the request is satisfied, or when the thread is context switched
out. Hence in a simultaneously multithreaded core, it is im-
portant to have at least as many MSHR entries as contexts
participating in a barrier. However, providing at least one
MSHR entry per SMT context is needed for good perfor-
mance anyway, so the adoption of barrier filters should not
change a core’s MSHR storage requirements in practice.

3.3. Interaction with the Operating System

3.3.1 Registering a Barrier

We have assumed that the barrier routines are located within a
barrier library provided by the operating system. This library
also provides a fall-back software based barrier. We also as-
sume an operating system interface that registers a new bar-
rier with the barrier filter by specifying the number of threads
and returns to the user code a barrier handle in response. A
request for a new barrier will receive a handle to a filter bar-
rier if one is available, and if there are enough filter entries to
support the number of threads requested for the barrier. If the
request cannot be satisfied, then the handle returned will be
for the fall-back software barrier implementation.

Each thread can then use the OS interface to register itself
with the filter using the barrier’s handle, receiving the virtual
addresses corresponding to the arrival address and the exit
address as the response. Once all the threads have registered,
then the barrier will be completely constructed and ready to
use. Threads entering the barrier before all threads have reg-
istered will still stall, as the number of participating threads
was determined at the time of barrier creation.

3.3.2 Initializing the Barrier

As discussed above, each thread is assigned a distinct arrival
address by the operating system, which maps to a different
cache line. Moreover, a given filter must be aware of all ad-
dresses assigned to threads participating in the barrier it sup-
ports. As pointed out in Section 3.2, the operating system
must allocate the cache line addresses for a barrier filter in
such a way that the lower bits of the arrival and exit address
can be used to distinguish which thread is accessing the bar-
rier filter. With this convention, only one arrival address tag
needs to be stored to represent all of the arrival addresses,
and similarly only one exit address tag needs to be used to
identify all of the exit addresses.

If the target platform has multiple memory channels, as
we have been assuming in this paper, memory requests are di-
rected to memory channels depending on their physical target
addresses. Care must thus be taken if the filter is distributed
across channels, as we again assumed. In this situation, the
operating system must make sure that all arrival and exit ad-
dresses it provides (for a given barrier) map to the same filter.

The operating system is responsible for initializing filter
state, such as the tags for the arrival and exit address, and
the counters arrived-counter and num-threads. To
accomplish this, we assume the data contents of the filters
to be memory mapped in kernel mode, obviating a need for
additional instructions to manipulate them.

3.3.3 Context Switch and Swapping Out a Barrier

The operating system can context switch out a stalled thread
that is waiting on its fill request, which is blocked by the bar-
rier filter. When this occurs, the fill request for the arrival ad-
dress will not have committed, so when the thread is resched-
uled it will re-issue the fill request again and stall if the barrier
has not yet been serviced.

We do not assume pinning to cores, and blocked threads
may therefore be rescheduled onto a different core. The dis-
tinct arrival and exit addresses for each thread are sufficient to
uniquely identify the thread regardless of which core it is run-
ning on. If the barrier is still closed when the thread resumes
execution, the filter still continues to block this address when
the rescheduled thread generates a new fill request. If the bar-
rier opened while the thread was switched out, then when the
requesting thread generates a new fill request, the barrier will
service that request, as the corresponding exit address has not
yet been invalidated. The servicing of the request to the core
on which the thread was previously scheduled will not inter-
fere with a subsequent barrier invocation, as any subsequent
invocation performs an invalidate prior to again requesting
the line on which it may block.

In addition, the operating system can swap out the contents
of a barrier filter if it needs to use it for a different application
(a different set of threads). When it does this, the operating
system will not schedule any threads to execute that are as-
sociated with that barrier. Therefore, a barrier represents a
co-schedulable group of threads, that are only allowed to be
scheduled when their barrier filter is loaded. This also means
that the transitive set of threads assigned to a group of barri-
ers needs enough concurrent hardware barrier support to al-
low these barriers to be loaded into the hardware at the same
time. For example, if a Thread X needs to use Barrier A and
B, and Thread Y needs to use Barrier B and C, then the OS
needs to assign addresses and ensure that there is hardware
support so that Barrier A, B and C can be scheduled and used
at the same time on the hardware. If not, then an operating
system would return an error when a thread tries to add itself
to a barrier handle using the previously described interface.
The error should then be handled by software.

