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Abstract

Accurate instruction fetch and branch prediction is increasingly important on today’s superscalar
architectures. Fetch prediction is the process of determining the next instruction to request from the
memory subsystem. Branch prediction is the process of predicting the likely out-come of branch
instructions. A branch target buffer (BTB) is often used to provide target addresses for taken branches
and to predict the destination of indirect jumps. Using a BTB avoids the delay needed to recalculate the
destination address and reduces the misfetch penalty. However, an effective branch target buffer can be
large and can possibly increase the cycle time of a processor.

We propose that a design used in older computers, such as the PDP-8, be used in modern architectures
instead of a BTB design. The compiler would pre-compute the branch destination for most branch
instructions, allowing the branch information to be stored with the instruction. We consider computing
branch destinations at link time and as instructions are fetched into the instruction cache; both alternatives
offer similar performance with different advantages. A very small branch target buffer is still useful
to predict indirect branches, which can not be pre-computed. Our results show that thePrecomputed-
Branch architecture performs better than an architecture using only a branch target buffer, and has
significant hardware savings. This is particularly true for larger programs more representative of modern
applications.

1 Introduction

Modern superscalar processor designs are extremely sensitive to control flow changes. Changes in control
flow, be they conditional or unconditional branches, direct or indirect function calls, or returns can signifi-
cantly hinder the performance of a processor. To keep the pipeline fully utilized, past processors typically
fetched the address following the most recent address, because the target address for a program counter
relative (PC-relative) branch is typically not available until the instruction is decoded. If the decoded
instruction is a break in control flow, the previously fetched (fall-through) instruction can not be used, and
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a new instruction must be fetched after the target address is calculated, introducing a pipeline bubble or
unused issue slots.

The final destination for conditional branches, indirect function calls and returns are typically not
available until a later stage of the pipeline. The processor may elect to fetch and decode instructions on
the assumption that the eventual branch target can be accurately predicted. If the processor mispredicts the
branch destination, instructions fetched from the incorrect instruction stream must be discarded, leading to
several wasted issue slots. This is called a branchmispredict penalty. To eliminate this mispredict penalty
current processors usebranch prediction architectures. Branch prediction is the process of predicting the
direction for conditional branches (taken or not-taken) and the destination for indirect branches and return
instructions.

Even if a conditional branch is correctly predicted as taken, the target instructions cannot be correctly
fetched from the instruction cache in the next cycle unless the processor knows the target address of the
branch. Since the target address is not calculated until the decode stage, this causes a pipeline stall called a
misfetch penalty. The misfetch penalty is caused by not knowing the taken target address for a PC-relative
branch the same cycle the predicted taken branch instruction is fetched from the cache. To eliminate the
misfetch penalty,fetch prediction is used along with branch prediction to predict which instructions to fetch
each cycle from the instruction cache. Fetch prediction architectures, such as a branch target buffer, provide
mechanisms to predict the taken target addresses for branch instructions effectively eliminating the misftech
penalty.

In practice, pipeline bubbles due to mispredicted breaks in control flow degrade a programs performance
more than the misfetch penalty. Though, as processors issue more instructions concurrently, these penalties
increase, and the instruction misfetch penalty becomes increasingly important. It is more likely that a
branch will occur as more instructions are fetched each cycle, decreasing the likelihood that the fall-through
instruction will be executed. A branch target buffer (BTB) is one mechanism for effectively eliminating
misfetch penalties by providing taken branch target addresses. When an instruction is fetched, the same
address is offered to the BTB; if there is a match in the BTB, the next instruction is fetched using the target
address specified in the BTB if the branch is predicted as taken. In this design, exemplified by the PowerPC
604 [33], the BTB identifies the instruction as a branch and only records the destination for taken branches.

1.1 The Branch Target Address Problem and the Precomputed-Branch Solution

Architectures using BTB’s can issue a large number of instructions per cycle because of accurate branch
and fetch prediction. However, BTB’s can lead to a complex architecture and large BTB’s can be costly to
implement. In this paper, we show how to achieve the same or better performance using simpler techniques.

We show that we can maintain a low branch execution cost with considerably fewer resources than that
needed by architectures using a branch target buffer. Our proposed architecture assumes a flat address space,
and eliminates program-counter relative (PC-relative) branches. In this design, the destination address is
quickly computed by concatenating the branch’s displacement, which is pre-computed at compile time, with
the high-order bits of the current address, effectively dividingmemory into a number of program segments or
branch spaces. Branches between branch spaces are computed and performed as indirect jumps. This design
assumes the program linker or compiler can partition the program into a number of segments and modify
the program’s structure to select between intra-space and inter-space branches [35]. We also describe how
existing architectures using PC-relative branches can be extended to benefit from pre-computed branches.
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The Precomputed-Branch architecture provides area-efficient support for conditional, unconditional and
procedural branches, where the branch destination is explicitly specified. Other researchers have described
inexpensive mechanisms to predict the destination of procedure returns [19]. The only remaining branch
type requiring a predicted target address for the Precomputed-Branch architecture is an indirect jump, where
the destination may be specified by values computed during execution. We show that using a very small
branch target buffer, dedicated to predicting only the outcome of indirect jumps, benefits a number of
programs for the Precomputed-Branch architecture. This is especially true for object-oriented programs
containing a large number of indirect jumps.

We originally proposed the use of a Precomputed-Branch architecture in [5]. In this previous study we
focused on improving the performance of the BTB design by examining different BTB configurations and
update policies, and in addition we proposed the Precomputed-Branch architecture as an alternative to the
BTB. In that study we examined the performance of only 11 programs and the use of only static prediction to
predict indirect jumps when using the Precomputed-Branch architecture. We did not examine the compiler
support needed for the Precomputed-Branch architecture, nor did we examine dynamic mechanisms for
predicting the indirect jump created by the Precomputed-Branch architecture. We also did not examine the
hardware costs and cycle time implications of the Precomputed-Branch architecture, nor did we discuss
how to apply this technique to current PC-relative instruction set architectures.

In this paper we expanded our study to 35 programs, and we study the performance of using a small
sized branch target buffer to predict the direction for indirect jumps when using the Precomputed-Branch
architecture. In addition we expand on our previous study by examining several algorithms for compiler
partitioning of a program into branch spaces, and we measure the effect of these algorithms on a number of
architectural configurations and different branch segment sizes. Partitioning programs into branch spaces
introduces new indirect jumps to span across branch spaces. We measure the number of such branches
introduced, and other overhead introduced by the partitions. We also examine the hardware costs of the
Precomputed-Branch architecture in comparison to the BTB architecture. Lastly, we discuss how existing
superscalar architectures can be modified to use the Precomputed-Branch architecture.

In the next section, we examine previous work in branch prediction and branch target buffer design.
In x3, we describe a branch target buffer architecture, used in our experiments to compare against the
performance of the Precomputed-Branch architecture, also described inx3. Section 4 describes the structure
of the execution-driven simulation study and the performance metrics we used. The Precomputed-Branch
architecture requires programs to be partitioned into branch spaces, andx5 describes algorithms to accom-
plish this and their performance. Section 6 compares the performance of the BTB and Precomputed-Branch
architectures, and some practical issues are discussed inx7. We conclude inx8.

2 Background

There are two sources of pipeline stalls we want to remove, branch misfetch and mispredict penalties. A
branch target buffer can be used to reduce the misfetch penalty and can be used as a simple branch prediction
mechanism. Other branch prediction methods can reduce mispredict penalties, but not misfetch penalties.
Many architectures [33, 40, 42] combine branch target buffers and other branch prediction mechanisms to
reduce both misfetch and mispredict penalties.
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2.1 Branch Target Buffers

Misfetch penalties can be reduced in a number of ways, such as using branch delay slots [24], a table
of cache indices for fetch prediction [8], or branch target buffers [21, 22, 29, 32]. A BTB can eliminate
misfetch stalls by storing the branch destination. For unconditional branches, indirect jumps or functions
calls, this destination can be immediately fetched. For conditional branches, either the fall-through or the
destination stored in the BTB is fetched. Some form of branch prediction is needed to select between the
fall-through and taken address for conditional branches.

Typically, a BTB contains from 32 to 512 entries with varying degrees of associativity. A BTB requires
considerable storage, because it stores the address of the branch as the tagand the address of the probable
destination. Different kinds of branches use different mechanisms to predict their branch destinations. To
be able to select among the different mechanisms for the different branches, we need to be able to identify
the branch type, and some BTB designs store the branch type in the BTB. For function calls (either direct or
indirect), the previous function address is stored in the ‘destination’ field of the BTB. This can also be done
for return instructions, but a return stack is much more accurate [19]. In this study we assume the branch
type is stored in the instruction cache or is easily identifiable in the branch’s instruction encoding, so it is
not stored in the BTB.

2.2 Branch Prediction Mechanisms

The other component of most branch architectures is some mechanism to predict whether conditional
branches are taken or not-taken. Branch prediction techniques are classified asstatic or dynamic. Static
branch prediction information does not change during the execution of a program, while dynamic prediction
may change, reflecting the time-varying activity of the program. Static methods range from compile-
time heuristics [3, 9, 21, 24, 32] to profile-based methods [10, 14, 24, 37, 43]. In general, profile based
prediction techniques outperform compile-time prediction techniques or techniques that use heuristics based
on the direction of the branch target (forward or backward) or instruction opcode. While static prediction
mechanisms, particularly profile-based methods, accurately predict 70-80% of branches, modern computer
architectures increasingly depend on mechanisms that estimate future control flow decisions to increase
performance, requiring more accurate branch prediction mechanisms.

