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Abstract

Several commercial processors have architectures that in-
clude support for Simultaneous Multithreading (SMT), yet
there is still not a validated methodology for estimating the
performance of an SMT machine that does not rely on full pro-
gram simulation. To create an efficient sampling approach for
SMT we must determine how far to fast-forward each individ-
ual thread between samples. The fast-forwarding distance for
each thread will vary according to execution phases, thread
interactions and changes to the architectural configuration.

In this paper, we examine using individual program phase
information to guide SMT simulation. This is accomplished
by creating what we call a Co-Phase Matrix. The co-phase
matrix represents the per-thread performance for each po-
tential combination of the single-threaded phase behaviors
that can be found when multiple programs are run together.
The co-phase matrix is populated by collecting samples of
the programs’ phase combinations, and is used to guide fast-
forwarding between samples. We show for 28 pairs of SPEC
programs that using the co-phase matrix provides an average
error rate of 4% while requiring that only 1% of the full simu-
lation be performed. The methods are also validated using
a variety of architectural configurations and four-threaded
workloads.

1 Introduction
Modern computer architecture research relies heavily on
cycle-accurate simulation to help evaluate new architectural
features. While the performance of processors continues to
grow exponentially, the amount of complexity within a pro-
cessor grows at an even faster rate. With each generation
of processor more transistors are added, resulting in more
complex architecture features and cycle times continue to de-
crease. This has the effect that while the performance of pro-
cessors is growing, the complexity is growing even faster. The
end result is that the time to simulate a constant amount of
processor time is growing, and it is already to the point that
fully executing programs to completion in a detailed simula-
tor is no longer feasible for architectural studies.

In order to measure cycle-level events and to examine the
effect that hardware optimizations would have on the whole
program, architects are forced to execute only a small sub-
set of a whole program at cycle-level detail and then use that

information to approximate the full program behavior. The
subset of the program that is chosen for detailed study has a
profound impact on the accuracy of this approximation, and
picking these points so that they are as representative as pos-
sible of the full program is a topic of several research stud-
ies [4, 13, 7, 10, 11, 16].

The emergence of Simultaneous Multithreading [15] in
commercial processors, such as Intel’s new Hyper-Threading
architecture, increases the importance of improving multi-
program workloads simulation. Questions that were simple
to answer in a single-threaded environment, such as “which
section of execution will represent the complete workload?”,
are more complex in the SMT environment.

When two or more programs share a processor’s resources
at a cycle-level granularity, as is the case with SMT, the per-
formance of the two applications become entangled. If there
are multiple programs running at the same time, the behav-
ior of all the programs will affect not only the overall per-
formance of the machine but the distribution of performance
between different programs, causing some to execute faster
than others. Changing a parameter that has an effect on per-
formance may change which parts of the programs execute
together. This change, in turn, may mean that the machine is
now executing a different mix of behaviors, which will influ-
ence the overall performance. This interdependence, or en-
tanglement, makes it difficult to summarize or estimate the
overall behavior of the system and creates a whole new set of
problems for those interested in accurately and efficiently es-
timating performance. The challenge in creating a sampling
approach to SMT lies in determining how far to fast-forward
each individual thread between samples. This distance will
vary as the threads execute through different phases of execu-
tion, and between different architecture configurations.

Individual programs exhibit phase behavior in which each
phase has roughly uniform IPC, misprediction rates, data miss
rates, and so forth. Some programs change phase rarely or in
predictable ways; others such as gcc frequently change phase
in complex ways. On an SMT machine, each program affects
all of the others in ways determined by its current phase be-
havior. As a result, the combination of programs can have
more complex phase behavior since it is the product of their
individual behaviors. This combined behavior determines the
relative progress of the threads.
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Our paper focuses on improving the efficiency of SMT
workload simulation, answering the question “Given an SMT
multi-program workload with each program starting at a spe-
cific starting point, how can we accurately and efficiently es-
timate performance using sampling?” We focus on an SMT
processor with 4 hardware contexts, running combinations of
2 or 4 programs at a time. Our sampling approach to SMT
simulation is guided by the phase behavior found in single-
program execution. This relies on finding the phase-based be-
havior of each program using SimPoint [11] to classify fixed-
size intervals of execution into phases. For our experiments
we selected programs from the SPEC benchmark suite that
show a wide variety of single program phase-based behaviors,
including many programs with complex structures.