3.3.4 Implementation Debugging and Incorrect Barrier
Usage

Note that the reason why a thread’s state does not go directly
from Servicing to Blocking is to ensure the operating sys-
tem’s implementation of the barrier is obeying correct seman-
tics, so we can flag these as errors. These few error cases rep-

resent invalid transitions in the FSM. If a thread’s state in the
barrier is in Waiting and a fill request (load) accesses the ar-
rival address then an exception/fault should occur to tell the
operating system that it has an incorrect implementation or
use of the barrier filter. Similarly, an exception should oc-
cur if an invalidate for the arrival address for a thread is seen
while the thread is in either the Blocking or Servicing states.
Finally, when a thread is in the Waiting or Blocking states
and the thread in the barrier filter sees an invalidate for its
exit address, an error should also be reported.

The only time that the filter barrier implementations could
cause a thread to stall indefinitely is if the barrier is used in-
correctly. For example, incorrectly creating a barrier for more
threads than are actually being used could cause all of the
threads to stall indefinitely. But the same is true for any in-
correct usage of any barrier implementation.

Note that unlike a software barrier, which would experi-
ence deadlock inside an infinite loop, due to limitations of the
constituent cores, a cache miss fill request may not be able to
be delayed indefinitely. In this case the filter may generate
a reply with an error code embedded in the response to the
fill request. Upon receipt of an error code, the error-checking
code in the barrier implementation could either retry the bar-
rier or cause an exception. In terms of the barrier implemen-
tation itself, Figure 3 can be augmented with exceptions for
incorrect state transitions and for error codes embedded in fill
responses upon hardware timeouts.

3.4. Detailed Implementations

We examine two specific implementations of our barrier
filter. The first uses instruction cache blocks to form the bar-
rier, and the second uses data cache blocks. Both techniques
use a similar instruction sequence to that described above.

Note that invalidate instructions only invalidate a single
cache line, and for a data cache, the line is written back if
dirty on invalidate. These instructions are assumed to be user-
mode instructions and to check permissions like any other
user mode memory reference. This ensures that that page
level permissions are enforced, and that processes only inval-
idate their own cache lines.

3.4.1 Instruction Cache Barriers

Our I-cache approach leverages a key property of all existing
cores, which is that when the next instruction to be executed
is fetched and the fetch misses in the I-cache, the thread will
stall until the instruction’s cache block returns. Here we focus
on using code blocks for our arrival and exit addresses, so
that when the arrival code block is not being serviced, the
thread stalls when it tries to execute code in the block. The
instruction sequence is shown below.

memory fence
invalidate arrival address
discard prefetched instructions

execute code at arrival address
Then, after the thread is allowed past the barrier, the thread

will perform:
invalidate exit address
For this implementation, the arrival address, which we will

denote by A, is assumed to be aligned with the beginning of
a single cache line of the first level I-cache. The exit address,
which we denote by E, is assumed to be likewise aligned.
The size, L, of these lines is no larger than that of the outer
cache levels and line inclusion is preserved with respect to
outer cache levels.

The arrival sequence contains four instructions: a mem-
ory fence, needed both to ensure that all previous operations
have been made externally visible before entering the bar-
rier (and via an assumed pipeline flush, to ensure that the
next instruction does not execute speculatively); an instruc-
tion that invalidates arrival address A; an instruction that dis-
cards loaded and prefetched instructions; and an instruction
that jumps (or falls through) to the code at address A. Explicit
invalidations of the cache line at arrival address A can for ex-
ample be done using the ICBI instruction on the PowerPC
architecture. These invalidations are propagated throughout
the cache hierarchy above the filter, and they are seen by the
barrier filter as described above. The discarding instruction
removes any code associated with that block from the cur-
rent pipeline and any instruction prefetching hardware; this
is supported by the instruction ISYNC on the PowerPC.

