
In Proceedings of the International Symposium on Performance Analysis of Systems and Software (ISPASS 2006).

Considering All Starting Points for
Simultaneous Multithreading Simulation

Michael Van Biesbrouck† Lieven Eeckhout‡ Brad Calder†

†CSE, University of California, San Diego, USA
‡ELIS, Ghent University, Belgium

Email: {mvanbies,calder}@cs.ucsd.edu, leeckhou@elis.UGent.be

Abstract

Commercial processors have support for Simultaneous
Multithreading (SMT), yet little work has been done to pro-
vide representative simulation results for SMT. Given a work-
load, current simulation techniques typically run one combi-
nation of those programs from a specific starting offset, or
just run one combination of samples across the benchmarks.

We have found that the architecture behavior and overall
throughput seen can vary drastically based upon the starting
points of the different benchmarks. Therefore, to completely
evaluate the effect of an SMT architecture optimization on
a workload, one would need to simulate many or all of the
program combinations from different starting offsets. But
exhaustively running all program combinations from many
starting offsets is infeasible — even running single programs
to completion is often infeasible with modern benchmarks.

In this paper we propose an SMT simulation methodol-
ogy that estimates the average performance over all possible
starting points when running multiple programs concurrently
on an SMT processor. This is based on our prior co-phase
matrix phase analysis and simulation infrastructure. This ap-
proach samples all of the unique phase combinations for a set
of benchmarks to be run together. Once these phase combi-
nations are sampled, our approach uses these samples, along
with a trace of the phase behavior for each program, to pro-
vide a CPI estimate of all starting points. This all starting
point CPI estimate is precisely calculated in just minutes.

1 Introduction

Modern computer architecture research relies heavily on
cycle-accurate simulation to help evaluate new architectural
features. Unfortunately, architectural simulations are ex-
tremely time-consuming. There are two primary reasons for
this. First, with each processor generation more and more
transistors can be integrated to the chip, resulting in more
complex microarchitectural features to take advantage of this
increased transistor budget. Simulating more complex mi-
croarchitectures obviously slows down the simulation. Sec-
ond, architects use real-life applications in their performance
analysis. Current industry-standard benchmarks, such as
SPEC CPU2000, execute hundreds of billions of instructions.
Even on today’s fastest uniprocessor architectural simulators,
simulating some of the SPEC CPU2000 benchmarks takes

several weeks to complete. Simulating benchmarks to com-
pletion on a detailed simulator is obviously no longer feasi-
ble.

In order to measure cycle-level events and to examine the
effect that microarchitecture optimizations would have on the
whole program, architects are forced to execute only a small
subset of a whole program at cycle-level detail and then use
that information to approximate the full program behavior.
The subset of the program that is chosen for detailed study
has a profound impact on the accuracy of this approximation,
and picking these points so that they are as representative
as possible of the full program is a topic of several research
studies [4, 9, 13, 14, 15, 19].

1.1 SMT Simulation
The emergence of Simultaneous Multithreading [16] in com-
mercial processors, such as Intel’s Hyper-Threading archi-
tecture and IBM’s POWER5, increases the importance of
improving multi-program workload simulation. Questions
that were simple to answer in a single-threaded environment,
such as “which section of execution will represent the com-
plete workload?”, are more complex in an SMT environment.
When two or more programs share a processor’s resources at
a cycle-level granularity, as is the case with SMT, the perfor-
mance of the two applications becomes entangled. If there are
multiple programs running at the same time, the behavior of
all the programs will affect not only the overall performance
of the machine but also the distribution of performance be-
tween the different programs, causing some to execute faster
than others. Changing a hardware parameter that has an ef-
fect on performance may change which parts of the programs
execute together. This change, in turn, may mean that the
machine is now executing a different mix of behaviors, which
will influence the overall performance. This interdependence,
or entanglement, makes it difficult to summarize or estimate
the overall behavior of the system. The challenge in creating
a sampling approach to SMT lies in determining how far to
fast-forward each individual thread between samples. This
distance will vary as the threads execute through different
phases of execution; the distance also varies with different
microarchitecture configurations.

Individual programs exhibit phase behavior in which each
phase has roughly uniform IPC, misprediction rates, data
miss rates, and so forth. Some programs change phases rarely

1

or in predictable ways; others frequently change phase in
complex ways. On an SMT machine, each program affects
all of the others in ways determined by its current phase be-
havior. As a result, the combination of programs can have
more complex phase behavior since it is the product of their
individual behaviors. This combined behavior determines the
relative progress of the threads.

In our prior work, we proposed the Co-Phase Matrix [18]
to guide the simulation of an SMT processor for a multi-
program workload. The co-phase matrix represents all of the
potential phase combinations, called a co-phase, of a multi-
program workload to be examined in an architecture study.
The co-phase SMT simulation approach populates the co-
phase matrix with samples during simulation. Once a co-
phase has an appropriate sample, we no longer need to sim-
ulate that co-phase and we can just fast-forward execution to
the next co-phase. The amount to fast-forward for each thread
is determined by the performance data stored in the co-phase
matrix for that particular co-phase.

1.2 Paper Contribution
The co-phase matrix approach in [18] focused on providing
an accurate simulation assuming a single starting position in
each binary being simulated. In this paper we show that the
architecture behavior and overall throughput can vary drasti-
cally based upon the different starting points of the different
benchmarks. Therefore, to completely evaluate the effect of
an SMT architecture optimization on a workload, we may
need to simulate many or all of the program combinations
from different starting offsets. But exhaustively running all
program combinations from many starting offsets is infeasi-
ble — even running single programs to completion is infea-
sible with modern benchmarks.