The main contribution of our paper is the creation of a
Co-Phase Matrix and using it to guide the simulation of an
SMT processor for a multi-program workload. The co-phase
matrix represents all of the potential phase combinations of
a multi-program workload to be examined in an architecture
study. The co-phase matrix is used to guide the unique sam-
ples we want to focus on capturing performance for during
execution. Our simulation approach populates the co-phase
matrix with samples during simulation. Once a phase combi-
nation has an appropriate sample, we no longer need to simu-
late that combination and we can just fast-forward execution
to the next phase combination. The amount to fast-forward is
determined by the performance sample stored in the co-phase
matrix. We also examine a method that allows us to sample
all co-phase matrix entries in parallel and then, with no ad-
ditional simulation, determine the IPC of the programs from
any relative starting offsets.

Our paper is not the first to point out that the behavior of
one program running on an SMT processors can be affected
by a different program that is scheduled to run at the same
time. Indeed, both the work of Snavely and Tullsen [14] and
of Parekh, Eggers and Levy [8] demonstrate that not only does
this effect occur, but that it can in some circumstances be ex-
ploited for increased schedule efficiency. However, neither of
these approaches make use of phases to perform optimizations
and instead assume that each of the programs have homoge-
neous behavior. We extend this idea and show that there is
even thread interference that happens at the level of phases,
and that this can be used to perform more accurate perfor-
mance estimation. Our future work will apply this to SMT
scheduling.

2 Prior Simulation Techniques
Modern architecture research relies heavily on time-
consuming detailed pipeline simulation, leading several re-
searchers to develop ways of reducing simulation time while
remaining true to complete simulation. This section provides
a brief overview of some of the work in this area as it relates
to our SMT sampling technique.

In [11], we used a characterization of a full program’s ex-
ecution created by clustering analysis to find a small set of
phases, and for each phase picked a representative sample of
the phase’s execution. Taken together, these samples can rep-
resent the complete execution of a program. The set of cho-
sen samples are called simulation points, and each simulation
point is an interval on the order of millions of instructions.
The simulation points were found by examining only a pro-
file of the basic blocks executed for a program.

To perform the SimPoint analysis, a desired sample size
is chosen (we use a sample size of 10 million instructions
in this paper). The sample size is the interval size (in dy-
namic instructions) that the user wants to perform simulation
or program analysis at. The program is then broken up into
consecutive intervals equal to the sample size, and a profile is
gathered for every interval. The profile measures what code
was executed during each interval and its frequency. To do
this a Basic Block Vector (BBV) is used. A Basic Block Vec-
tor is an array with one entry for every static basic block in the
program. An interval’s basic block vector has a count for each
basic block, which is the number of times that basic block was
executed during the interval. The BBV for an interval is com-
pared to other interval BBVs to see how similar they are, and
similar intervals are clustered together. Alternatively, they can
be compared to a BBV representing the complete execution of
the program in order to find a single interval that is the closest
to the complete execution of the program.

Raasch and Reinhardt [9] examined the effects of parti-
tioned resources on SMT execution. To reduce simulation
time they used single simulation points from SimPoint [11]
for each benchmark program-input pair. As a further opti-
mization, principle components analysis and clustering were
used to eliminate simulation points that were similar to other
simulation points. Their goal was to capture the typical be-
havior of a workload independent of when each individual
program was started. In comparison, our goal is to create an
accurate and efficient SMT simulation approach for an SMT
workload starting each program at a specific location.

Several different techniques have been proposed for sam-
pling to estimate the program behavior. These techniques take
a number of execution samples across the whole execution of
the program, which are referred to as clusters in [4] because
they are groupings of contiguous instructions. These clus-
ters are spread out throughout the execution of the program
in an attempt to provide a representative cross-cut of the ap-
plication being simulated. Conte et al. [4] formed multiple
simulation points by randomly picking intervals of execution,
and then examining how these fit to the overall execution of
the program for several architecture metrics (IPC, branch and
data cache statistics). They used statistical sampling and con-
fidence intervals to guide the number of samples to use for
their simulations.