After the code arrival address has been invalidated and the
instruction discard executed, the attempted execution of the
arrival cache block causes the instruction fetch to stall until
the barrier is serviced. Once it is serviced, an invalidate of the
exit address would be performed. Note that the exit address
could be an instruction or data address. It does not matter, as
the content is never accessed.

We assume instruction blocks used for an application’s
barrier will not be invalidated explicitly except by our barrier
mechanism; the line may be evicted from the cache due to
replacement, but silently. Prefetching cannot trigger an early
opening of the barrier. Data prefetched prior to the invalidate
will be invalidated or discarded, and prefetches made after the
invalidate are filtered until the barrier opens. The barrier only
opens when all threads have explicitly said they have entered
the barrier using the invalidate instruction.

3.4.2 Data Cache Barriers

We implement a barrier through the D-Cache by starving
loads to arrival addresses until all arrival addresses have been
invalidated. Each thread will execute the following code se-
quence to perform the barrier:

memory fence
invalidate arrival address A
discard prefetches (discard prefetched data from A)
load arrival address A
memory fence

Then, after the thread is allowed past the barrier, the thread
will perform:

invalidate exit address E
For this implementation, the invalidate instruction could

be done using the DCBI instruction on the PowerPC archi-
tecture or other equivalent instructions on other architectures
that invalidate a specified data cache block. The discard in-
struction makes sure no prefetched copy of the data is kept
internally by the processor. Discarding prefetched data is pro-
vided, for example, as a side effect of the store semantics of
the PowerPC DCBI instruction. The invalidation and discard
purges copies of the arrival cache line from cache levels be-
tween the core and the filter, making sure the thread will stall
on reading the arrival address, as it is not cached, the fill re-
quest will be blocked by the barrier filter, and any prefetch
buffers potentially containing the requested data have been
purged. The arrival sequence finishes with a memory fence
instruction, such as the DSYNC instruction on the Power PC,
or the mb instruction on the Alpha, which enforces that no
memory instruction is allowed to execute until all prior mem-
ory instructions have completed. This means that the load of
arrival address A has to complete before any later memory
operations can execute. Thus, while additional instructions
may continue to execute past the barrier, none that read or
write memory may do so, preserving global state, and with it,
barrier semantics.

Again, we assume that addresses mapped to data cache
lines used for barrier filters for an application will not be in-
validated explicitly except to be used for our barrier mech-
anism; the line may be evicted from the cache, but silently.
Once loaded into a barrier filter table, those address ranges
should not be used for anything in the application’s execu-
tion, and only used by the barrier filter library. While a thread
is blocked, requests for the arrival address A are stalled; if
that cache line is prefetched during this time by hardware,
the prefetch will not trigger an early opening of the barrier,
since the prefetch will be blocked, because it is a fill request.
The barrier only opens when all threads have explicitly inval-
idated their arrival address using the invalidate instruction.

3.5. Reducing Invalidations Per Invocation:
Ping-Pong Versions of Our Barriers

An alternate approach exists for both I-Cache and D-
Cache implementations that allows for only a single invali-
date to occur per barrier iteration. This is desirable, as inval-
idations consume non-local bandwidth.

Two barriers are registered, with the arrival address of the
first being the exit address of the second, and vice versa. The
“exiting” section of a barrier is reduced from an “invalidate
and a return” to simply a “return”. In a manner somewhat
analogous to sense-reversal in classic barrier implementa-
tions, which address is invalidated toggles depending on a
locally stored variable. As the arrival address for one is the
exit for the other, entering the second barrier will exit the first

Fetch width 4
Issue / Decode / 3 / 4 / 4
Commit width
RUU size 64
(Inst. window- ROB)
L1 DCache (one per core) 64kB, 2 way, 1 cycle
L1 ICache (one per core) 64kB, 2 way, 1 cycle
L2 Unified Cache(shared) 512 kB, 2 way, 14 cycles
L3 Unified Cache(shared) 4096 kB, 2 way, 38 cycles
Memory Latency 138 cycles
Filter (new design only) 1 request per cycle

Table 2. Baseline configuration of the multi-
core.

and vice versa. Intuitively, when repeatedly executing barri-
ers, a thread ping-pongs between using two logical barriers,
giving this barrier version its name.