A pattern history table (PHT) is a mechanism for predicting conditional branches. It does not store the
site (tag) and target addresses of branches as in the BTB; rather, the table only stores N-bit counters used to
predict the direction for conditional branches. The most common variants of this design are 1-bit counter
techniques that indicate the direction of the most recent branch mapping to a given prediction bit, and 2-bit
counter techniques that yield much better performance for programs with loops [21, 24, 32]. These designs
use the branch site address as an index into the PHT. Since different branch addresses can index into the
same table entry, several conditional branches may share the same prediction information. For example,
in a 4096 entry table, branches at addresses 0, 16384 and 32768 all map to the same entry in the table.
When a conditional branch at these addresses is executed, the information for entry ‘0’ is used to predict
the branch direction, even if that information was recorded for one of the other branches. The advantage of
the pattern history tables is that they keep track of very little information per conditional branch site and are
very effective in practice.

More recently Panet al [28] and Yeh and Patt [40, 42] have proposedbranch-correlation or two-level
branch prediction mechanisms. Although there are a number of variants, these mechanisms generally
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combine the history of several recent branches to predict the outcome of an incipient branch. The simplest
example is the so-calleddegenerate method of Panet al. When using a 4096 entry table, the processor
maintains a 12-bit shift register (the global history register) that records the outcome of previous branches.
If the previous 12 branches that executed were a sequence of three taken branches, six non-taken branches
and three more taken branches (TTTNNNNNNTTT), the register might store the value 1110000001112,
or 3591. This is used as an index into the 4096-entry table, much as the program counter is used in the
prediction history table method. This provides contextual information about particular patterns of branches.
Some methods combine the history register with other information. For example, McFarling [23] used an
exclusive-or of the program counter and the global history register to scatter the table references, improving
the PHT’s performance.

2.3 Combining Branch Target Buffers and Branch Prediction

Originally, BTB’s were used as a mechanism for branch prediction, effectively predicting the prior outcome
of a branch [21, 29, 32] and providing the target address. Researchers have proposed associating additional
branch prediction information with each BTB entry to improve branch prediction [41], and a variation of
this technique has been implemented in the Intel Pentium and PentiumPro architectures. The problem with
this technique is the branch prediction information can only be used on a BTB hit, or when when a branch
address is found in the BTB. We call designs that associate branch prediction information with the branch
target buffer acoupled branch architecture, since the conditional branch prediction information is associated
with the BTB and can only be used if a branch hits in the BTB. In a related paper [5], we showed that
decoupled branch architectures can provide slightly better performance than coupled branch architectures.
A decoupled architecture separates the conditional branch prediction information from the branch target
buffer, so that it can be used to correctly predict a branch even when that branch is not in the BTB. In the
remainder of this paper, we only consider decoupled branch architectures.

3 The Design of Two Branch Architectures

We used trace-driven simulation to compare the Precomputed-Branch architecture to a design that makes
aggressive use of branch target buffers. We simulated the decoupled branch architecture proposed in [5],
because this architecture provides better overall branch performance than the coupled models proposed
in [41] for the design space considered in this paper. In this section, we describe this architecture and follow
that with a detailed description of the Precomputed-Branch architecture.

3.1 A BTB-based Instruction Fetch Architecture

Figure 1 is a schematic representation of a conventional branch prediction and instruction fetch architecture
using a branch target buffer. A BTB is used to eliminate misfetch penalties by providing taken target
addresses, while a pattern history table (PHT) is used to predict conditional branches. In this design, the
global history register is combined with the program counter using an exclusive-or, and the result is used as
the index into the PHT [23]. In both the BTB and Precomputed-Branch architecture, we assume the branch
type is encoded in the instruction, or pre-decoded and stored in the instruction cache. A 32-entry return
address stack is used to predict the outcome of return instructions.
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Figure 1: A Schematic Representation of a Branch Prediction Architecture Using a Decoupled Two-Level
Pattern History Table and a Branch Target Buffer.
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Figure 2: A Schematic Representation of the Precomputed-Branch Architecture Using a Two-Level Pattern
History Table.
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As shown in Figure 1, the current instruction address is concurrently offered to the instruction cache,
providing the actual instruction, to the PHT, and to the BTB. There are three important types of branches:
direct or indirect branches, conditional branches and returns. Depending on the branch type and the branch
prediction information from the 2-level PHT, either the BTB target address, the computed fall-through
address, or the return stack address is selected as the next instruction fetch. If a PC-relative branch misses
in the BTB, the fall-through address is fetched. If this branch was predicted as taken by the decoupled PHT,
then the taken address is fetched after it is calculated in the decode stage. Therefore, on a BTB miss, if the
PHT correctly predicts the PC-relative branch as taken, only a misfetch penalty results.

In this BTB architecture, when an unconditional branch is executed and there is a BTB miss, the BTB
entry is updated to record the computed target address. When the branch is encountered again, and there
is a BTB hit, the branch type indicates this is an unconditional branch, and the architecture uses the target
address stored in the BTB for the next cache fetch. Conditional branches have similar actions; however,
the prediction information from the PHT is used to predict the likely outcome of conditional branches.
Depending on the predicted outcome, the stored destination (which is always the ‘ taken’ address) in the
BTB or the fall-through address is used to fetch the next instruction. When a return instruction is encountered
the branch type indicates that the instruction is a return and the top of the return stack is used to fetch the
next instruction. When an indirect jump is executed, if there is a BTB hit, the address stored in the BTB is
used for the next cycle’s instruction fetch.

3.2 The Precomputed-Branch Architecture

The BTB serves two roles. Only taken branches are entered in the BTB, so a BTB hit indicates the instruction
is a branch, and the BTB provides the target address. As mentioned, we assume that the instruction cache
or the instruction code can identify the branch type. This can either be made explicit in the instruction
encoding, or the instruction can be partially decoded when it is brought into the instruction cache; a similar
mechanism has been used in several architectures, such as the MIPS R10000 [26]. The only remaining
function provided by the BTB is the pre-computed destination address for taken branches. The BTB
is needed because the destination address specified by a branch instruction can not be fetched from the
instruction cache and computed all in a single cycle when using PC-relative destinations.

Figure 2 shows our proposed instruction fetch architecture. A program is broken into multiple branch
spaces. Branches within a single branch space can use a normal branch instruction, while branches between
branch spaces must be computed as an indirect jump. The pre-computed displacement indicates the branch
target displacement within the current branch space. The lower-order bits of the branch destination are
simply concatenated with the higher-order bits of the current address, and no addition is needed. Issues
surrounding branch spaces, and the complications that arise, are discussed later.

The concatenating of the pre-computed branch eliminates misfetch penalties for conditional branches,
unconditional branches and direct procedure calls. This leaves indirect branches as the only branch type
without a pre-computed branch address. Thus, we use a small BTB to predict indirect branches; otherwise
they will always be mispredicted. Since this branch target buffer is only used for indirect jumps, we call
this an indirect jump buffer (IJB) to clarify the distinction from the BTB architecture. Alternatively, we can
use profile-based prediction of indirect function calls, which has been shown to be effective and important
for the C++ programming language [7], where such branches occur frequently.
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3.3 Computing the Branch Target

Traditional branch architectures use a PC-relative displacement; Figure 3(a), modeled after the diagrams
in [20], schematically illustrates the process. In the encodings, information in lightly outlined boxes is
provided or computed at execution time; for example, in Figure 3(a), the PC is available during execution.
Heavily-outlined boxes show the information provided by the branch instruction – the instruction providesn
bits for the branch displacement. On the right-hand side, the solid boxes show the range of instructions that
can be addressed. For Figure 3(a), a displacement stored in the branch instruction is sign-extended to the
size of the program counter and added to the program counter. Each branch can directly address instructions
at address PC� 2n�1 � 1 : : :PC+ 2n�1. For simplicity, we assume the program counter is always aligned
on instruction boundaries, since we are chiefly concerned with architectures with fixed-width instructions.

Katevenis [20] proposed several branch encodings where the branch displacement field contains the
least significant bits of the branch target address. Figure 3(b), shows one such encoding. Here, the sign bit
for the offset and the carry for the addition of the lower bits are computed by the compiler (or linker) and
encoded in the instruction. The lower bits can be immediately used to index the cache. Concurrent with the
cache fetch, the higher order bits are computed and matched against the address tags when the cache fetch
returns. If the tags are mismatched with the actual PC, an instruction-cache miss occurs and the pipeline is
stalled. During the stall, the program counter is corrected. Since the instruction must include both the carry
and the sign bit, an n-bit displacement can only address PC � 2n�2 � 1 : : :PC + 2n�2.

Figure 3(c) diagrams our proposed pre-computed branch encoding. We use an explicit displacement
instead of a PC-relative displacement because we need to calculate target addresses in time to use them for
the next instruction fetch and an adder is usually too complex for this purpose. The n-bit displacement
is used as the lower order part of the destination address, and is concatenated with the higher order bits
of the current PC to form the new fetch address. Each branch can then jump within a branch space of 2n

instructions. This breaks a program up into branch spaces or segments of size 2n instructions. Every direct
branch within a 2n branch space can only branch within that space. To branch outside that span, an indirect
jump must be used.

3.4 Other Non-Relative Branch Architectures

Using non-relative branches is not new idea, although we are unaware of studies with our emphasis on the
branch layout algorithms, branch prediction architectures, and our analysis of modern programs.

The memory for the PDP-8 was divided into eight “memory fields,” each field was divided into 32 pages
of 64 locations (words). A JMP or JMS instruction could jump within a single memory page (e.g., to one
of 64 words), or could specify an indirect reference to a word containing a 12-bit destination. Branches
within the same page were pre-computed, and all other branches required an indirect reference. In the
Crisp processor [12], a branch destination is included in every decoded instruction in the instruction cache,
resulting in very large instructions – 192 bits. This technique consumes a considerable amount of space and
may limit the processor cycle time. A mechanism similar to that used in the PDP-8 was used in Control
Data and IBM processors, where instructions were optimized to execute within an instruction buffer – Lee
and Smith [21] provide a good survey.