Wunderlich et al. [16] provide an accurate simulation in-
frastructure using statistical sampling. The paper provides
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contributions to statistical sampling, including how to effi-
ciently warm up the state of the pipeline to accurately gather
results using samples of size 1000 instructions. This proce-
dure involves updating caches and branch predictors during
execution and then executing 10000 instructions of warmup.
In addition, after one sampling run, they show how to use sta-
tistical analysis to determine how many samples are needed
to achieve a desired error bound and confidence.

To use sampling, simulation infrastructures usually fast-
forward between samples. In doing this one has to address the
issue of how to deal with the status of large structures such as
the cache when switching from one sample to the next. One
option is to warm up the structures before gathering detailed
simulation results for the sample. Haskins and Skadron [5, 6]
have examined finding the minimum distance to fast-forward
before a simulation point based upon the working set size of
the structure to be warmed up. They use their reuse analysis to
accurately determine how long to warm up (start simulating)
different structures (e.g., branch predictors and caches) prior
to detailed simulation.

2.1 Problems We Address
The techniques summarized above effectively solve the prob-
lems they address, but have only been fully explored in the
single-threaded context. Our goal is to make these tech-
niques usable by researchers working with SMT architectures.
Specifically, we show how to collect samples of SMT exe-
cution that are representative of the phased behavior that oc-
curs and how to combine the performance statistics from these
samples so that the the overall IPC is accurately estimated.

3 Methodology
For this research we focus on eight programs to create a rep-
resentative workload from the different types of phase behav-
ior we saw in our prior SimPoint research. We use bzip2,
equake, gcc, lucas, gzip, mesa, perl and vpr to ex-
amine multi-program phase-based interactions. The first four
programs represent the most complicated phase-based behav-
ior found in the SPEC benchmark suite, and the last four pro-
grams the average case phase-based behavior. We examine
running all 28 combinations of the above eight programs in
pairs on a four hardware context SMT processor. Four groups
of four threads are also run on the same processor configura-
tion.

For our multi-program workloads we fast-forwarded each
program 1 billion instructions and then started co-simulating
them on the SMT processor using the ICOUNT fetching
heuristic [15]. We terminate simulation of a given multi-
program workload as soon as the first program finishes exe-
cuting 10 billion instructions. We use this to denote the end of
the multi-program simulation due to the fact that each SPEC
program has a different number of instructions for its ref input
run, and each program executes instructions at different rates.

I-Cache
64kB 2-way set-associative, 64-byte blocks, 1-cycle la-
tency

D-Cache
64kB 2-way set-associative, 64-byte blocks, 3-cycle la-
tency

Unified L2
1 MB 4-way set-associative, 64-byte blocks, 10-cycle la-
tency

Memory 100-cycle latency

Branch Pred

21264-style hybrid predictor with 13-bit global history
indexing a 8k-entry global PHT and 8k-entry choice ta-
ble; 2k 11-bit local history entries indexing a 2k-entry
local PHT

OOO Issue out-of-order issue, 256-entry re-order buffer

Width 8 instructions per cycle (Fetch, Decode, Issue and Com-
mit)

Func Units 6 Integer, 2 Integer Multiply, 4 FP Add, 2 FP Multiply

Table 1: SMT processor configuration.

In addition, we verified that the 10 billion instruction sec-
tion for this multi-program workload is fairly representative
of the phases seen over the whole program execution. This
also gives us an arbitrary point part way through execution to
start each program.

The M5 SMT simulator [2] from Michigan, based on Sim-
pleScalar3.0c [3], was used to collect performance and archi-
tecture metrics in the simultaneously multithreaded environ-
ment. Although the simulator is capable of full-system simu-
lation we did not use that capability for this paper. The config-
uration for this simulator is shown in Table 1. It is configured
to support an intensive multithreaded workload. Hence the
large cache and abundant reservation stations. We simulated
SPEC 2000 benchmarks compiled for the Alpha ISA. The bi-
naries we used in this study and how they were compiled can
be found at http://www.simplescalar.com/.