4. Results

We have been using an unofficial version of SMTSim [23]
provided by Jeff Brown and Dean Tullsen at UCSD. We have
modified our copy of SMTSim with some additional support
for dynamic thread spawning.

SMTSim simulates multi-cores that obey the Alpha archi-
tecture, and we used that instruction set with the addition
of the PowerPC ICBI, DCBI, and ISYNC instructions. We
simulated CMPs with 4, 8, 16, 32, or 64 cores and as many
threads, with one thread per core. We focus our examination
only on synchronizations occurring among threads executing
on a single CMP. We assume all cores are identical. Other
simulation parameters are listed in Table 2.

We compare four variants of our barrier filter method
(I-Cache, D-Cache, and the ping-pong version of each)
with a pure software centralized sense-reversal barrier based
on a single counter and single release flag, with a binary
combining-tree of such barriers [8], and with a very aggres-
sive implementation of a barrier relying on specialized hard-
ware mechanisms based upon the work of Polychronopolous
et al. [3] as previously described in section 2. For the base-
line hardware barrier, we assume a two cycle latency to and
from the global logic, that the processor will stall immedi-
ately after executing the instruction communicating with the
global logic, and that the only cost associated with restarting
the processor is checking and reseting a local status register.

For our implementation of the sense-reversal software
barriers, we use load-linked (ldq l) and store conditional
(stq c) instructions. Note that this simple method has been
reported to be faster than or as fast as ticket and array-based
locks [8]. Care was taken to place shared variables (such as
the counter and the flag) in separate cache lines to avoid gen-
erating useless coherence traffic. The binary combining tree
of these barriers features a distinct counter and flag for each
pairwise barrier, each on its own cache line.

Figure 4. Average execution time of different
barrier mechanisms. Lower is better. The top
curve corresponds to the software-only cen-
tralized barrier.

4.1 Benchmark Selection

To examine the benefit of having fine-grain hardware bar-
riers we looked to the SPLASH-2 suite [25], but we found
that the benchmarks there only took advantage of coarse-
grain barrier parallelism. The reason for this is that the paral-
lelism was created for multi-chip processors, and not multi-
processors with on-chip communication latencies. For ex-
ample, the Ocean benchmark in our 16-core/16-thread test
setup on its default input size (258x258) executes only hun-
dreds of dynamic barriers versus tens of millions of instruc-
tions per thread. This leads to barriers accounting for less
than 4 percent of total execution time, even with simple, lock-
based centralized barriers. While using a filter barrier imple-
mentation significantly reduces the overhead from barriers,
overall execution only improves by 3.5%.

One focus of this paper is to study the impact of barri-
ers on exploiting fine-grained data parallelism with CMPs,
and we could not find any benchmark suites with full fledged
applications that used barriers to organize their fine-grained
parallelism. We saw tasks often associated with vector pro-
cessing as fertile ground for fine-grained parallelism that
would be exploitable via rapid global (barrier) synchroniza-
tion. We therefore focused on parallelizing a few of the
EEMBC benchmark suite [6] programs along with Livermore
loop kernels to take advantage of fine-grain parallelism with
barriers.

We have measured the performance of the different barrier
mechanisms in two ways. First we measured the latency of
the barriers themselves, and then measured the impact of the
barrier mechanisms on the performance of various kernels.