By comparison, we rely on the program linker to compensate for the limited branching by pre-computing
branch destinations and reducing the number of complex operations (indirect branches). After a fashion,
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we are applying the “RISC design philosophy” to branch architectures - we let the software (compiler and
linker) share the burden of making the hardware efficient and inexpensive.

4 Experimental Methodology

We will pose several questions concerning branch architectures and answer those questions using information
from trace-based simulation. We instrumented the programs from the SPEC92 benchmark suite, the Perfect-
Club [4], and object-oriented programs written in C++. We used ATOM [34] to instrument the programs;
due to the structure of ATOM, we did not need to record traces and could trace the complete execution of
all the programs. The programs were compiled on a DEC 3000-400 using either the DEC FORTRAN, C,
or C++ compiler. All programs were compiled with standard optimization (-O). We constructed several
simulators to analyze the programs. The simulator was run once to collect information on call and branch
targets, and a second time if we needed to use profile information from the prior run. For the SPEC92
programs, we used the largest input distributed with the SPEC92 suite.

The alternate programs include: cfront, version 3.0.1 of the AT&T C++ language preprocessor written
in C++, groff, a version of theditroff text formatter written in C++, idl, a C++ parser for the CORBA
interface description language, db++, a version of the ‘deltablue’ constraint solution system written in C++,
lic, a linear inequality calculator, and porky, a system performing many compiler optimizations. We
selected these programs because we found that the SPECint92 suite did not typify the behavior seen in C++
programs [11], and our original goal was to understand the impact of branch architectures on C++ programs.
For these alternate programs, we used sizable inputs that exercised a large part of the program.

Table 1 shows the basic statistics for the programs we instrumented. The table is divided into two
sections; the first half shows dynamic information (the information gathered during a particular execution
of the program), and the second part shows the static information. The static information is a property of the
program binary, and is the same for all executions. The first three columns show the number of instructions
traced, the percentage of breaks (e.g., conditional branches, return instructions and so on) encountered
during execution and the percentage of conditional branches that are taken. The next five columns break
down the number of breaks in control flow encountered during tracing into five classes: conditional branches
(CBr), indirect jumps (IJ), unconditional branches (Br), procedure calls (Call) and procedure returns (Ret).
The static information includes the total number of instructions and procedures found in each program.

Indirect jumps are used both to implement indirect function calls and some switch statements. Note
that the C++ programs execute fewer conditional branches than C programs. In part, this is caused by the
increased number of procedure calls, indirect jumps, and returns in the C++ programs. Also note that the
C++ programs include many more procedures than the C and FORTRAN programs.

4.1 Performance Metrics

Our goal is to understand the performance improvement of various branch architectures; this requires a
metric to compare one architecture to another. There are two forms of pipeline penalties: misfetch and
misprediction penalties. Each branch type can be misfetched, but only conditional branches, indirect
function calls and returns can be mispredicted. The penalty for misfetching is less than the penalty for
misprediction. We may be willing to misfetch more branches if it means we can reduce the number of
mispredicted branches. We record the percentage of misfetched branches (%MfB) and the percentage of
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Dynamic Static
# Insn’s Traced % % Taken Percentage of Breaks During Tracing

Program (Millions) Breaks Cond. Br %CBr %Br %IJ %Call %Ret # Insn’s # Procs

APS 1,490 4.70 50.64 84.90 5.71 0.12 4.63 4.63 128,694 797
CSS 379 9.43 55.63 77.58 9.86 2.09 5.24 5.24 141,751 818
LGS 956 9.46 66.84 76.78 2.95 0.00 10.14 10.14 90,385 726
LWS 14,183 9.89 66.34 80.08 5.84 0.00 7.03 7.03 88,661 714
NAS 3,604 5.39 60.66 63.63 12.70 1.70 10.99 10.99 103,401 740
OCS 5,187 3.06 88.57 98.84 0.26 0.02 0.44 0.44 90,122 717
SDS 1,109 6.83 53.05 99.15 0.07 0.03 0.38 0.38 94,615 768
TFS 1,694 3.44 77.42 92.28 2.63 0.23 2.43 2.43 94,383 715
TIS 1,722 5.27 51.08 100.00 0.00 0.00 0.00 0.00 74,681 681
WSS 5,422 5.48 62.36 86.79 5.75 3.28 2.09 2.09 106,227 757
doduc 1,150 8.53 48.68 81.31 4.97 0.01 6.86 6.86 94,402 708
fpppp 4,333 2.82 47.74 86.66 8.01 0.00 2.66 2.66 83,999 685
hydro2d 5,683 6.28 73.34 95.84 1.38 0.00 1.39 1.39 85,808 716
mdljsp2 3,344 10.60 83.62 95.43 4.00 0.00 0.29 0.29 84,286 733
nasa7 6,128 3.08 79.29 81.34 6.34 0.41 5.95 5.95 83,867 706
ora 6,036 7.52 53.24 69.85 10.65 0.00 9.75 9.75 70,604 668
spice 16,148 12.57 71.63 91.56 3.73 0.16 2.28 2.28 138,312 815
su2cor 4,777 4.36 73.07 76.42 9.02 0.71 6.92 6.92 93,668 711
swm256 11,037 1.65 98.42 99.63 0.15 0.07 0.08 0.08 73,412 677
tomcatv 900 3.36 99.28 99.86 0.05 0.02 0.03 0.03 65,625 617
wave5 3,555 5.71 61.79 76.68 5.92 0.74 8.33 8.33 106,978 762
alvinn 5,241 9.09 97.77 98.30 0.40 0.02 0.64 0.64 17,811 212
compress 93 13.91 68.25 88.51 7.59 0.00 1.95 1.95 13,144 149
ear 17,006 8.10 90.13 61.37 3.71 0.05 17.42 17.46 25,079 290
eqntott 1,811 11.54 63.03 93.47 1.90 1.70 0.70 2.24 19,172 212
espresso 513 17.11 61.90 93.25 1.88 0.20 2.29 2.39 60,674 551
gcc 144 15.97 59.42 78.85 5.75 2.86 6.04 6.49 186,066 1,651
li 1,355 17.67 47.30 63.94 7.74 2.24 12.92 13.16 33,235 551
sc 1,450 20.93 64.34 85.96 2.62 0.98 5.18 5.26 59,291 512
cfront 17 13.37 53.14 76.02 5.62 2.59 7.89 7.89 225,064 981
db++ 86 17.56 56.86 54.43 2.03 15.04 6.77 21.73 20,784 329
groff 57 17.51 49.20 66.22 10.22 3.17 9.09 11.30 121,191 1,756
idl 21 19.61 46.70 50.00 7.55 12.31 9.07 21.07 79,381 1,459
lic 6 16.79 52.26 65.76 8.78 0.22 12.58 12.66 384,058 5,333
porky 164 19.76 60.48 55.34 2.82 3.14 17.92 20.78 216,678 3,704

Table 1: Measured Attributes of the Traced Programs. Dynamic information is recorded from a particular
execution of the application, while static information is a property of the program binary.
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mispredicted branches (%MpB), but it is often difficult to understand how these metrics influence processor
performance. Yeh & Patt [41] defined the branch execution penalty to be:

BEP =
%MfB�misfetch penalty+%MpB�misprediction penalty

100
;

which reflects the average penalty suffered by a branch due to misfetch and misprediction. A BEP of 0:5
means that, on average, each branch takes an extra half cycle to execute; values close to zero are desirable.
We use this metric to provide a more intuitive understanding of how the two penalties interact. However,
using the BEP binds us to a specific misfetch and misprediction penalty, so we also report the %MfB,
%MpB along with the BEP. For the results in this paper, we use a one cycle misfetch penalty and a four
cycle mispredict penalty.

In the Precomputed-Branch architecture, some branches are changed to indirect branches. We assume
this is done by loading the value from memory and performing an indirect jump. A single-cycle penalty for
loading the branch destination is included in the BEP for the Precomputed-Branch architecture. Thus, we
extend the BEP model to be:

BEP =
%MfB� misfetch penalty+%MpB� misprediction penalty+%IIB� extra indirect branch penalty

100
;

where %IIB is the percent increase in indirect branches. This is the percentage of PC-relative branches
converted to indirect jumps, expressed as an average cost over all branches executed for the Precomputed-
Branch architecture. The %IIB is determined when the program is partitioned into branch spaces, as
described in the next section. For the BTB architecture results, we assumed a 21-bit branch displacement,
so %IIB is always zero.

5 Partitioning Programs Into Branch Spaces

In this section, we show the overhead introduced by the Precomputed-Branch architecture when the instruc-
tion set only permits small displacements. We use static methods to partition the program into multiple
branch spaces, and then compare the benefits of partitioning using information from prior execution. In
practice, most architectures provide branch instructions intended to be used within a single procedure and
different branch instructions used to transfer control to other procedures. Often, the displacements in these
instructions are different sizes; for example, the MIPS architecture uses 26-bit displacements for proce-
dure calls, and 16-bit displacements for conditional branches. By comparison, the DEC Alpha uses 21-bit
displacements for all branches.

When using PC-relative addresses, procedures can be placed anywhere in virtual memory. By com-
parison, the Precomputed-Branch architecture places more restrictions on procedure placement. In a
Precomputed-Branch architecture, a branch located at address X is located in a particular Z-bit branch
space specified by S(X;Z) = bX2Z c. Branches can only reach destinations in the same branch space; thus,
to branch from X to Y , we must insure that S(X;Z) = S(Y; Z) in order to use a pre-computed branch.
If S(X;Z) 6= S(Y; Z) then an indirect jump must be used to branch between spaces. Branches within
a procedure and between procedures must be able to reach their destinations. To accomplish this, we
reorganize the program trying to insure that all branches and their destination are in the same branch space.
If this restriction can not be enforced, the branch is converted into an indirect jump that can span across
branch spaces.