This paper proposes an efficient SMT simulation method-
ology that estimates average performance over all starting
points when running multiple programs on an SMT proces-
sor. This is achieved by populating the co-phase matrix with
performance results for the different co-phases as was done
in [18]. But, once this co-phase matrix is populated, we use it
to estimate the average performance over all starting points.
This is done by randomly picking a number of starting points
and by analytically simulating each of these co-phase exe-
cutions with their given starting points. Since the analytical
simulation is done very efficiently, the whole SMT simulation
for a set of starting points completes very quickly, in at most
a few minutes. Although the fact that co-phases interact with
each other is well known in the literature, there is no prior
work that proposes a methodology that addresses this issue.
To the best of our knowledge, this paper is the first to pro-
pose an SMT simulation methodology that estimates average
performance for all starting simulation points.

2 Prior Work

Most of the research done on SMT processors use an ad-hoc
simulation methodology. Researchers typically pick a num-
ber of arbitrary samples (or in many cases just a single sam-

ple) from a randomly chosen set of benchmarks. Then they
simulate these randomly-picked samples together. In addi-
tion, most of these studies have used fairly small samples.
Typical numbers are 100M to 300M instructions per sample.
There are a number of important pitfalls with these method-
ologies. First, simulating such a small number of instructions
per benchmark is unlikely to be representative for the com-
plete benchmark execution. Second, choosing a single start-
ing point for each benchmark may give a distorted view on
how co-executed threads interact with each other in an SMT
processor. Third, since these co-samples are chosen arbitrar-
ily, it is unlikely that this gives a faithful image of real SMT
behavior for those programs.

Raasch and Reinhardt [12] used an improved SMT sim-
ulation methodology in their study on how partitioned re-
sources affect SMT performance. They selected a set of di-
verse co-sample behaviors rather than randomly chosen co-
sample behaviors. As a first step, they use single simula-
tion points provided by SimPoint [14]. They then run all
possible two-context co-phase combinations on a given mi-
croprocessor configuration — in their setup they ran 351 co-
phases. For each of those co-phases, they compute a number
of microarchitecture-dependent characteristics such as per-
thread IPC, ROB occupancy, issue rate, L1 miss rate, L2 miss
rate, functional unit occupancy, etc. Using the methodol-
ogy from [5], they then apply principal components analysis
(PCA) and cluster analysis (CA) to come to a limited num-
ber of 15 two-context co-phases. A potential pitfall with this
methodology is that a single simulation point is chosen per
benchmark. This could give a distorted view for what is be-
ing seen in a real system where programs go through various
phases. In addition, they do not consider the issue of multiple
starting points as we do in this paper. They consider a single
starting point and a single phase per benchmark only.

Van Biesbrouck et al. [18] proposed the co-phase SMT
simulation approach for accurately predicting SMT perfor-
mance where each thread starts at a specific starting point.
The basic idea is to keep track of the performance data of
previously executed co-phases in a co-phase matrix; when-
ever a co-phase gets executed again, the performance data is
easily picked from the co-phase matrix. By doing this, each
unique co-phase gets simulated only once, which greatly re-
duces the overall simulation time. In that work, we did not
address the issue of multiple starting points. The point of that
paper was to show that the co-phase matrix is an accurate
SMT simulation approach for predicting performance where
each program starts at a single starting point. That work is
being extended in our paper by showing that the co-phase
matrix can also be used for estimating average performance
over all starting points.

Kihm et al. [8] also showed that SMT performance is
sensitive to starting points. They profiled a number of
co-program executions with different starting points and
observed that different performance results were obtained.
Their study was done on real hardware, namely on an Intel

2

10B 10B 10B 1.2

0B 0B 0B 5.1
0B 10B 0B 10B 0B 10B

equake gcc equake-gcc IPC

Figure 1: The graphs show the IPC when equake and gcc are run together from various starting offsets. There are graphs
for each program’s IPC and their combined IPC. The shade of grey at (x, y) indicates IPC when simulation starts with gcc
x instructions from the start of its execution and equake y instructions from the start of its execution. Simulation completed
after a total of 10 billion instructions were committed.

Pentium 4 processor. Unlike this paper however, they did not
provided a simulation methodology that allows for capturing
the average performance for all starting points.

Alameldeen and Wood [1] showed that for multi-threaded
workloads running on real systems, performance can be dif-
ferent for different runs from the same initial state. This vari-
ability is not modeled in deterministic simulations. To ac-
count for this variability, they argue to inject randomness into
the simulation environment, and to apply statistics for mak-
ing viable conclusions. In this work, Alameldeen and Wood
do not address the variability in performance results due to
multiple starting points in multi-program workloads.

Ekman and Stenström [6] use random sampling for
simulating multiprocessor systems and they use the well-
established matched pair statistical method to show that the
variability in the system’s throughput decreases with an in-
creasing number of processors when running multi-program
workloads. As a result, fewer samples need to be taken in
order to estimate performance on a multiprocessor system
through sampled simulation. They only considered highly-
synchronized parallel programs, so they do not consider mul-
tiple starting offsets and changes in co-phase behavior due to
changes in the microarchitecture. For example, they were un-
able to simulate cholesky with their methodology because
the threads were not synchronized.

3 Motivation for Simulating All Starting Points

Most studies use absolute performance estimates based upon
a small number of simulation runs to predict the effects of
microarchitectural changes. These simulation results are not
completely accurate in even the single-threaded case, so some
simulation methodologies focus only on the change in perfor-
mance metrics due to microarchitectural changes, not the ab-
solute numbers produced. We show that both approaches can
lead to misleading results when simulating SMT processors.

3.1 Absolute Performance Predictions

A single starting point per thread might not be representa-
tive for what one would observe in a real SMT environment.
The pitfall of selecting a single starting point is that the per-
formance results that you obtain may be very different from
those with different starting points. This is illustrated in Fig-
ure 1. This plot shows the average IPC that is obtained when
simulating two benchmarks, equake and gcc-166, from
different starting locations. In each of these experiments, we
simulate until the threads execute a total of 10B instructions.
We show results for 441 different relative offsets; adjacent
sample points differ by 500M instructions in one thread’s
starting offset. The average (aggregate) IPC numbers are en-
coded by shades of gray: white means an IPC of 5.1 whereas
black means an IPC of 1.2; we provide a scale to estimate
intermediate values. We clearly observe that the overall per-
formance is very sensitive to the starting points; the overall
IPC varies from 1.2 to 5.1. So, the pitfall is that using a sin-
gle starting point may impact expected performance results
significantly.