4.2 Filter Barrier Latency

Our simulations follow the methodology described in [8]:
performance is measured as average time per barrier over a
loop of consecutive barriers with no work or delays between
them, the loop being executed many times. While this does
not model load imbalance between threads, and would there-
fore be insufficient for examining infrequently executed bar-
riers, it is applicable for barriers associated with a parallelized
inner-loop. We constructed loops with 64 consecutive bar-
rier invocations, with the loop being executed 64 times. Our
results are shown in Figure 4. Filter-based approaches per-
form much better than software methods, and scale better as
well. However, the scaling of both the filter and software ap-
proaches beyond 16 cores was visibly impacted by the satu-
ration of the shared bus resources. The I-cache filter mecha-
nisms have slightly better performance than the D-cache filter
mechanisms, in part because they execute only one memory
barrier per invocation and the D-cache mechanism must ex-
ecute two. The sense-reversal versions of each type of fil-
ter also perform better than filter barriers with both entrance
and exit actions. The sense-reversal variants each perform
one invalidation per invocation, while the entry/exit versions
perform two, and thus consume greater bus bandwidth. The
limited increases in execution time of the barrier filters when
going from 4 threads to 16 threads show good scalability in
the presence of available bus bandwidth.

Figure 5. Execution speed-up, relative to se-
quential execution, of a multi-threaded version
of the EEMBC Autocorrelation benchmark, us-
ing different barriers.

4.3 Embedded Computing Benchmarks

We looked to embedded benchmarks, such as those focus-
ing on media and telecommunication applications, as likely
places to exploit fine-grained parallelism with barriers. We
hand-parallelized the Auto-Correlation and Viterbi Decoder
kernels from the EEMBC benchmark suite [6], crafting for
each a multi-threaded solution based around barriers. The
Auto-Correlation kernel is simple, an outer loop that iterates
over a lag parameter wrapped around an accumulation loop

Figure 6. Execution speed-up, relative to se-
quential execution, of a multi-threaded version
of the EEMBC Viterbi benchmark, using differ-
ent barriers.

dependent upon the input and the lag parameter. We used
a pair of barriers to transform the accumulation into a set of
parallel accumulations and a reduction. Barriers in the Viterbi
Decoder were used to enforce ordering between successive
calls to parallelized subroutines.

Figures 4.2 and 4.2 show speedups over sequential execu-
tion achieved by the multi-threaded Viterbi Decoder on the
getti.dat input and by the multi-threaded Auto-
Correlation (lag=32) on the xspeech input, respectively,
when run on 16 cores. The Auto-Correlation benchmark par-
allelizes readily, with a speedup over sequential execution of
3.86x using software combining barriers, a speedup of 7.31x
with the best performing filter barrier, and a speedup of 7.98x
using a dedicated barrier network. The Viterbi decoder shows
more limited improvements—notably, the parallel implemen-
tation using software barriers is actually slower than the se-
quential version. Only with lower overhead barriers was there
a speedup from the multi-threaded approach. Note that in
both benchmarks the barrier filter performs almost as well
as the aggressively modeled Polychronopoulos barrier hard-
ware, but requires less modification to the cores.

4.4 Livermore Loops

Livermore loops have long been known for being a tough
test for compilers and architectures. They present a wide
array of challenging kernels where fine-grain parallelism is
present but is hard to extract and efficiently exploit. These
loop kernels help us illustrate how multi-cores equipped with
our mechanisms can be a realistic alternative to vector or
special-purpose processors.

We focused on Kernels 2, 3 and 6 of the Livermore suite
because the other kernels do not shed better light on the per-
formance and scalability of synchronizations: they are either
embarrassingly parallel, such as Kernel 1, or serial, such as
Kernels 5 and 20, or similar in structure to another kernel
(e.g., Kernels 3 and 4 are both reductions). Loop nest 2 is
an excerpt from an incomplete Cholesky conjugate gradient
code. A C version (transcribed from the original Fortran), as

found on Netlib [17], is shown below.

ii = N;
ipntp = 0;
do {

ipnt = ipntp;
ipntp += ii;
ii /= 2;
i = ipntp;

#pragma nohazard
for(k=ipnt+1;k<ipntp;k=k+2){

i++;
x[i]=x[k]-v[k]*x[k-1]-v[k+1]*x[k+1];