12



In this paper, we partition programs into branch spaces of three different sizes: 14, 16 and 21-bit branch
spaces. We chose the 16 and 21-bit branch spaces because they reflect the branch displacement in existing
microprocessors, and it is easy to argue that branch spaces of this size are easy to implement. However, all
of our sample programs fit within a single 21-bit branch space, and most of the programs fit in two 16-bit
branch spaces. Therefore, we also partitioned programs into a 14-bit branch space to give some insight of
the overheads that might be encountered by larger programs. We further stipulated that procedures are not
spilt across branch spaces; only procedure calls will span branch spaces. Therefore, all intra-procedural
branches will be compiled as pre-computed branches.

There are myriad ways to partition programs, and a number of alternatives have been examined in the
effort to reduce page faults [1, 2, 15, 13], and instruction cache conflicts [16, 25, 30]. The goals of our study
are different than these other studies; we are more interested in reducing the number of indirect jumps than
reducing cache conflicts and paging. None the less, the best performing algorithm we examined (MaxCut)
for code partitioning is very similar to the greedy layout algorithm of Pettis and Hansen [30]. Therefore,
partitioning the program into branch spaces using the MaxCut algorithm would result in a layout that also
reduces cache conflicts and paging.

We used two metrics to compare the program partitioning heuristics. The first is the additional amount
of space needed by the program due to wasted space at the end of virtual memory pages. The second
metric is the percent of dynamic branches that cross branch spaces. We considered a number of partitioning
algorithms. Some methods use profiles, or information about previous executions of the program. Many
optimizations require such information, either from previous executions of the program or from estimates
using static analysis [36, 39]. We examined depth-first, breadth-first, pre-order, post-order, greedy and max-
cut partitioning algorithms. Most of the methods had similar performance, and we present the performance
of three of these algorithms.

The partitioning algorithms are illustrated in Figure 4. In this example, we assume that each branch
space can hold three procedures. Branch spaces are indicated by the darkened regions. The costs shown in
Figure 4 reflect the number of branches that cross branch spaces for a particular execution of the program.
There are a total of 39 procedure calls in the example, and each partitioning algorithm attempts to reduce
the number of procedure calls that span branch spaces. In addition, the profile-driven partitioning heuristics
use the procedure call weights while partitioning the procedures.

The Separate method, shown in Figure 4(a), partitions each procedure into a different branch space, and
illustrates the worst-case performance one could encounter. In the Preorder partitioning, nodes are added
to a mapping list in a pre-order traversal without using profile information. That list is then partitioned into
branch spaces. A similar technique is used in the Depth-First Profile method; a depth-first search orders
the nodes, always visiting the out-going edge with the highest call frequency. This Depth-First Profile
algorithm is very similar to the procedure layout algorithm proposed by Hwu and Chang [25]. The MaxCut
partitioning uses a greedy max-cut algorithm to partition the graph using the call frequency to guide the
partitioning. This algorithm is very similar to the greedy approach for procedure mapping proposed by
Pettis and Hansen [30].

The MaxCut partitioning algorithm processes the edges in the call graph, starting with the most frequently
executed call edge and ending with the least executed edge. For this algorithm we group procedures together
into branch-spaces until each branch-space is full. Therefore, in the final partition each branch-space
contains a group of procedures, where each procedure will use pre-computed branches to call all the other
procedures in that branch-space and indirect jumps to call procedures not in that branch-space. Once a
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(c) Depth-First Profile - The traversal order is fA,
B, D, C, E, F, Gg. The execution cost is 21, using
the weights shown.

(d) MaxCut - The order branch-spaces were
formed was fA, B, F, D, E, G, Cg. The execution
cost is 16, using the weights shown.

Figure 4: Partitioning A Simple Call Graph. In this example we assume that at most three procedures can fit
into one branch space. In these graphs the nodes labeled with letters are procedures, the edges are procedure
calls, the numbers indicate the number of procedure calls, and the shaded areas represent the branch spaces
the procedures are partitioned into for each algorithm. The cost shown for each partitioning is the number
of procedure calls converted to indirect jumps because they span across different branch spaces.
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branch-space is full we do not add any more procedures to that branch-space when performing the partition.
A branch-space is considered full when the total number of instructions of all of the procedures in the
branch-space is equal to the target range of the branch architecture’s explicit displacement. For example,
for a branch architecture that has 16-bit explicit displacement, a branch-space can at max hold 216 or 65,536
instructions, and is considered full when it reaches that limit. When an edge is processed for the MaxCut
algorithm, it connects two procedures and these two procedures could be in one of the following three
states: (1) both procedures are unprocessed, so neither of the procedures has been added to a branch-space
partition, (2) one procedure is already in a branch-space and the other has not yet been processed, or (3)
both procedures are already processed and in a branch-space. For the first case, both of the procedures
connected by the edge are grouped together into a new branch-space. For the second case, the unprocessed
procedure is added to the branch-space of the already processed procedure, only if adding the procedure
keeps the size of the branch-space less than the branch architecture’s target range. For the third and final
case, if the two procedures for the edge being processed are in the same branch-space then nothing needs to
be done. If they are in different branch-spaces then the two branch spaces are merged together if their total
size fits within the branch architecture’s target range. After all the edges have been processed, we are left
with several disjoint branch-spaces, many of which are smaller than the architectures target range. These
final branch-spaces are merged together as long as the merge does not create a new branch-space larger than
the target range. After this is completed, the branch-spaces are then layed out from the most frequently
executed to the least frequently executed, leaving fluff at the end of the branch-space if the branch-space
was not completely full.

The example call graph and call frequencies in Figure 4 show that the Preorder partitioning algorithm,
which does not use a profile, has 5 procedure call edges that span across branch spaces and these account for
25 executed procedure calls uses the example’s call frequencies. In comparison, the profile based MaxCut
algorithm has 4 procedure call edges that span across different branch spaces with an execution frequency
cost of 16 procedure calls. This example shows that the MaxCut algorithm can substantially decrease the
branches that span across the branch space over the Preorder partitioning algorithm.

5.1 Performance of Program Partitioning Heuristics

Table 2 summarizes the performance of the partitioning heuristics for a 14-bit and 16-bit branch space. 1

The Table is broken into four major columns, showing the performance of each method. For each method,
the first sub-column (Seg) shows the number of branch spaces introduced by the partitioning, and the number
of additional program pages needed by the partitioned program over the original program. We assumed an
8KByte page size. The next sub-column (%IIB) shows the increase in indirect function calls introduced
by this partitioning. This term is used when computing the Branch Execution Penalty. Average results are
shown for the two branch spaces for the benchmarks broken down into 5 categories: the 10 Perfect-Club
benchmarks, the 11 SPECfp92 benchmarks, the 8 SPECint92 benchmarks, the 6 C++ programs, and the
overall average of all 35 programs. For example, Table 2 shows the Overall Average for all the programs
partitioned using the Preorder method with a 14-bit branch space; 7 branch spaces are used, 1 additional
8KByte memory page is needed, and 2.29% of the branches are converted to indirect jumps. The %IIB value
is averaged over all branches to simplify the calculation of the BEP, and provides insight to the overhead of

1The detailed results for partitioning each program into 14-bit and 16-bit branch spaces are included in the appendix.
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Separate Preorder Prof Depth Max Cut
Branch Space Programs Seg %IIB Seg %IIB Seg %IIB Seg %IIB

14-Bit Branches Perfect-Club 743 4.34 7/1 2.86 7/1 0.54 7/0 0.47
SPECfp92 709 3.96 6/1 1.00 6/2 0.98 6/0 0.38
SPECint92 516 5.67 4/1 0.59 4/0 0.49 4/0 0.37
C++ 2260 10.46 12/4 5.97 11/2 3.85 11/0 3.35
Overall Avg 940 5.57 7/1 2.29 7/1 1.23 7/0 0.91

16-Bit Branches Perfect-Club 743 4.34 2/0 0.49 2/0 0.36 2/0 0.00
SPECfp92 709 3.96 2/0 0.16 2/0 0.34 2/0 0.00
SPECint92 516 5.67 1/0 0.13 1/0 0.11 1/0 0.11
C++ 2260 10.46 3/0 2.34 3/0 1.88 3/0 1.66
Overall Avg 940 5.57 2/0 0.62 2/0 0.56 2/0 0.31

Table 2: Summary of Performance for Branch Partitioning Heuristics. The segment column shows the
number of branch spaces (segments) and the extra virtual memory pages needed by that partitioning. The
%IIB column shows the number of branches converted to indirect branches required by that partitioning,
averaged over all branches in the program.

partitioning on total branch execution. The same program execution was used to partition and then assess
the profile-directed partitioning methods; the performance of other executions may differ.

Table 2 shows that the algorithm used to partition the programs into a 14-bit branch space has a
reasonable impact on program size and the number of indirect jumps. This effect is largest for the C++
program average, where the Preorder partition results in an increase in memory usage of four 8K pages, and
6% of the branches are converted to indirect jumps. When adding profile information, the MaxCut partition
requires no additional memory usage for the C++ programs, and the percent of branches that are converted
to indirect jumps is reduced by almost a half down to 3.3%. When using a 16-bit branch space there
was little effect on program size or the number of indirect jumps for the benchmarks examined. For this
branch space, the C++ program average again showed the biggest improvement, with the percent increase
in indirect branches (%IIB) reduced from 2.3%, when using the Preorder algorithm, down to 1.7%, when
using the MaxCut algorithm. As mentioned, all of the programs we examined fit into a single 21-bit branch
space when using the Precomputed-Branch architecture, so there is no difference between the different
partitioning algorithms for a 21-bit branch space.