To examine the behavior of multiple starting points fur-
ther, we now examine the relative progress of execution of
several different starting points using what we call a Rela-
tive Progress Graph. Figure 2 shows the relative progress
graph for equake and gcc. The relative progress for gcc
and equake are shown along the horizontal axis and verti-
cal axis, respectively. For the line that starts at (0, 0), a point
plotted at (x, y) indicates that when thread 0 has executed x
instructions, thread 1 has executed y instructions. The other
lines start at different points on the graph, since they repre-
sent either gcc starting at the beginning of execution, and
equake starting simulation at one of the offsets shown on
the vertical axis. Similarly, the lines starting on the horizon-
tal axis represent equake starting simulation at the begin-
ning and gcc a given number of instructions (shown on the
horizontal axis) into gcc’s execution.

In Figure 2 we see that adjacent starting offsets usually
produce similar but not identical executions. The executions

3

0

2e+09

4e+09

6e+09

8e+09

1e+10

1.2e+10

1.4e+10

0 2e+09 4e+09 6e+09 8e+09 1e+10 1.2e+10 1.4e+10 1.6e+10

O
ffs

et
 in

 e
qu

ak
e

Offset in gcc

Progress of equake-gcc

Figure 2: Relative progress of equake and gcc. Each line represents a single 10B-instruction execution of equake-gcc
from a different starting offset (either equake or gcc is always run from the beginning). Each plotted point represents execution
offsets that occur during SMT execution.

that start near (0, 0) are the ones with the most variety un-
til gcc reaches the 6B-instruction mark. At that point gcc
makes much less relative progress than equake. The reason
is that gcc suffers from a large number of L2 misses at that
point. The endings of many executions are thus dominated
by progress in equake. This extreme phase behavior also
appears very clearly in the gcc graph in Figure 1 as a sharp
increase in IPC for simulations that start gcc at an offset of
more than 6B instructions. It is less obvious in the equake
graph because gcc is much more affected than equake.

The sharp change in gcc’s performance is worth addi-
tional investigation as it improves understanding of the in-
teractions between programs on SMT processors. In Figure
3 we plot the performance of the programs, measured in in-
structions per cycle (IPC). The solid lines show SMT behav-
ior and the broken lines show single-threaded behavior. The
equake lines are marked with squares and the gcc ones
with triangles. The x-axis indicates the proportion of instruc-
tions committed; in the case of the SMT executions this is the
combined number of committed instructions between the two
threads, so the SMT executions are aligned with each other
but the single-threaded and SMT executions of a particular
thread are not. The markers are placed every billion instruc-
tions of single-threaded execution to help the reader match up
parts of execution between singled-threaded and SMT runs.
The interesting event that occurs 6B instructions into gcc’s
execution is at the 50% mark on both graphs; this point is
easily identified by dramatic changes in gcc. We can see that
single-threaded execution also reaches a low IPC at this point,
but for a much briefer period. The cause is visible in Fig-
ure 4, which uses a log scale to show the average number of

L2 cache misses per single-threaded instruction committed.
Here, the single-threaded gcc briefly misses one cache ac-
cess per 20 instructions, but the SMT execution misses one of
every four instructions due to the increased cache contention.
The extremely high miss rate allows equake to continue on
while gcc is nearly stalled. Note that while equake often
has higher miss rates in SMT execution than when single-
threaded, the absolute frequency of misses is much lower so
there is less of an impact.

3.2 Relative Performance Predictions

In many practical circumstances, being able to accurately es-
timate relative performance change is more important that ab-
solute performance estimation [6, 11, 18]. In other words,
absolute simulator and methodology accuracy is less impor-
tant than relative accuracy as long as the relative effects of
hardware changes are faithfully tracked. This is especially
the case for early design stage studies.

In the case of SMT simulation, this means that the varia-
tion in performance for different simulation starting points is
not important as long as all of the starting points are equally
affected by microarchitectural changes. To examine this, we
simulated 20 pairs of starting offsets each for three pairs of
programs and executed each of these on eight different hard-
ware configurations, for a total of 480 experiments consisting
of 1 billion committed instructions for each run. The pro-
gram pairs and machine configurations are the same as those
used to evaluate relative error in our previous paper [18]. The
hardware configurations cover all combinations of small and
large L1 caches, L2 caches and branch predictors.

We expect that for any hardware change, some bench-

4

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Percentage of Committed Instructions

equake (SMT)
equake (single)

gcc (SMT)
gcc (single)

Figure 3: IPC of equake and gcc running singly and as a
pair.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 10 20 30 40 50 60 70 80 90 100

L2
 C

ac
he

 M
is

se
s

P
er

 In
st

ru
ct

io
n

(lo
g

sc
al

e)

Percentage of Committed Instructions

equake (SMT)
equake (single)

gcc (SMT)
gcc (single)

Figure 4: L2 cache miss behavior of equake and gcc run-
ning singly and as a pair.

bzip2-vpr gcc-vpr bzip2-gcc0

20

40

60

P
er

ce
n

ta
g

e
D

is
ag

re
ei

n
g Average

Maximum

Figure 5: Performance effect disagreement after hardware
configuration change. 0% indicates that all starting offsets
improve (or degrade) due the change; 50% indicates that half
improve and half degrade, the worst possible result.

mark pairs will see performance gains whereas others will
not. If we take a single starting point for a particular bench-
mark pair, then performance will clearly get better or worse
as the hardware configuration changes. Unfortunately, pick-
ing a different starting offset might give us the opposite re-
sult for the same hardware configurations. To examine this

we take all 28 pairs of different hardware configurations, and
we see how the performance for each pair of hardware con-
figurations differ for a two-program workload examining 20
different starting offsets for that workload. For a pair of hard-
ware configurations, we take a pair of programs and we vary
the starting offsets for those programs 20 times. The result
of each run is a ranking of the two hardware configurations
saying that one has more throughput than the other. We then
calculate for the 20 starting offsets examined with two hard-
ware configurations, what percentage of time did the ordering
of the two architectures agree versus disagree. If they were
always identical, then we would see 0% disagreement. The
worst case result would be 50% disagreement, which means
that 50% of the time the first hardware configuration was said
to be better than the second, and vice-versa and the only cause
of this would be using different starting offsets.