}
} while (ii>1);

Proving that the k-loop has no loop-carried dependence
is non-trivial, but the pragma asserts that property. A naive
parallelization of the loop would cyclically distribute itera-
tions across cores, generating significant coherence traffic.
The version we use partitions arrays in chunks of at least 8
doubles, as that is the size of a cache line. Thus even if the
partitions are not aligned with cache lines, cache lines will
only need to be transfered between cores at most once. The
ID of the current thread is denoted by MYID. The value of
i, which is the left-hand side subscript, has to be computed
from the other variables, as shown in the parallel version of
the loop below. Note that the amount of data operated upon,
and thus the available parallelism, decreases by a factor of
two with successive iterations of the do-while loop.

do{
ipnt = ipntp;
ipntp += ii;
ii /= 2;
i = ipntp;
chunk=(ipntp-ipnt)/2+(ipntp-ipnt)%2;
chunk=chunk/THREADS+((chunk%THREADS)?1:0);
if (chunk < 8){chunk = 8;}
i += MYID*chunk;
end = (chunk*2*(MYID+1))+ipnt+1;
for(k=ipnt+1+(MYID*2*chunk);

k<end && k<ipntp; k+=2) {
++i;
x[i]=x[k]-v[k]*x[k-1]-v[k+1]*x[k+1];

}
Barrier ();

} while (ii>1);

On a CMP with 16 cores each with hardware support for
one thread, the performance achieved by various implemen-
tations of Loop 2 is shown in Figure 7. In this case the per-
formance of the parallel version using filter barriers does not
surpass that of the sequential version until vector lengths of
256 elements are reached (8 elements written per thread by
all 16 threads for the most parallel iteration of the do-while
loop). The rapid halving of available algorithmic parallelism
with each iteration of the do-while loop leads to a slower sat-
uration of available hardware parallelism relative to the other

two Livermore loops examined, leading to a qualitatively dif-
ferent curvature over the range of inputs shown.

Loop 3 is a simple inner product, so we don’t show its
code. Its performance on a CMP with 16 cores, each with
hardware support for one thread, is shown in Figure 8. Here
the performance of the parallel versions using filter barriers
surpasses that of the sequential version at vector lengths as
short as 64 elements (8 elements per thread from each input
vector, due to the minimum partition size to avoid useless
coherence traffic).

Figure 7. Performance using various barriers
on Livermore Loop 2.

Figure 8. Performance using various barriers
on Livermore Loop 3.

Kernel 6 of the Livermore suite is a general linear recur-
rence equation. The gist of its C code follows:

for (i=1 ; i<N ; i++) {
for (k=0 ; k<i ; k++) {

w[i] += b[k][i] * w[(i-k)-1];
}

}

To expose parallelism, we invert the k-loop to make k go
from i to 0. This results in the data dependences shown as
thick arrows in Figure 9, where dots represent instances of
the loop body’s statements for various values of i and k.

This transformation and the figure make parallel wave-
fronts clear: instances such that i−k equals 1 only depend on
statements before the loop and can therefore be executed first,
and simultaneously; then, instances such that i − k equals 2
have their incoming dependencies resolved and can execute
in parallel. This process can be pictured as a new coordinate
axis, t, which indicates the time step at which an instance can
be performed.

This representation naturally yields to our multi-threaded
code, which is constructed as follows. In theory, k could
simply equal MYID. However, since we want to assess the
achieved performance on CMPs of up to 16 cores with sup-
port for as few as one thread per core, our code explicitly
handles multiple ks per thread.

for (t=0; t<=N-2; t++) {
for(k=MYID*CHUNK;k<(MYID+1)*CHUNK;k++) {

if(k<(N-t)){w[t+k+1]+=b[k][t+k+1]*w[t];}
}
Barrier();

}

Figure 9. Original and transformed iteration
space of Livermore Loop 6.