4 Baseline SMT Sampling
The bulk of the work on efficient cycle-level simulation has
considered only single-threaded processors running a single
program. In these environments, it is clear when running a
single program what it means for a sample to be representa-
tive. When examining a multi-program workload for a multi-
threaded architecture such as Intel’s Hyper-Threading proces-
sors, it is not as clear what would be a representative workload
sample.

4.1 Sampling Challenge for an SMT Processor
Single-threaded sampling methods assume that sampling
points can be easily determined independently from detailed
simulation, either through random sampling or some heuris-
tic. But on an SMT processor, the threads share the hardware
resources, and it is necessary to model the co-execution of the
threads to determine which instructions from the programs
will be executed at the same time.

Figure 1 shows how IPC changes over time for each pro-
gram when it is run by itself on the baseline SMT processor.
The x-axis represents time, and the numbers on the x-axis
represents the percent of execution. The y-axis is the IPC
for each execution interval. The time-varying IPC behavior
is shown for 10 billion instructions, after fast-forwarding for
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Figure 1: IPC Time-varying behavior for each program when
it is run by itself on the SMT processor. The x-axis scale is
percentage of execution.

one billion. In bzip2, gcc and vpr we see periodic behav-
ior when these programs are executed by themselves.

Figure 2 shows the time-varying IPC results for all two-
program combinations of bzip2, gcc and vpr running on
an SMT Processor. These figures show the IPC for each pro-
gram when co-executing with the others. The per-program
IPC is lower than in Figure 1 because now all the programs
are fighting for the resources they once had to themselves.
The first thing to note is that there is significantly more com-
plex behavior here than was present when the programs were
running as individuals. Upon further inspection other patterns
begin to take shape. First of all, the IPCs for the programs
become somewhat synchronized and the IPCs of individual
programs oscillate together through phases of high and low
IPC.

As can be seen in Figure 2, the task of determining the
relative execution rates for several programs will be complex.
For a single pair of programs, such as gcc and bzip2, at
times the programs will execute at the same rate and at others
there is an order of magnitude difference in IPC. It is therefore
a challenge to determine between samples how much to fast-
forward each separate thread in order to arrive at a real sample
that would exist in the representative baseline full simulation.

4.2 Using Single Simulation Points
A typical methodology that researchers use is to simulate an
SMT processor for 100 to 300 million instructions at a single
point for a given multi-program workload. This only exercises
the interaction between the programs for a couple of differ-
ent behavior combinations (serial phases) for each program.
To illustrate the problem, we first examine randomly picking
an offset in each program to start executing at and measure
performance. Each offset combination was simulated until a
total of 300 million instructions were executed. This is shown
in Figure 3, where IPCs for random simulations are shown
for the program pairs bzip2-gcc, bzip2-vpr, and gcc-
vpr; the per thread estimated IPC results are shown next to
each program combination. The random sampling results are
shown as plus (+) signs. We also show the overall and per-
program IPCs found when executing the program combina-
tion for 10 billion instruction, and the 300 million samples
were drawn from this 10 billion instruction execution. The
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Figure 2: Time Varying IPC when running all the above 2
program combinations at the same time together on a dual
hardware context SMT Processor.

results show that arbitrarily taking one sample for a program
combination can lead to highly variable IPC estimates.

Also shown in Figure 3 are results that use the best single
simulation point found by the SimPoint algorithm in [11] for
each program and co-simulated those together for 300 million
instructions. For a given program/input pair, SimPoint pro-
files the code usage, broken down into 100 million samples,
over the complete execution of the program. It then compares
a code profile of the complete execution of the program with
the profile from each interval and attempts to pick the more
representative set of 100 million contiguous instructions. The
circle on the graphs represents using the best single SimPoint
for each program when performing an SMT simulation. The
results show that for some combinations it has a relatively
small error, while for others it can have an overall error of
almost 20% (gcc-gzip) or even almost 40% (bzip2 in
bzip2-gcc).

Single simulation points can be fairly representative of the
entire program execution. They typically capture the transi-
tion point between the two most dominant phases in the run.
Some programs have many phases and the single simulation
point will have a higher error rate than if samples are taken
from each phase of the program’s execution. Therefore, we
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Figure 3: Random sampling results.

focus on obtaining a more accurate picture of the program’s
execution by taking samples from all of the phase combina-
tions seen for a multi-program workload.