Ideally, we want to see 0% disagreement as a result of
the experiment. With 8 hardware configurations, there are
28 distinct pairs of configurations that we compare. Figure
5 shows the percentage of offsets that disagree in the direc-
tion of improvement with the majority of experiments. Since
this number varies over the 28 possible hardware configura-
tion pairings (potential experiments), we report average and
maximum disagreement rates. The possible rates range from
0% (best) to 50% (worst).

We find that bzip2-vpr consistently favors one hard-
ware configuration over the other in all but a couple pos-
sible experiments, whereas the others typically have results
divided between the two hardware options. In the architec-
ture comparison that caused the most disagreement, the av-
erage performance change was over 2% and frequently much
higher. For each pair of programs, there are experiments that
would produce misleading results if only a single starting off-
set were chosen. For most experiments, we can expect that
some starting offsets lead to improvements but others do not.
We conclude that researchers examining relative performance
effects still need to be able to analyze the distribution of the
results over many starting offsets rather than starting execu-
tion from a single offset.

4 Co-Phase Matrix SMT Simulation

The SMT simulation methodology that we propose in this
paper borrows from the static co-phase matrix idea proposed
by Van Biesbrouck et al. [18], which in turn borrows from the
SimPoint simulation approach. These two will be discussed
now.

4.1 SimPoint
Sherwood et al. [13] proposed using code signatures to break
a program’s execution into phases. To identify phases, they
broke a program’s execution into contiguous non-overlapping
intervals. An interval is a continuous portion of execution
(a slice in time) of a program. A phase is a set of intervals
within a program’s execution with similar behavior, regard-
less of temporal adjacency. This means that a phase may ap-
pear many times as a program executes. Phase classification

5

partitions a set of intervals into phases with similar behavior.
Sherwood et al. [7, 11, 14] created a tool called Sim-

Point that groups intervals with similar code signatures into
the same phase. The code signature for each interval is rep-
resented by a Basic Block Vector (BBV) [14] to capture in-
formation about changes in a program’s behavior over time.
A Basic Block Vector is a one-dimensional array, where each
element in the array corresponds to one static basic block in
the program. The BBV for each interval represents the fre-
quency of execution of each static basic block in the program
for that interval. SimPoint can then perform clustering on
BBVs, because each vector contains the frequency distribu-
tion of code executed in each interval. By comparing BBVs
of two intervals during clustering, SimPoint can evaluate the
similarity of two intervals. If the distance between the two
BBVs is small (close to 0), then the two intervals spend about
the same amount of time in roughly the same code, and there-
fore we expect the performance of those two intervals to be
similar. Code signatures grouped into the same cluster have
been shown to exhibit similar CPI, numbers of branch mis-
predictions, numbers of cache misses, etc [10, 14].

After this phase classification algorithm is done, inter-
vals with similar code usage will be grouped together into the
same phase. Then from each phase, they choose one repre-
sentative interval that will be simulated in detail to represent
the behavior of the whole phase. Therefore, by simulating
only one representative interval per phase, SimPoint can ex-
trapolate and capture the behavior of the entire program. This
set of intervals, one chosen from each phase, is called the set
of Simulation Points. This set of simulation points for a given
program-input pair are simulated to create an estimated CPI
(and other architecture metrics) for each architecture config-
uration during design space exploration.

For the SMT simulation methodology that we propose
in this paper, the phase behavior of a complete program ex-
ecution is represented by a phase-ID trace. The phase-ID
trace indicates at which instructions in the program’s execu-
tion phase changes occur and what the new phase IDs are.

4.2 Co-Phase Matrix
Our prior work [18] built on SimPoint to create an SMT
simulation methodology that accurately predicts performance
when running multiple threads each from a given starting
point. The key idea is that for each thread, the same code sig-
natures will be seen for that thread even on an SMT processor.
The code signatures only represent the code executed in that
thread, so we will be able to consistently see the per-thread
code-based phase behavior no matter if we are simulating the
program by itself or simultaneously with other programs on
an SMT processor. This allows us to identify what phase a
program is in, no matter what other behaviors are going on in
the simulated processor.

Taking this one step further, we can use the per-thread
phase ID trace to create a unique co-phase signature across
all of the running programs on an SMT processor to capture
that behavior. Just as in the single-threaded version, where

overall behavior does not change within a given phase, in an
SMT machine the overall behavior should not change unless
at least one thread has a phase change. Thus, to estimate
performance we need to consider all combinations of phases
that run together. Each combination of simultaneously run-
ning phase-IDs forms a unique co-phase identifier. In our
previous work [18], we have shown that taking a sample of
the simultaneous execution of co-phases and storing it with
its co-phase identifier accurately represents the SMT perfor-
mance. In other words, when the same combination of phases
is seen again during the execution, we have found that simi-
lar overall performance is seen. This means that we can keep
track of a list of combinations of per-thread phases. During
SMT simulation, we store a list of co-phase combinations
along with their simulated performance. This is called the
Co-Phase Matrix.