This code and Figure 9 make clear that this example is not
embarrassingly parallel and has a decreasing amount of par-
allelism. Also, the parallelism is very fine grained and could
not be efficiently exploited on a CMP without fast synchro-
nization. In addition, the required synchronizations have an
irregular pattern that doesn’t make them amenable to point-
to-point synchronizations. Therefore, a global barrier syn-
chronization is a natural choice in this code.

Figure 10 shows the execution time of the sequential and
multi-threaded versions on an 16-core CMP, each with one
thread, for different vector (input w) sizes N (and thus input
b sizes NxN) and different barrier implementations. Using
these techniques, the fast barrier synchronization provided by
barrier filters allows the 16-thread version of the parallel code
to be faster than a sequential version (which, of course, has
no synchronization overhead) at vector lengths as small as

Figure 10. Performance using various barriers
on Livermore Loop 6.

64 elements. The parallel version is more than a factor of 3
faster exploiting the fine-grain inner loop parallelism than the
sequential version for vector lengths of 256 elements.

5. Summary

We have shown that a CMP can be used to exploit very
fine-grained data parallelism, expanding the range of code
structures subject to speedup through multi-threading to in-
clude those traditionally accelerated with vector processing
(i.e., inner loop parallelism). Straightforward parallelizations
of such code, however, require frequent execution of barriers,
making overall performance sensitive to barrier implementa-
tion. We show that fast barriers, with hardware support that
capitalizes upon the low, on-chip latencies between cores on
a CMP, can significantly improve performance when using a
CMP to exploit fine-grained data parallelism.

We have presented a mechanism for barrier synchroniza-
tion that does not rely on locks, nor busy waiting on a shared
variable in memory, and generates no spurious coherence
traffic. Instead, it leverages a simple key idea: we make sure
threads at a barrier require an unavailable cache line to pro-
ceed, and we starve their requests until they all have arrived.
The implementation relies on additional logic that blocks spe-
cific cache fills at synchronization points. No coherence traf-
fic for exclusive ownership is required for instruction cache
fills or data cache read miss fills. This is in contrast to soft-
ware barrier methods which update shared barrier state vari-
ables.

We evaluated the performance of barrier filters using a
number of techniques. We evaluated the performance of var-
ious types of barriers in isolation. Both our instruction and
data filter barriers were competitive with aggressive imple-
mentations of previously proposed hardware synchronization
networks, which require modification of the processor core,
up until bus bandwith was saturated. The instruction cache

fill barriers were somewhat faster than data cache fill barri-
ers, and the ping-pong variants were likewise faster than their
corresponding arrival/exit implementations, as the reduction
in invalidations reduced consumption of bus bandwidth.

We also evaluated the impact of fast barrier synchroniza-
tion on a number of kernels. On the Auto-Correlation
and Viterbi Decoder benchmarks from the EEMBC
suite, multi-threaded implementations using barrier filters
had speedups around twice that of software tree barriers and
almost as good as a dedicated barrier network but without
modifying the cores. Finally, we showed that fast barrier
synchronization enabled speedup on Livermore Loop kernels
with modest vector lengths, whereas software-only barriers
required vector lengths longer by a factor of two to four
to achieve a speedup. Based on these results, we believe
fast barrier synchronization using barrier filters could pave
the way for efficiently exploiting fine-grained parallelism on
CMPs utilizing minimally modified cores.

References

[1] G. Almasi et al. Design and implementation of message-
passing services for the Blue Gene/L supercomputer. IBM
Journal of Research and Development, 49(2/3):393–406, Mar.
2005.

[2] B. Beck, B. Kasten, and S. Thakkar. Vlsi assist for a mul-
tiprocessor. In Proceedings of the second international con-
ference on Architectural Support for Programming Languages
and Operating Systems, pages 10–20, 1987.

[3] C. J. Beckmann and C. D. Polychronopoulos. Fast barrier syn-
chronization hardware. In Proc. Conf. on Supercomputing,
pages 180–189, 1990.

[4] S. Chaudhry, P. Caprioli, S. Yip, and M. Tremblay. High-
performance throughput computing. IEEE Micro, 25(3):32–
45, May 2005.