When comparing branch target buffer architectures to the Precomputed-Branch architecture, we will
only consider the Preorder and MaxCut partitioning, and show the results for 14, 16 and 21-bit explicit
branch displacements. The Preorder partitioning provides the lowest branch cost for those methods we
examined that did not used profile information, while the MaxCut method provided the best profile-driven
partition.

6 Branch Architecture Performance Comparison

In this section we compare the performance of the branch target buffer (BTB) architecture to the Precomputed-
Branch architecture. We use the branch execution penalty to compare performance, but also report the
misfetch and misprediction penalty.
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Both architectures used a 4096-entry decoupled 2-level pattern history table, using the extension pro-
posed by McFarling [23], where the program counter is XOR-ed with the global history register to form an
index into the PHT. In the BTB architecture, we simulated branch target buffers with 4, 16, 32, 64, 128, 256,
512 and an infinite number of entries. In each case, the BTB was organized as a 4-way associative BTB.
The Precomputed-Branch architecture stores the pre-computed branch destination as part of the instruction
for all branches except indirect jumps, with no additional overhead in the instruction cache. We used a small
4-way associative indirect jump buffer (IJB) with the Precomputed-Branch architecture, containing either
0, 4, 16 or 32 entries, to predict the destination of indirect branches. We also simulated a direct-mapped IJB
for the same configurations.

6.1 Comparing the BTB and Precomputed-Branch Architectures

Figure 5 summarizes the branch execution penalty for the different partitioning methods, branch space
sizes and architectures. The Preorder-14 column uses the Preorder partitioning heuristic with 14-bit branch
spaces. The MaxCut-14, Preorder-16 and MaxCut-16 uses the corresponding partitioning and branch sizes.
The Optimal-21 partitioning uses a 21-bit branch space. With this branch space size, each program in
our benchmark suite occupied a single branch space, and there is no difference between the Preorder and
MaxCut partitioning. The Precomputed-Branch architecture has no misfetch penalty because the destination
for all direct branches is immediately known. The BTB-Misfetch=1 column shows the performance for the
decoupled BTB architecture with a single cycle misfetch penalty. A larger misfetch penalty would increase
the BEP for the BTB-based architecture, but not the Precomputed-Branch architecture.

Table 3 provides more details about the terms used to compute the BEP. We show the average percent of
misfetch and mispredicted branches. For the Precomputed-Branch architecture, we also show %IIB, the cost
of converting procedure calls that span branch spaces into indirect branches. A misfetched branch occurs
because the processor does not know the destination address for a taken branch. The BTB architecture
misfetches because the computed destination is not found in the BTB, while the Precomputed-Branch never
misfetches because the pre-computed destination is stored in the instruction. A mispredicted branch occurs
either because the outcome of a conditional branch is mispredicted, or the destination of a procedure return
or indirect branch is mispredicted.

6.2 Performance Analysis

Figure 5 shows that the Precomputed-Branch architecture with no additional prediction for indirect branches
is comparable in performance to the BTB architecture with 16 to 64 entries. The Precomputed-Branch
configurations with 14-bit and 16-bit branch spaces fairs worse than the 21-bit design, because a larger
number of branches must span branch spaces (increasing %IIB) and because those branches are converted
to indirect branches which may be mispredicted (increasing %MpB). Partitioning using profiles, as in the
MaxCut partitioning, reduces the penalty for small branch spaces. It should be noted that the BTB results
shown in this paper use a 21-bit displacement for the branch instructions. If the programs were studied
for the BTB architecture with a smaller displacement, then possibly some PC-relative branches would
need to be converted to indirect jumps just as in the Precomputed-Branch architecture design. Therefore,
for a fair comparison, the BTB results should be compared directly to the 21-bit explicit displacement
Precomputed-Branch architecture results (Optimal-21).
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Architecture BTB Size %MfB %MpB %IIB BEP

BTB 4 22.88 4.85 0.0 0.42
BTB 16 12.64 4.66 0.0 0.31
BTB 32 8.62 4.43 0.0 0.26
BTB 64 4.57 4.37 0.0 0.22
BTB 128 2.57 4.31 0.0 0.20
BTB 256 1.08 4.27 0.0 0.18
BTB 512 0.44 4.25 0.0 0.17
BTB Infinite 0.02 4.23 0.0 0.17

Preorder-14 0 0.0 7.75 2.29 0.31
Preorder-14 4 0.0 5.69 2.29 0.23
Preorder-14 16 0.0 4.78 2.29 0.19
Preorder-14 32 0.0 4.60 2.29 0.18

MaxCut-14 0 0.0 6.37 0.91 0.24
MaxCut-14 4 0.0 5.37 0.91 0.21
MaxCut-14 16 0.0 4.58 0.91 0.18
MaxCut-14 32 0.0 4.46 0.91 0.18

Preorder-16 0 0.0 6.07 0.62 0.26
Preorder-16 4 0.0 5.13 0.62 0.22
Preorder-16 16 0.0 4.53 0.62 0.18
Preorder-16 32 0.0 4.46 0.62 0.18

MaxCut-16 0 0.0 5.77 0.31 0.23
MaxCut-16 4 0.0 4.97 0.31 0.20
MaxCut-16 16 0.0 4.42 0.31 0.18
MaxCut-16 32 0.0 4.35 0.31 0.17

Optimal-21 0 0.0 5.45 0.0 0.22
Optimal-21 4 0.0 4.69 0.0 0.19
Optimal-21 16 0.0 4.29 0.0 0.17
Optimal-21 32 0.0 4.26 0.0 0.17

Table 3: Summary of Performance Information From Trace Driven Simulations. The branch execution
penalty is computed with a 4-cycle branch misprediction penalty, a 1-cycle misfetch penalty and a 1-cycle
penalty for extra indirect branches. The values shown are arithmetic means over all programs.
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Figure 5: Branch Execution Penalty. The Branch Execution Penalty is computed with a 4-cycle branch
misprediction penalty, a 1-cycle misfetch penalty and a 1-cycle penalty for converted indirect branches.
Results are shown for a 14-bit, 16-bit, and 21-bit branch space.

Adding a very small indirect jump buffer for indirect branches to the Precomputed-Branch architecture
provides as much benefit as profile-based partitioning, and reduces the BEP for each design. With a small
16 or 32 entry IJB, the Precomputed-Branch design has the same BEP as a processor using an infinitely
large BTB. Most of the performance gain is evident even when a small number of IJB entries are used. In
the Precomputed-Branch design, the IJB is only used to predict indirect jumps, while the design using a
BTB must use the BTB to avoid misfetching for all PC-relative branches and to predict the destination for
indirect jumps.

6.2.1 Impact on Chip Area

To evaluate the area implementation costs for these architectures we used the register bit equivalent (RBE)
cost model for on-chip memories proposed by Mulder et al. [27], where one RBE equals the area cost of a
single bit storage cell. Figure 6 graphs the performance for the Precomputed-Branch architecture and the
BTB design showing the branch execution penalty on the Y-axis and the register bit equivalent chip area
costs on the X-axis (the lower the RBE cost the better). Results are shown for a 4, 16, 32, 64, 128, 256,
and 512 entry BTB for a processor which has a 32-bit and 64-bit address space. The Precomputed-Branch
results are shown for an architecture with instructions that have a 21-bit explicit displacement, with no IJB,
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Figure 6: Branch Execution Penalty and Register Bit Equivalent Chip Area Costs. Results for a 4, 16, 32,
64, 128, 256, and 512 entry BTB are shown for an architecture with a 32-bit and 64-bit address space. This
is compared to the Precomputed-Branch performance for a 21-bit explicit displacement with no IJB, and a
4 and 16 entry IJB.

and a 4 and 16 entry IJB. For example, in Figure 6 the 16 entry IJB Precomputed-Branch architecture has a
register bit equivalent cost of 1,900 rbe, with a branch execution penalty of 0.17.

Figure 6 shows an important design difference between the Precomputed-Branch architecture and the
BTB – chip area cost. The BTB’s chip area cost is dependent on the size of the processor’s address space.
As future processors change from a 32-bit address space to a 64-bit address space, the chip area cost for a
BTB will significantly increase. In comparison, the increased chip area cost for the Precomputed-Branch
architecture is small and comes from the very small IJB needed to predict indirect jumps.

The RBE cost for a direct mapped 512 entry BTB is 19,000 rbe for a 32-bit address space. In comparison,
an 8KByte direct mapped instruction cache with 32 byte lines has an RBE cost of 44,000 rbe. Therefore,
the hardware cost of the BTB is around 43% of the cost of an 8K direct mapped instruction cache. Since the
main purpose of the BTB is to eliminate misfetch penalties by providing taken target addresses, the BTB is a
costly mechanism in comparison to the reduction is memory latency that an instruction cache provides, when
comparing the hardware costs for these two mechanisms. This Figure shows that the Precomputed-Branch
architecture is a very attractive alternative to the BTB design especially for future 64-bit processors.
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6.2.2 Impact on Cycle Time

The access time for a cache (or a BTB) depends both on the size and the associativity of the design [17, 31].
Recall that the branch target buffer requires considerable resources, and is organized as a 4-way associative
cache, while the Precomputed-Branch architecture uses information recorded in the instructions. Figure 7
shows the access time of the BTB in comparison to the access time for an instruction cache using an accurate
timing analysis tool by Wilton and Jouppi [38]. The Figure shows that the access time of a 4-way associative
128 entry BTB is larger than the access time for a direct mapped 8K and 32K instruction cache with 32 byte
lines. The reason for this access time difference is that for a direct mapped cache no mux driver is needed,
and the data contents can be sent ahead to the next pipeline stage before the full tag comparison finishes.
For associative caches, the associative tag comparison and selection can significantly slow down the cache
access time. Also notice in Figure 7, that the access time of the direct mapped 512 entry BTB is larger than
the direct mapped 8KByte instruction cache. This is because of the slower tag array organization resulting
from the 512 tags in the BTB, compared to the 256 tags needed for the 8KByte cache. Notice that the 512
entry BTB has a smaller access time than the 8KByte cache when comparing 2-way and 4-way associative
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IJB Entries
0 4 16 32

Direct Mapped BEP 0.22 0.19 0.18 0.17
IJB %MpB 5.51 4.67 4.40 4.35

4-way Associative BEP 0.22 0.19 0.17 0.17
IJB %MpB 5.45 4.69 4.29 4.26

Table 4: A comparison of the BEP and %MpB for the 21-bit branch space partitioning with direct and
associative IJB designs.

organizations. This is because of larger and slower mux driver needed to drive the 32-byte line of the cache
compared to the 4-byte line of the BTB.