4.3 Building the Co-Phase Matrix
The static co-phase matrix is a co-phase matrix that is pop-
ulated with information about all possible co-phases for the
concurrently running threads prior to estimating the overall
CPI. For every benchmark pair that we wish to simulate, we
must create a co-phase matrix. We generate the static co-
phase matrix using phases and simulation points determined
by SimPoint 3.0 [7]. The single-threaded phases and the
combinations of programs that we wish to investigate de-
termine the set of co-phases that we need to sample. Each
program is run once using a functional simulator to create
checkpoints for each simulation point. These checkpoints are
machine-configuration independent and can be reused for all
subsequent experiments. Disk space and checkpoint loading
time can be greatly reduced using techniques that we describe
in [17].

For each co-phase entry, we perform a few million in-
structions of detailed simulation, starting each thread at the
SimPoint simulation point from the single-thread phase anal-
ysis, using the checkpoints to avoid fast-forwarding. The
result of this detailed simulation forms the co-phase entry’s
sample, which represents the performance for a pair of pro-
grams on a single hardware configuration. Since we use
checkpoints, it is possible to perform all of the simulations
in parallel. Once the static co-phase matrix is built, the SMT
simulation itself is done through analytical simulation driven
by the co-phase matrix, as described in the next section.

4.4 Using the Co-Phase Matrix to Estimate a Single
Starting Point Combination

We now describe in more detail how the co-phase matrix can
be used to guide SMT simulation for a set of programs from
a single starting point. We will use Figure 4 as an example.
In Figure 4, the solid line on the graph represents the relative
progress of the two threads. The phase-ID traces of the two
threads (thread 1 on the x-axis and thread 2 on the y-axis)
can be seen adjacent to the axes. Thread 1 goes through the
phase sequence xyxyx with phase changes at 5M, 10M, 20M
and 25M instructions, respectively; thread 2 goes through the
phase sequence abab with phase changes at 10M, 20M and

6

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

20M

10M

30M

Static Co−phase

Real Execution

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

a

b

b

x y x xy

10M 20M 30M

a

x

a

y

b

x

b

y

ax

ay

bx

by
a

T
hr

ea
d

2

Thread 1

2.5M cycles

5M cycles

3.75M cycles

2.5M cycles

1.25M cycles

5M cycles

Figure 6: Approximating detailed execution with the static co-phase matrix.

30M instructions, respectively. Each rectangular section of
the graph is shaded according to the co-phase that will be
used while the execution of the two threads is within the rect-
angle. For example, the white-shaded rectangles represent
the co-phase ax, where phase x for thread 1 is co-executing
with phase a from thread 2; the heaviest shaded rectangles
represent the co-phase by, etc. The graphs on the right of the
relative progress graph visually represent the co-phase ma-
trix. For each co-phase we show a vector indicating the rel-
ative progress of the threads. For co-phase ax, the co-phase
matrix shows that phase a in thread 2 makes twice as fast
progress as phase x in thread 1. For by, phase y makes twice
as fast progress as phase b. For co-phases ay and bx, both
phases make both equally fast progress, but ay has half the
throughput of co-phase bx.

For this example, we assume that the execution begins at
(0, 0), the start of both programs (we can apply the same pro-
cedure for any other starting point). Note that the co-phase
matrix would contain actual IPC rates; we will assume in this
example that one small square in the co-phase matrix rep-
resentation shows an IPC of 1. For example, for phase ax,
thread 1 (phase x) has an IPC of 1 whereas thread 2 (phase a)
has an IPC of 2.

In the example given in Figure 4, the starting point is in
co-phase ax. From the co-phase matrix entry correspond-

ing to ax, we see that thread 2 progresses twice as fast as
thread 1. Execution continues at that rate until both programs
change phases at (5M, 10M). Thus it takes 5M cycles to
exit the first co-phase. The new co-phase is by with IPCs of
2 and 1 for threads 1 and 2, respectively. respectively. Af-
ter just 2.5M cycles the horizontal thread leaves phase y at
point (10M, 12.5M). Progress beyond this point will be in
co-phase bx. Both threads will now make equal progress,
i.e., we assume both threads run at an IPC of 2, until one of
the thread hits a new phase ID (phase change). The next co-
phase change will occur at point (17.5M, 20M) after 3.75M
cycles. The new co-phase then is ax, etc. This process is re-
peated until our target execution length is achieved, closely
following the real execution of the two threads (shown with a
broken line).

The above summarizes how we arrive at an estimated CPI
using the static co-phase matrix. Given a static co-phase
matrix, the starting points for two threads, and the phase-
ID trace, we quickly estimate the overall CPI for the pair of
programs running on an SMT processor using the above ap-
proach. For the results in this paper, we estimate the CPI for
running two threads together until a total of 1 billion instruc-
tions have been simulated.

7

5 Providing an Estimate of All Possible Workload
Starting Locations

As extensively discussed in Section 3, using a single starting
point in SMT simulation could be misleading. This observa-
tion argues for an approach in which all starting points are
considered for estimating overall SMT performance. In this
section, we now describe how this can be done using the co-
phase matrix described in the previous section.

To generate a performance estimate of all combinations
of starting offsets, we use the same method for a single pair
of starting points as we described in the previous section, but
run it for many starting points. This creates a metric, called
the All Combination (AC) performance number, which rep-
resents the average performance of a pair of benchmarks, in-
dependent of particular starting offsets. In this paper we only
examine the AC in terms of overall CPI, but any other pro-
cessor statistic can be collected in the same way. The AC
is the average performance found when executing both pro-
grams for one billion instructions from every combination of
possible program offsets. If a program reaches the end of its
execution, it is restarted at the beginning to avoid bias near the
start and the end of programs. Fixing an execution length is
necessary to make averages meaningful and easy to compute.
Choosing a long execution length ensures that the weighting
of co-phases will match that of continuous SMT execution.

Although the static co-phase method for a single combi-
nation of starting addresses is fast, running it for all possi-
ble starting points obviously is infeasible. In our setup, this
would require 1023 analytical simulations using the static co-
phase matrix per pair of SPEC benchmarks. Although an
analytical simulation using the static co-phase matrix is ex-
tremely fast, simulating that many runs would be impossible
to do. Thus we propose to sample the set of possible starting
offsets. We examine two sampling strategies, namely random
and stratified sampling. For both approaches, we assume a
populated static co-phase matrix to start from as described in
Section 4.3.