[5] L. Cheng and J. Carter. Fast barriers for scalable ccNUMA
systems. In International Conference on Parallel Processing,
pages 241–250, 2005.

[6] E. M. B. Consortium. www.eembc.org.

[7] P. Coteus et al. Packaging the Blue Gene/L supercomputer.
IBM Journal of Research and Development, 49(2/3):213–248,
Mar. 2005.

[8] D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer
Architecture. Morgan Kaufmann, 1999.

[9] K. I. Farkas and N. P. Jouppi. Complexity/performance trade-
offs with non-blocking loads. In Proc. Intl. Symp. on Computer
Arch. (ISCA), pages 211–222, 1994.

[10] J. Goodman, M. K. Vernon, and P. J. Woest. Efficient syn-
chronization primitives for large-scale cache-coherent shared-
memory multiprocessors. In Proc. of 3rd Intl. Conf. on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS), 1989.

[11] A. Gottlieb et al. The NYU ultracomputer – designing a
MIMD, shared-memory parallel machine. In Proceedings of
the 9th annual symposium on Computer Architecture, pages
27–42, 1982.

[12] W. T.-Y. Hsu and P.-C. Yew. An effective synchronization net-
work for hot-spot accesses. ACM Transactions on Computer
Systems (TOCS), 10(3), Aug. 1992.

[13] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5 chip: a
dual-core multithreaded processor. IEEE Micro, pages 40–47,
March-April 2004.

[14] S. W. Keckler et al. Exploiting fine-grain thread level paral-
lelism on the mit multi-alu processor. In Proceedings of the
25th annual International Symposium on Computer Architec-
ture, pages 306–317, 1998.

[15] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-
way multithreaded sparc processor. IEEE Micro, 25(2):21–29,
Mar. 2005.

[16] C. E. Leiserson et al. The network architecture of the Connec-
tion Machine CM-5. In Proc. of SPAA, pages 272–285, June
1992.

[17] Livermore loops coded in C.
http://www.netlib.org/benchmark/livermorec.

[18] J. M. Mellor-Crummey and M. L. Scott. Algorithms for
scalable synchronization on shared-memory multiprocessors.
ACM Trans. on Comp. Sys., 9(1):21–65, Feb. 1991.

[19] D. S. Nikolopolous and T. S. Papatheodorou. Fast synchro-
nization on scalable cache-coherent multiprocessors using hy-
brid primitives. In Proceedings of the 14th International Sym-
posium on Parallel and Distributed Processing, 2000.

[20] B. E. Saglam and V. J. Mooney. System-on-a-chip processor
synchronization support in hardware. In Proc. of Conf. on De-
sign, automation and test in Europe, pages 633–641, Munich,
Germany, 2001.

[21] S. L. Scott. Synchronization and communication in the t3e
multiprocessor. In Proc. of 7th Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), October 1996.

[22] S. Shang and K. Hwang. Distributed hardwired barrier syn-
chronization for scalable multiprocessor clusters. ACM Trans-
actions on Parallel and Distributed Systems (TPDS), 6(6),
1995.

[23] D. Tullsen. Simulation and modeling of a simultaneous multi-
threading processor. In 22nd Annual Computer Measurement
Group Conference, December 1996.

[24] D. M. Tullsen, J. L. Lo, S. J. Eggers, and H. M. Levy. Support-
ing fine-grained synchronization on a simulataneous multi-
threading processor. In Proc. Int’l Symp on High-Performance
Architecture (HPCA), Jan. 1999.

[25] S. C. Woo et al. The SPLASH-2 programs: Characterization
and methodological considerations. In Proc. 22nd Intl, Symp.
on Computer Arch., pages 24–36, Santa Margherita Ligure,
Italy, June 1995.

[26] D. Yeung and A. Agarwal. Experience with fine-grain syn-
chronization in mimd machines for preconditioned conjugate
gradient. In Proceedings of the fourth ACM SIGPLAN sym-
posium on Principles and Practice of Parallel Programming
(PPoPP), pages 187–192, 1993.