Despite the advantages of direct mapped caches, many BTB designs, such as the BTB used in the Intel
Pentium and PentiumPro and those proposed by Yeh et al [41] use a large, multi-associative BTBs to reduce
the misfetch penalty. Though, for processors like the DEC Alpha 21064 and 21164, which have a direct
mapped first level instruction cache, an associative BTB design is not practical because of the access times
shown in Figure 7. Since the instruction fetch cycle often limits processor performance, designs using a
large, associative BTBs may lengthen the cycle time, affecting the performance of the entire processor.
In [18], the designers of the TFP (MIPS R8000) microprocessor stated:

We evaluated several well-known branch prediction algorithms for layout size, speed, and
prediction accuracy. The most critical factor affecting area was the infrastructure required to
support a custom block: power ring and power straps to the ring, and global routing between
the branch prediction cache and its control logic. Speed was a problem with tag comparisons
for those schemes that are associative. Accordingly we chose a simple direct-mapped, one-bit
prediction scheme which can be implemented entirely with a single-ported RAM.

The access times in Figure 7 show that the BTB can affect the cycle time of the processor. In comparison,
the Precomputed-Branch design would have only a very small 16 entry IJB which would not affect the cycle
time in comparison to the instruction cache access time. The indirect jump buffers simulated in Figures 5
and 6 were 4-way associative as were the BTB designs. Table 4 compares the performance of the 21-bit
branch space partitioning with a direct-mapped and associative IJB; there is little difference in performance.

6.2.3 Impact of Large Applications

In general, the BTB branch architecture has worse performance then the Precomputed-Branch architecture
for the large programs in the benchmark suite, although this is not indicated in the mean values we show. In
part, this is a reflection of the application mix we used for benchmarking. Although applications such as the
Perfect Club and SPEC suite have the advantage of being well known and understood, they are dominated
by a small number of heavily executed branches, primarily in loops. By comparison, benchmarks such as
cfront and groff have more branches, and better illustrate the problems of fixed capacity mechanisms
such as BTB’s. We feel these programs better illustrate the performance of branch architectures. These
characteristics are shown in Table 5. Table 5 shows the branch quantiles for each program, and the total
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Program Q-25 Q-50 Q-60 Q-70 Q-80 Q-90 Q-95 Q-99 Q-100 Static-All

APS 20 50 74 113 177 322 425 631 2705 17460
CSS 11 50 80 128 190 293 356 650 3293 19904
LGS 4 12 18 25 39 65 92 147 1972 14910
LWS 2 4 7 11 16 28 39 57 1686 14580
NAS 3 7 11 16 24 66 121 200 2574 15594
OCS 1 3 4 7 18 49 83 219 2215 14524
SDS 1 9 13 21 30 44 74 204 2475 15298
TFS 6 16 23 34 60 152 267 571 2368 14823
TIS 2 8 11 17 23 31 36 66 1201 13049
WSS 12 49 90 143 217 327 413 641 2547 15334
doduc 2 6 16 40 116 237 301 403 1965 14159
fpppp 6 11 18 27 39 60 88 130 1029 13039
hydro2d 7 15 25 36 56 77 113 234 2177 14253
mdljsp2 4 7 8 10 12 15 20 30 1472 14416
nasa7 3 10 15 23 42 78 133 381 1594 13680
ora 3 6 8 10 12 14 17 24 897 12431
spice 1 3 6 12 23 50 90 155 2718 19060
su2cor 4 10 13 17 24 37 48 80 2114 14658
swm256 1 2 2 2 2 3 3 15 1146 12745
tomcatv 2 3 3 4 4 5 7 7 723 11515
wave5 7 22 31 46 71 111 179 355 1789 15378
alvinn 1 2 2 2 2 2 6 140 570 3107
compress 2 5 6 8 10 15 18 20 339 2236
ear 2 3 3 4 5 7 9 43 844 3968
eqntott 1 2 2 2 5 26 58 94 740 3205
espresso 15 48 69 98 133 186 289 686 2843 9728
gcc 73 326 540 852 1308 2180 3182 5341 11781 32250
li 8 28 38 49 66 98 149 224 1082 5827
sc 4 12 26 44 63 114 199 518 2492 9983
cfront 29 99 169 309 615 1354 2271 4592 9228 37142
db++ 3 9 18 33 68 134 193 256 829 3569
groff 44 168 237 326 449 697 990 1819 5675 19534
idl 6 15 19 22 27 64 127 398 2850 12433
lic 29 99 156 266 449 752 1088 2074 4108 54222
porky 3 16 40 65 124 358 649 1714 6258 29656

Overall Avg 9 32 51 80 129 230 346 660 2579 15362

Table 5: Branch quantiles, showing the contribution of individual branch instructions to the branch activity
in each program. The value of a given quantile entry shows the number of individual branch instructions
that contribute to a given fraction of the branching activity in a program.
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cfront gcc groff lic
Configuration BTB/IJB %MfB %MpB %MfB %MpB %MfB %MpB %MfB %MpB
BTB 256 12.52 13.79 6.91 12.39 4.95 5.35 4.80 6.75
BTB Infinite 0.25 13.61 0.03 12.30 0.04 5.13 0.25 6.74
Optimal-21 0 0.00 14.39 0.00 13.42 0.00 7.51 0.00 6.90
Optimal-21 4 0.00 13.93 0.00 12.48 0.00 6.34 0.00 6.77
Optimal-21 16 0.00 13.75 0.00 12.33 0.00 5.45 0.00 6.74
Optimal-21 32 0.00 13.66 0.00 12.32 0.00 5.31 0.00 6.74

Table 6: Comparison of Misfetch and Mispredict Penalties for Programs with Many Branches. Both the
BTB and IJB are 4-way associative.

number of branches executed in that program. Each branch quantile shows the number of static branch sites
that contribute a given amount to the number of dynamic branches during execution. For example, in the
‘APS’ program, the Q-90 value indicates that the 322 branch instructions in the program constitute 90% of
the branches executed in the program. The Q-100 value shows the total number of branch sites executed in
the program, and the Static-All value shows the total number of static branches in the program.

Some programs, such as compress and su2cor, have a high misprediction rate with few branches,
because they contain a few conditional branches that are simply hard to predict. Other programs, such as
cfront and gcc contain a great number of conditional branches, and many of those branches are difficult
to predict. The prediction accuracy for these programs can be improved by using larger pattern history tables,
or by various compiler transformations [6, 25, 43]. One advantage of the Precomputed-Branch architecture,
particularly for larger programs representative of actual applications, is that it is less susceptible to capacity
misses for fetch prediction.

Programs such as cfront, gcc, lic and groff contain a large number of branches, and the
Precomputed-Branch architecture performs very well for for these programs. Table 6, which shows the
%MfB and %MpB, shows why. Each program has a high misprediction rate in both architectures, reflecting
the unpredictability of the conditional branches in these applications. The BTB architecture has a slightly
lower %MpB than the Precomputed-Branch architecture if no IJB entries are used, because the BTB
architecture can predict indirect jumps. However, the BTB architecture must also use the BTB to avoid
instruction misfetch penalties, and even a 256-entry BTB has a considerable number of misfetches for these
large programs.

The C++ programs can benefit greatly from the addition of a very small indirect jump buffer. For
example, the %MpB for the db++ program drops from 15.71 to 0.78 with the addition of a four-entry IJB.
This program contains a large number of indirect jumps, as shown by the detailed program information in
Table 1, but those indirect jumps are fairly predictable. The predictability of indirect jumps in C++ programs
was shown in an earlier study [7], and has been demonstrated for many C++ programs. Tables 9 and 10, in
the appendix, show the %MpB for all configurations of the Precomputed-Branch architecture, using both
partitioning algorithms.
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7 Practical Concerns

In the past, segment architectures have been greeted with less than overwhelming enthusiasm, due to
limited segment sizes. However, the Precomputed-Branch architecture has a single instruction address
space with branch instructions that can only access a portion of that address space. A concern with an
explicit displacement encoding is how to implement code relocation, which is important for shared program
libraries. For the Precomputed-Branch architecture, consider using an architecture such as the DEC Alpha
AXP, which uses a 21-bit branch displacement for word-aligned instructions in a 64-bit instruction address
space. The instruction space is broken into 264�21+2, or � 2 trillion branch spaces of 8MBytes each.
Branches within each 8MByte branch space use an explicit displacement (pre-computed branch). Each
segment can be relocated to � 2 trillion different locations without modification, and all branches within a
given branch space are relative to that branch space. Furthermore, such large 8MByte branch spaces would
address almost all programs we have encountered. With � 2 trillion different branch spaces to choose from
for relocation, dynamically performing relocation for a program or a shared library would not be a problem
for the Precomputed-Branch architecture.

7.1 Non-relative Branches in a Relative World

The Precomputed-Branch architecture performs most of its branch computation at link or compile time.
Traditional relative branches perform the branch computation during instruction issue, where branch target
buffers can be used to cache this information. The primary objection to using non-relative branches is that
most instruction sets already use relative branches, and the Precomputed-Branch architecture requires a
change to the instruction set architecture.