We use random sampling to pick starting points for both
threads. For each pair of randomly selected starting points,
the static co-phase method is used to estimate performance
when executing both threads from the given starting point.
By doing this for a sufficiently large number of randomly
selected starting points, called samples, an average perfor-
mance estimate can be computed for all possible starting
points. We always simulate for 1B instructions of combined
execution, so the average CPI over all samples is just the
simple average of all collected CPI rates. (Other metrics
may require more complicated computations.) An interest-
ing property of random sampling is that we can estimate the
variability of the samples, which allows us to provide confi-
dence bounds for average performance estimates. In addition
to pure random sampling, we also consider stratified random
sampling to ensure even coverage of possible starting points.

I-Cache
64kB 2-way set-associative, 64-byte blocks, 1-cycle
latency

D-Cache
64kB 2-way set-associative, 64-byte blocks, 3-cycle
latency

Unified L2
1 MB 4-way set-associative, 64-byte blocks, 10-cycle
latency

Memory 100-cycle latency

Branch Pred

21264-style hybrid predictor with 13-bit global history
indexing a 8k-entry global PHT and 8k-entry choice
table; 2k 11-bit local history entries indexing a 2k-
entry local PHT

OOO Issue out-of-order issue, 256-entry re-order buffer

Width
8 instructions per cycle (Fetch, Decode, Issue and
Commit)

Func Units 6 Integer, 2 Integer Multiply, 4 FP Add, 2 FP Multiply

Table 1: SMT processor configuration.

6 Experimental Setup

We use the M5 simulator [2] from the University of Michi-
gan, which is based on SimpleScalar3.0c [3] as our SMT sim-
ulation environment. The configuration for this simulator is
shown in Table 1. It is configured to support an intensive mul-
tithreaded workload. Hence the large caches and the abun-
dant reorder buffer and processor width. We simulated SPEC
2000 benchmarks compiled for the Alpha ISA.

As in our prior study [18], we use the following bench-
marks: bzip2-graphic, equake, gcc-166, gzip-
graphic, lucas, mesa, perlbmk-splitmail and
vpr-route. These benchmarks were chosen based on their
phase behavior in order to present a wide diversity of phase
behavior interactions. The first half of the above mentioned
programs show the most complex phase behavior observed in
SPEC CPU2000; the second half shows average case phase
behavior.

We analyzed the benchmarks using SimPoint 3.0 [7]. The
phase analysis for our results covered all of program execu-
tion and used intervals of 5M instructions. We limited the
maximum number of phases found by SimPoint to 30, i.e.,
MaxK = 30. The fewest number of phases found was mesa
with 25 phases. So, all of the benchmarks used between 25
to 30 phases. For each of these phases, SimPoint chooses a
representative interval, called a simulation point.

Since our all-starting-points SMT simulation methodol-
ogy is based on the static co-phase matrix, we also need to
populate the static co-phase matrix with performance num-
bers for the various co-phases. These performance numbers
are computed by simulating all possible combinations of sim-
ulation points for each benchmark-pair as described in the
prior section. For increased accuracy, we need to deal with
the cold-start problem when simulating all of these co-phases.
The cold-start problem refers to the fact that the hardware
state is unknown at the beginning of each sample. This is
particularly a problem for large hardware structures such as
caches. In order to deal with the cold-start problem we as-
sume the hit-on-cold warmup technique along with the fol-
lowing strategy to further reduce the impact of cold-start ef-
fects. We ignore the first 1.5M instructions of execution and
use the remaining instructions to calculate the contents of the
Co-Phase Matrix. Data collection ends once one thread com-

8

gcc-gzip
gcc-vpr
bzip2-gcc
bzip2-gzip
bzip2-lucas
bzip2-m

esa
bzip2-vpr
gzip-lucas
gzip-m

esa
gzip-vpr
lucas-m

esa
lucas-vpr
m

esa-vpr
bzip2-equake
equake-gcc
equake-gzip
equake-lucas
equake-m

esa
equake-vpr
gcc-perl
bzip2-perl
gzip-perl
lucas-perl
m

esa-perl
perl-vpr
equake-perl
A

verage

0

200

400

600

800

N
u

m
b

er
 o

f
C

o
-p

h
as

es
 Co-phases

Figure 7: Number of co-phases per benchmark pair.

bzip2-equake
bzip2-gcc
bzip2-gzip
bzip2-lucas
bzip2-m

esa
bzip2-perl
bzip2-vpr
equake-gcc
equake-gzip
equake-lucas
equake-m

esa
equake-perl
equake-vpr
gcc-gzip
gcc-perl
gcc-vpr
gzip-lucas
gzip-m

esa
gzip-perl
gzip-vpr
lucas-m

esa
lucas-perl
lucas-vpr
m

esa-perl
m

esa-vpr
perl-vpr
A

verage
0

2

4

6

C
P

I P
er

ce
n

ta
g

e
E

rr
o

r CPI Error

Figure 8: Error in CPI for static co-phase method simulation.

mits 3.5M instructions beyond the detailed warmup.

7 Evaluation

In this section we evaluate our newly proposed SMT simula-
tion methodology. This is done in two steps. We first show
that the static co-phase matrix is an accurate method for esti-
mating SMT performance for two threads starting from a set
of starting points. We subsequently show that the co-phase
matrix can also be used to estimate SMT performance for all
starting points.

7.1 Single starting point Co-Phase Matrix driven SMT
simulation

Figure 7 shows the number of co-phases in the static co-phase
matrix for the various benchmark pairs. Populating the static
co-phase matrix with performance numbers requires comput-
ing performance numbers for all of these co-phases. The
number of co-phases varies from 650 to 870, with 759 co-
phases on average.

Figure 8 validates the static co-phase matrix approach
with respect to the full detailed simulation runs for 81 starting
offset pairs. For this result we simulated each starting offset
for 1 billion detailed instructions to get the baseline CPI. We
then used the static co-phase matrix, with the approach de-
scribed in Section 4.4 to create the estimated CPI until both
programs have reach 1 billion instructions of estimated ex-
ecution. This then gives us an estimated error for each pair
of starting points. We then report the average error across

all starting points in Figure 8 for a set of programs. For this
result, nine starting offsets were chosen for each program,
which resulted in 81 simulations for a benchmark pair.

The results in Figure 8 show the average performance pre-
diction error over those 81 simulation runs. We observe an
average error of 1.6% and a maximum error of 5.1%. The
highest error is for equake-gcc; others have error of at
most 3.1%. As shown previously, equake-gcc presents
challenges due to dramatically different execution rates of the
two programs at a particular point, which can magnify small
errors in sampling. Additional experiments have shown that
this combination of programs benefits from a longer sampling
period. Our low error rates validate our changes to interval
size, sampling and phase analysis. They also demonstrate
that the co-phase matrix can be used to accurately estimate
performance when running a combination of programs on an
SMT processor from a single starting point.

7.2 Convergence of All Combination Performance Esti-
mates

We now examine the all combination performance for 26
benchmark pairs using the static co-phase method and two
sampling techniques, random sampling (Figure 9) and strat-
ified random sampling (Figure 10). For this approach, we
first fill our static co-phase matrix with estimated CPIs as de-
scribed earlier.

For each sample CPI, a starting location is randomly cho-
sen separately for each program. Then a single run is per-
formed of the static co-phase method of those starting points
for 1 billion instructions using the static co-phase matrix ap-
proach in Section 4.4. This is repeated as we collect samples
for many possible starting point combinations. The graphs
show the effects on estimated All Combination CPI as the
number of samples is increased. As the results show, the ac-
cumulated samples eventually converge to an All Combina-
tion CPI, however the techniques converge at different rates.

For the results, we did this 1024 times and calculated
the cumulative average at each step. The estimates for most
benchmark pairs converged after about 400 samples. Given
a desired confidence level, it is possible to sample until that
confidence level is achieved and report error bounds along
with the estimate. We examined improving the convergence
rate of the random sampling method using stratified random
sampling. Each program was divided into four parts, giving
16 partitions per benchmark pair. We sampled equally from
each of the 16 partitions of possible starting offsets. This
had the effect of decreasing the variation when the number
of samples was small (up to 200), but did not provide much
help for greater numbers of samples. Note that plotted lines
in Figure 10 are less noisy because points were plotted ev-
ery 16 samples (due to stratification); only the variation in
magnitude is important.

Random sampling allows us to adjust the number of sam-
ples taken so that the error due to the limited number of sam-
ples has a high probability of being within a small margin.
Figure 11 shows, with 95% confidence, a bound on the differ-

9

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200 400 600 800 1000

A
ve

ra
ge

 C
yc

le
s

P
er

 In
st

ru
ct

io
n

Number of Samples

bzip2-equake
bzip2-gcc
bzip2-gzip

bzip2-lucas
bzip2-mesa

bzip2-perl
bzip2-vpr

equake-gcc
equake-gzip

equake-lucas
equake-mesa

equake-perl
equake-vpr

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200 400 600 800 1000

A
ve

ra
ge

 C
yc

le
s

P
er

 In
st

ru
ct

io
n

Number of Samples

gcc-gzip
gcc-perl
gcc-vpr

gzip-lucas
gzip-mesa

gzip-perl
gzip-vpr

lucas-mesa
lucas-perl
lucas-vpr

mesa-perl
mesa-vpr

perl-vpr

Figure 9: All combination CPI convergence using random sampling.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 100 200 300 400 500 600 700 800

A
ve

ra
ge

 C
yc

le
s

P
er

 In
st

ru
ct

io
n

Number of Samples

bzip2-equake
bzip2-gcc
bzip2-gzip

bzip2-lucas
bzip2-mesa

bzip2-perl
bzip2-vpr

equake-gcc
equake-gzip

equake-lucas
equake-mesa

equake-perl
equake-vpr

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 100 200 300 400 500 600 700 800

A
ve

ra
ge

 C
yc

le
s

P
er

 In
st

ru
ct

io
n

Number of Samples

gcc-gzip
gcc-perl
gcc-vpr

gzip-lucas
gzip-mesa

gzip-perl
gzip-vpr

lucas-mesa
lucas-perl
lucas-vpr

mesa-perl
mesa-vpr

perl-vpr

Figure 10: All combination CPI convergence using stratified random sampling.

bzip2-equake

bzip2-gcc

bzip2-gzip

bzip2-lucas

bzip2-m
esa

bzip2-perl

bzip2-vpr

equake-gcc

equake-gzip

equake-lucas

equake-m
esa

equake-perl

equake-vpr

gcc-gzip

gcc-perl

gcc-vpr

gzip-lucas

gzip-m
esa

gzip-perl

gzip-vpr

lucas-m
esa

lucas-perl

lucas-vpr

m
esa-perl

m
esa-vpr

perl-vpr

A
verage

0

1

2

3

4

P
er

ce
n

ta
g

e
o

f
A

ve
ra

g
e

C
P

I

 400 Samples
 1000 Samples
 10000 Samples

Figure 11: Confidence intervals for varying numbers of random samples.

10

ence between the actual average CPI of all possible starting
combinations and our estimated CPI when using 400, 1000
and 10000 samples. The difference between the actual and
estimated CPI is represented as an absolute percentage from
the estimated CPI in Figure 11.

The size of the confidence intervals is dependent upon the
natural variability of the benchmark combinations, the num-
ber of samples and the confidence desired. Although ran-
dom sampling appears to converge after 400 samples for most
benchmark pairs, the size of the confidence interval is still
quite high. The results show that using 1000 samples and
95% confidence, the real CPI should be within just 1% of
the estimated average CPI. All confidence intervals are under
0.8% of average CPI when using 10000 samples (just 0.34%
on average). When using 10000 random samples, less than
five minutes of static co-phase matrix simulation time per
benchmark pair is sufficient to calculate the AC CPI.