It is also possible to pre-compute the branch destination when instructions are entered into the instruction
cache. Instructions in many architectures are partially decoded when fetched into the cache, simplifying
instruction dispatch and scheduling. The destination for a relative branch instruction can also be computed
during instruction fetch. This is shown diagrammatically in Figure 8. The lower order bits of the branch
instruction’s PC-relative target address is computed up to the carry-bit as the instruction is brought into
the cache; if the carry-bit is set, the branch destination is not in the current branch space. If the branch
instruction branches to a destination within the same branch space, the decoded instruction type is set to
indicate that the destination contains a pre-computed branch, and the instruction stored in the instruction
cache is changed to contain the pre-computed explicit displacement. If the destination is not in the same
branch space, the branch will have to use an indirect jump, and the instruction type is marked to indicate
that the IJB should be used to predict the branch destination. When fetching a branch instruction with the
pre-computed branch type bit set, the target address for the next fetch is calculated as previously described
for the Precomputed-Branch architecture, where the upper bits of the PC are concatenated with the pre-
computed branch displacement. For a branch instruction that is marked to use the IJB, the first time the
instruction is executed the proper destination is computed in the decode stage and is used to initialize the
IJB. Then on subsequent accesses to that instruction, the target address stored in the IJB will be used in the
next instruction fetch to eliminate the misfetch penalty.

In such an architecture, the partitioning discussed in x5 reduces the number of branches that span branch
spaces. As in the Precomputed-Branch architecture, this improves the effectiveness of the IJB entries. With
partitioning, the cost and performance for this architecture would be identical to the design proposed, with
the addition of an extra cycle of delay when instructions are fetched into the instruction cache. One benefit
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to this alternate design shown in Figure 8, is that the instruction set architecture does not need to be changed
since the compiler still creates branches with PC-relative offsets.

8 Conclusions

We have shown that using a pre-computed or non-relative branch displacement is more effective than
an architecture that uses a large BTB to cache the destinations for branches. We examined a variety of
simple partitioning algorithms that break programs into multiple branch spaces and convert the inter-space
branches to indirect jumps. These partitioning algorithms are simple, work well without profile information,
and work better with real or estimated profile information. Also, these same partitioning algorithms are
already used in existing compilers to map procedures and basic blocks to improve page utilization and to
improve instruction cache performance [25, 30]. We have shown that combining a small indirect jump
buffer with the Precomputed-Branch architecture results in a branch architecture that uses few resources and
has excellent performance, particularly for programs with a large number of branches. We also described
how to use the Precomputed-Branch architecture in existing processors without having to modify the
instruction set architecture. Lastly, there is another advantage to the proposed designs – the pre-computed
branch destination does not depend on the size of the address range. By comparison, the size of a branch
target buffer would increase as the instruction address range increases, and will pose problems for 64-bit
processors.

This branch encoding has been used in older architectures such as the PDP-8, but is even better suited
for modern architectures when a sizable branch displacement field is provided. The Precomputed-Branch
architecture exploits the information available at each step of the compilation and execution process. This
separates the branch targets that can be pre-computed prior to execution from those that actually need
dynamic prediction, such as indirect jumps with multiple targets using an indirect jump buffer and return
instructions using the return-stack [19].
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A Detailed Information From Trace-Driven Simulations
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Seperate Preorder Prof Depth Max Cut
Program Seg %IIB Seg %IIB Seg %IIB Seg %IIB

APS 797 4.63 9/2 3.38 9/1 0.19 8/0 0.19
CSS 818 5.24 9/2 2.40 9/2 2.47 9/0 1.37
LGS 726 10.14 6/0 6.44 6/1 1.36 6/0 1.68
LWS 714 7.03 6/1 3.14 6/1 0.00 6/0 0.00
NAS 740 10.99 7/1 9.47 7/1 0.43 7/0 0.43
OCS 717 0.44 6/1 0.44 6/0 0.06 6/0 0.00
SDS 768 0.37 6/1 0.02 6/0 0.02 6/0 0.14
TFS 715 2.43 6/0 2.30 6/1 0.28 6/0 0.21
TIS 681 0.00 5/1 0.00 5/1 0.00 5/0 0.00
WSS 757 2.09 7/1 0.97 7/0 0.54 7/0 0.67
doduc 708 6.86 6/1 0.21 6/1 1.06 6/0 1.02
fpppp 685 2.66 6/1 0.22 6/3 0.70 6/0 0.00
hydro2d 716 1.38 6/1 0.00 6/1 0.00 6/0 0.00
mdljsp2 733 0.29 6/2 0.27 6/1 0.00 6/0 0.00
nasa7 706 5.95 6/0 0.22 6/2 1.06 6/0 1.08
ora 668 9.75 5/1 0.40 5/2 0.00 5/0 0.00
spice 815 2.28 9/2 1.73 9/2 0.82 9/0 0.33
su2cor 711 6.92 6/0 4.65 7/2 0.02 6/0 0.02
swm256 677 0.08 5/0 0.08 5/1 0.00 5/0 0.00
tomcatv 617 0.03 5/1 0.01 5/1 0.00 5/0 0.00
wave5 762 7.34 7/1 3.19 7/1 7.12 7/0 1.68
alvinn 212 0.64 2/0 0.00 2/0 0.00 2/0 0.00
compress 149 1.95 1/0 0.00 1/0 0.00 1/0 0.00
ear 290 17.42 2/0 0.05 2/0 0.00 2/0 0.00
eqntott 212 0.69 2/0 0.16 2/0 0.00 2/0 0.00
espresso 551 2.26 4/1 1.22 4/0 0.49 4/0 0.11
gcc 1651 4.90 12/2 1.72 12/2 1.67 12/0 1.92
li 551 12.92 3/0 0.84 3/0 0.84 3/0 0.90
sc 512 4.55 4/1 0.75 4/0 0.92 4/0 0.03
cfront 981 7.69 16/13 4.30 15/7 3.70 14/0 4.02
db++ 329 6.75 2/0 0.00 2/0 0.00 2/0 0.00
groff 1756 9.00 8/4 3.91 8/2 3.19 8/0 2.03
idl 1459 9.07 5/1 7.72 5/1 7.66 5/0 7.50
lic 5333 12.52 25/5 6.12 24/2 4.44 24/0 3.27
porky 3704 17.74 14/2 13.78 14/2 4.12 14/0 3.30

Overall Avg 940 5.57 7/1 2.29 7/1 1.23 7/0 0.91

Table 7: Efficacy of Program Partitioning with 14-bit Branch Displacements. The format of the table and
the significance of the values is discussed in x5.1.
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Seperate Preorder Prof Depth Max Cut
Program Seg %IIB Seg %IIB Seg %IIB Seg %IIB

APS 797 4.63 2/0 2.73 2/0 0.51 2/0 0.00
CSS 818 5.24 3/0 1.76 3/1 2.83 3/0 0.00
LGS 726 10.14 2/0 0.00 2/0 0.00 2/0 0.00
LWS 714 7.03 2/0 0.00 2/0 0.00 2/0 0.00
NAS 740 10.99 2/0 0.00 2/1 0.00 2/0 0.00
OCS 717 0.44 2/0 0.00 2/0 0.00 2/0 0.00
SDS 768 0.37 2/0 0.00 2/0 0.00 2/0 0.00
TFS 715 2.43 2/0 0.00 2/0 0.00 2/0 0.00
TIS 681 0.00 2/1 0.00 2/1 0.00 2/0 0.00
WSS 757 2.09 2/0 0.44 2/0 0.22 2/0 0.00
doduc 708 6.86 2/0 0.00 2/0 0.00 2/0 0.00
fpppp 685 2.66 2/0 0.00 2/0 0.00 2/0 0.00
hydro2d 716 1.38 2/0 0.00 2/0 0.00 2/0 0.00
mdljsp2 733 0.29 2/0 0.00 2/0 0.00 2/0 0.00
nasa7 706 5.95 2/0 0.00 2/0 0.00 2/0 0.00
ora 668 9.75 2/1 0.00 2/1 0.00 2/0 0.00
spice 815 2.28 3/1 1.69 3/0 0.82 3/0 0.00
su2cor 711 6.92 2/0 0.00 2/0 0.00 2/0 0.00
swm256 677 0.08 2/0 0.00 2/0 0.00 2/0 0.00
tomcatv 617 0.03 2/0 0.00 2/0 0.00 2/0 0.00
wave5 762 7.34 2/0 0.02 2/1 2.93 2/0 0.00
alvinn 212 0.64 1/0 0.00 1/0 0.00 1/0 0.00
compress 149 1.95 1/0 0.00 1/0 0.00 1/0 0.00
ear 290 17.42 1/0 0.00 1/0 0.00 1/0 0.00
eqntott 212 0.69 1/0 0.00 1/0 0.00 1/0 0.00
espresso 551 2.26 1/0 0.00 1/0 0.00 1/0 0.00
gcc 1651 4.90 3/0 1.05 3/0 0.89 3/0 0.97
li 551 12.92 1/0 0.00 1/0 0.00 1/0 0.00
sc 512 4.55 1/0 0.00 1/0 0.00 1/0 0.00
cfront 981 7.69 4/0 2.31 4/0 1.99 4/0 1.06
db++ 329 6.75 1/0 0.00 1/0 0.00 1/0 0.00
groff 1756 9.00 2/0 1.40 2/1 0.87 2/0 0.84
idl 1459 9.07 2/0 5.04 2/0 5.04 2/0 5.04
lic 5333 12.52 6/0 2.87 6/0 0.37 6/0 0.29
porky 3704 17.74 4/0 2.44 4/0 3.00 4/0 2.75

Overall Avg 940 5.57 2/0 0.62 2/0 0.56 2/0 0.31

Table 8: Efficacy of Program Partitioning with 16-bit Branch Displacements. The format of the table and
the significance of the values is discussed in x5.1.
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14 bit Branch Space 16 bit Branch Space 21 bit Branch Space
Program No 4 16 32 No 4 16 32 No 4 16 32

APS 6.57 3.89 3.33 3.18 5.91 3.57 3.26 3.14 3.18 3.11 3.09 3.09
CSS 7.62 6.63 6.03 5.50 6.99 6.01 5.29 5.12 5.22 4.55 4.16 4.01
LGS 11.59 5.39 5.17 5.14 5.14 5.14 5.14 5.14 5.14 5.14 5.14 5.14
LWS 8.51 6.30 5.36 5.36 5.36 5.36 5.36 5.36 5.36 5.36 5.36 5.36
NAS 13.62 5.01 3.83 3.32 4.15 3.44 3.31 3.31 4.15 3.44 3.31 3.31
OCS 2.87 2.47 2.45 2.45 2.43 2.42 2.42 2.42 2.43 2.42 2.42 2.42
SDS 3.28 3.28 3.26 3.25 3.26 3.25 3.25 3.25 3.26 3.25 3.25 3.25
TFS 6.32 5.87 3.98 3.91 4.02 3.88 3.86 3.86 4.02 3.87 3.86 3.86
TIS 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66
WSS 6.47 4.53 3.91 3.82 5.93 3.99 3.82 3.82 5.50 3.98 3.82 3.82
doduc 4.60 4.52 4.50 4.47 4.40 4.39 4.39 4.39 4.40 4.39 4.39 4.39
fpppp 4.86 4.63 4.63 4.63 4.63 4.63 4.63 4.63 4.63 4.63 4.63 4.63
hydro2d 2.80 2.80 2.79 2.79 2.79 2.79 2.79 2.79 2.79 2.79 2.79 2.79
mdljsp2 6.96 6.69 6.69 6.69 6.69 6.69 6.69 6.69 6.69 6.69 6.69 6.69
nasa7 2.77 2.40 2.29 2.24 2.55 2.27 2.20 2.20 2.55 2.27 2.20 2.20
ora 3.02 2.61 2.61 2.61 2.61 2.61 2.61 2.61 2.61 2.61 2.61 2.61
spice 5.95 4.56 4.07 4.06 5.91 4.54 4.06 4.06 4.22 4.06 4.06 4.06
su2cor 14.15 9.33 9.32 9.32 9.50 9.32 9.32 9.32 9.50 9.32 9.32 9.32
swm256 0.67 0.52 0.52 0.52 0.59 0.52 0.52 0.52 0.59 0.52 0.52 0.52
tomcatv 0.51 0.51 0.49 0.49 0.50 0.50 0.48 0.48 0.50 0.50 0.48 0.48
wave5 6.76 3.55 3.52 3.48 3.59 3.48 3.48 3.48 3.57 3.48 3.48 3.48
alvinn 0.23 0.21 0.21 0.21 0.23 0.21 0.21 0.21 0.23 0.21 0.21 0.21
compress 9.86 9.86 9.86 9.86 9.86 9.86 9.86 9.86 9.86 9.86 9.86 9.86
ear 4.03 3.94 3.94 3.94 3.98 3.94 3.94 3.94 3.98 3.94 3.94 3.94
eqntott 3.13 1.31 1.28 1.28 2.97 1.31 1.28 1.28 2.97 1.31 1.28 1.28
espresso 6.47 5.54 5.29 5.16 5.25 5.09 5.07 5.07 5.25 5.09 5.07 5.07
gcc 15.14 14.01 13.42 13.06 14.47 13.42 12.97 12.68 13.42 12.48 12.33 12.32
li 5.92 4.80 4.26 4.08 5.08 4.02 4.01 4.01 5.08 4.02 4.01 4.01
sc 5.33 4.15 3.95 3.89 4.42 3.83 3.82 3.82 4.42 3.83 3.82 3.82
cfront 18.69 18.08 17.12 16.42 16.70 16.14 15.74 15.27 14.39 13.93 13.75 13.66
db++ 15.71 0.78 0.76 0.76 15.71 0.78 0.76 0.76 15.71 0.78 0.76 0.76
groff 11.42 9.55 7.29 6.59 8.91 7.49 6.14 5.82 7.51 6.34 5.45 5.31
idl 21.07 20.87 3.38 2.59 18.39 18.25 2.99 2.19 13.35 13.21 2.20 1.85
lic 13.02 10.39 9.56 8.98 9.77 8.46 8.00 7.31 6.90 6.77 6.74 6.74
porky 19.55 8.51 6.40 5.42 8.21 6.18 5.09 4.42 5.77 4.18 3.53 3.26

Overall Avg 7.75 5.69 4.78 4.60 6.07 5.13 4.53 4.43 5.45 4.69 4.29 4.26

Table 9: The percentage of mispredicted branches using the Preorder partitioning. The results are shown
for a varying number of IJB entries; the IJB entries are only used to predict indirect jumps.
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14 bit Branch Space 16 bit Branch Space 21 bit Branch Space
Program No 4 16 32 No 4 16 32 No 4 16 32

APS 3.38 3.18 3.15 3.13 3.18 3.11 3.09 3.09 3.18 3.11 3.09 3.09
CSS 6.60 5.50 4.27 4.08 5.22 4.55 4.16 4.01 5.22 4.55 4.16 4.01
LGS 6.82 5.54 5.14 5.14 5.14 5.14 5.14 5.14 5.14 5.14 5.14 5.14
LWS 5.36 5.36 5.36 5.36 5.36 5.36 5.36 5.36 5.36 5.36 5.36 5.36
NAS 4.58 3.58 3.32 3.32 4.15 3.44 3.31 3.31 4.15 3.44 3.31 3.31
OCS 2.44 2.43 2.42 2.42 2.43 2.42 2.42 2.42 2.43 2.42 2.42 2.42
SDS 3.41 3.27 3.25 3.25 3.26 3.25 3.25 3.25 3.26 3.25 3.25 3.25
TFS 4.24 4.12 3.95 3.88 4.02 3.87 3.86 3.86 4.02 3.87 3.86 3.86
TIS 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66
WSS 6.17 4.15 3.83 3.82 5.50 3.98 3.82 3.82 5.50 3.98 3.82 3.82
doduc 5.42 4.86 4.39 4.39 4.40 4.39 4.39 4.39 4.40 4.39 4.39 4.39
fpppp 4.63 4.63 4.63 4.63 4.63 4.63 4.63 4.63 4.63 4.63 4.63 4.63
hydro2d 2.79 2.79 2.79 2.79 2.79 2.79 2.79 2.79 2.79 2.79 2.79 2.79
mdljsp2 6.69 6.69 6.69 6.69 6.69 6.69 6.69 6.69 6.69 6.69 6.69 6.69
nasa7 3.63 3.14 2.51 2.24 2.55 2.27 2.20 2.20 2.55 2.27 2.20 2.20
ora 2.61 2.61 2.61 2.61 2.61 2.61 2.61 2.61 2.61 2.61 2.61 2.61
spice 4.55 4.31 4.06 4.06 4.22 4.06 4.06 4.06 4.22 4.06 4.06 4.06
su2cor 9.52 9.33 9.32 9.32 9.50 9.32 9.32 9.32 9.50 9.32 9.32 9.32
swm256 0.59 0.52 0.52 0.52 0.59 0.52 0.52 0.52 0.59 0.52 0.52 0.52
tomcatv 0.50 0.50 0.48 0.48 0.50 0.50 0.48 0.48 0.50 0.50 0.48 0.48
wave5 5.26 3.97 3.48 3.48 3.57 3.48 3.48 3.48 3.57 3.48 3.48 3.48
alvinn 0.23 0.21 0.21 0.21 0.23 0.21 0.21 0.21 0.23 0.21 0.21 0.21
compress 9.86 9.86 9.86 9.86 9.86 9.86 9.86 9.86 9.86 9.86 9.86 9.86
ear 3.98 3.94 3.94 3.94 3.98 3.94 3.94 3.94 3.98 3.94 3.94 3.94
eqntott 2.97 1.31 1.28 1.28 2.97 1.31 1.28 1.28 2.97 1.31 1.28 1.28
espresso 5.36 5.16 5.10 5.09 5.25 5.09 5.07 5.07 5.25 5.09 5.07 5.07
gcc 15.34 14.08 13.36 12.98 14.38 13.18 12.73 12.53 13.42 12.48 12.33 12.32
li 5.99 4.87 4.27 4.08 5.08 4.02 4.01 4.01 5.08 4.02 4.01 4.01
sc 4.46 3.84 3.83 3.82 4.42 3.83 3.82 3.82 4.42 3.83 3.82 3.82
cfront 18.41 17.48 16.40 15.64 15.45 14.92 14.59 14.38 14.39 13.93 13.75 13.66
db++ 15.71 0.78 0.77 0.76 15.71 0.78 0.77 0.76 15.71 0.78 0.76 0.76
groff 9.54 7.98 6.60 6.14 8.36 6.92 5.91 5.69 7.51 6.34 5.45 5.31
idl 20.85 20.60 3.06 2.51 18.39 18.25 2.99 2.19 13.35 13.21 2.20 1.85
lic 10.17 8.71 8.30 7.68 7.19 6.84 6.77 6.76 6.90 6.77 6.74 6.74
porky 9.07 7.16 5.62 4.85 8.52 6.58 5.32 4.65 5.77 4.18 3.53 3.26

Overall Avg 6.37 5.37 4.58 4.46 5.77 4.97 4.42 4.35 5.45 4.69 4.29 4.26

Table 10: The percentage of mispredicted branches using the MaxCut partitioning. The results are shown
for a varying number of IJB entries; the IJB entries are only used to predict indirect jumps.
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