8 Summary

Simulating an SMT system is a challenging task because of
the tight entanglement between the different threads that co-
execute on an SMT processor. Because of this entanglement,
using a single starting point for each thread is unlikely to give
a reliable performance number. This is an important pitfall
that was not addressed in previous work.

In this paper we showed that it is important to consider
multiple starting points in order to obtain a reliable SMT per-
formance number. Moreover, we presented an efficient SMT
simulation methodology for achieving this. By building up a
co-phase matrix that summarizes the performance of all the
co-phase executions, we are able to quickly estimate the aver-
age performance for all possible starting points. This is done
by sampling over all possible starting points and by analyti-
cally simulating those randomly selected starting points over
the co-phase matrix. Due to the use of the static co-phase
method we were able to show an average sample collection
bias of under 1.6%.

We evaluated two sampling approaches, random sam-
pling and stratified random sampling. We observed that both
sampling strategies resulted in around 400 starting points that
need to be simulated in order to get stable performance esti-
mates, but using 1000 or more samples allows strong confi-
dence bounds. Since each sample can be collected in a frac-
tion of a second, and a confidence interval on sampling er-
ror below 0.8% can be obtained in just a few minutes. The
end result is an SMT simulation methodology that estimates
average SMT performance over all combinations of starting
points in the order of minutes once the co-phase matrix is
populated with samples.

Acknowledgments

We would like to thank the anonymous reviewers for provid-
ing helpful comments on this paper. This work was funded in
part by NSF grant No. CCF-0342522, NSF grant No. CCF-
0311710, a UC MICRO grant, and a grant from Intel and Mi-

crosoft. Lieven Eeckhout is a Postdoctoral Fellow with the
Fund for Scientific Research—Flanders (Belgium) (FWO—
Vlaanderen) and is also supported by Ghent University, IWT,
HiPEAC and the European SCALA project No. 27648.

References
[1] A. R. Alameldeen and D. A. Wood. Variability in architectural simula-

tions of multi-threaded commercial workloads. In Annual International
Symposium on High Performance Computer Architecture (HPCA-9),
2003.

[2] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt. Network-oriented
full-system simulation using M5. In Sixth Workshop on Computer
Architecture Evaluation using Commercial Workloads (CAECW), Feb.
2003.

[3] D. C. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0.
Technical Report CS-TR-97-1342, University of Wisconsin, Madison,
June 1997.

[4] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing state loss for
effective trace sampling of superscalar processors. In Proceedings of
the 1996 International Conference on Computer Design (ICCD), Oct.
1996.

[5] L. Eeckhout, H. Vandierendonck, and K. De Bosschere. Workload de-
sign: Selecting representative program-input pairs. In Proceedings of
the 2002 International Conference on Parallel Architectures and Com-
pilation Techniques (PACT-2002), pages 83–94, Sept. 2002.

[6] M. Ekman and P. Stenström. Enhancing multiprocessor architecture
simulation speed using matched-pair comparison. In Proceedings of
the 2005 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 89–99, Mar. 2005.

[7] G. Hamerly, E. Perelman, J. Lau, and B. Calder. Simpoint 3.0: Faster
and more flexible program analysis. In Workshop on Modeling, Bench-
marking and Simulation, June 2005.

[8] J. L. Kihm, T. Moseley, and D. A. Connors. A mathematical model for
accurately balancing co-phase effects in simulated multithreaded sys-
tems. In Workshop on Modeling, Benchmarking and Simulation (MoBS)
held in conjunction with ISCA, June 2005.

[9] T. Lafage and A. Seznec. Choosing representative slices of program
execution for microarchitecture simulations: A preliminary application
to the data stream. In Workload Characterization of Emerging Applica-
tions, Kluwer Academic Publishers, Sept. 2000.

[10] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder. The strong
correlation between code signatures and performance. In IEEE Interna-
tional Symposium on Performance Analysis of Systems a nd Software,
Mar. 2005.

[11] E. Perelman, G. Hamerly, and B. Calder. Picking statistically valid and
early simulation points. In PACT’03, pages 244–256, Sept. 2003.

[12] S. E. Raasch and S. K. Reinhardt. The impact of resource partitioning on
SMT processors. In International Conference on Parallel Architectures
and Compilation Techniques (PACT), Sept. 2003.

[13] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution
analysis to find periodic behavior and simulation points in applications.
In International Conference on Parallel Architectures and Compilation
Techniques, Sept. 2001.

[14] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In 10th International Con-
ference on Architectural Support for Programming, Oct. 2002.

[15] K. Skadron, P. Ahuja, M. Martonosi, and D. Clark. Branch prediction,
instruction-window size, and cache size: Performance tradeoffs and
simulation techniques. IEEE Transactions on Computers, 48(11):1260–
81, Nov. 1999.

[16] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L.
Stamm. Exploiting choice: Instruction fetch and issue on an imple-
mentable simultaneous multithreading processor. In ISCA, pages 191–
202, 1996.

[17] M. Van Biesbrouck, L. Eeckhout, and B. Calder. Efficient sampling
startup for sampled processor simulation. In 2005 International Con-
ference on High Performance Embedded Architectures and Compilation
(HiPEAC), pages 47–67, Nov. 2005.

[18] M. Van Biesbrouck, T. Sherwood, and B. Calder. A co-phase matrix
to guide simultaneous multithreading simulation. In Proceedings of the
2004 IEEE International Symposium on Performanc e Analysis of Sys-
tems and Software (ISPASS’04), Mar. 2004.

[19] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. Smarts:
Accelerating microarchitecture simulation via rigorous statistical sam-
pling. In 30th International Symposium on Computer Architecture, June
2003.

11