4.3 Guiding Fast-forwarding Using the Last Sample
Figure 2 shows complex fine-grain phase behavior, but gen-
eral trends of execution are often present for significant inter-
vals. This is caused by the phase nature of programs, where
programs tend to execute in the same phase for a given period
of time before transitioning to a new phase [1, 12]. Therefore
the performance from recent execution can be a reasonable
prediction of near future performance.

Using this observation, as a baseline sampling technique
we examine a straight-forward sampling approach where we
assume that the program’s execution will continue to have the
same IPC for some time. Then performance from one sample
can be used to guide the amount of per-thread fast-forwarding
until the next sample occurs. By periodically resampling we
can detect changes in per-thread behavior, and then correct
the fast-forwarding until the next sampling.

5 Using a Co-Phase Matrix
The technique discussed in the last section, periodically sam-
pling and then assuming the behavior will be stable until
the next sample, is simple to implement and works reason-
ably well in many cases. However, with only an incremental
amount of complexity, and leveraging our past work on phase
analysis, we can do even better. This new approach antici-
pates phase changes independently from sampling, allowing
samples to be taken at every new phase combination. Fig-
ure 1 shows the repetitive phase behavior of single threads,
and even when two-program combinations are run in Fig-
ure 2. The single-thread phase behavior is still present in
multithreaded execution but the phases are now affected by
competition for resources from other threads. This leads us to
propose the use of phase detection techniques based on phases
discovered using our earlier work on single-threaded program

analysis.

5.1 Creating a Phase-ID Trace for a Single Program
The phase behavior we exploit is efficiently detected in each
of the individual threads using the past techniques discussed
in Section 2, and then combined using our new methods.

SimPoint [11] breaks a program’s execution up into inter-
vals. An Interval is a section of continuous execution (a slice
in time) of a program. For the results in this paper all inter-
vals are chosen to be the same size (10 million instructions).
A Phase is a set of intervals within a program’s execution that
have similar behavior, regardless of temporal adjacency. In
this way a phase can re-occur multiple times throughout the
execution of the program.

Each interval is represented by a profile of the code (ba-
sic blocks) executed during that interval. The algorithm uses
k-means clustering to group together intervals into the same
phase if the same basic blocks were executed in those inter-
vals with the same frequency. The key to this approach is
that the program for a given input is broken into phases based
completely on the code that is executed without considering
its dynamic behavior. This allows the simulation points to
accurately represent the program’s behavior across different
architecture configurations.

For our approach, the phase behavior is represented by a
Phase-ID trace representing the complete execution of a sin-
gle program, where each phase is represented by a unique ID
determined by the SimPoint program. This indicates at which
instructions in the program’s execution phase changes occur
and the new phase IDs.

5.2 The Co-Phase Matrix
On an SMT processor, the state of each thread’s execution
can be represented by the per-program phase-ID it is currently
executing in. The key idea of our technique is that, just as
in the single threaded version the overall behavior does not
change within a given phase, in an SMT machine the overall
behavior should not change unless at least one thread has a
phase change. Thus we need to keep track of a list of all
combinations of phases that have been seen running together.
This combination of phase-IDs, which are executing together,
represent a unique co-phase identifier. We have found that
taking a sample of the simultaneous execution of programs
and storing it with its co-phase identifier accurately represents
the SMT performance when this same co-phase combination
is seen again in the future. We can then store a list of the
past combinations we have seen, and we term this list the Co-
Phase Matrix.

A Co-Phase Matrix represents the combination of all of
the phase-IDs from each program in the workload that can
execute simultaneously on the SMT machine, where there is
an entry in the matrix for each co-phase identifier. If each
phase combination were simulated, then the table would be
filled with representative samples for all the possible phase
combinations in the program. For each combination of the

5



Instructions (M) Thread 0 Phase Thread 1 Phase
0–4 a x
4–8 a y
8–12 b x
12–16 b x
16–20 a y
20–24 a y

Co-Phase Thread 0 IPC Thread 1 IPC
ax 2 1
ay 1 1
bx 2 2
by 1 2

Table 2: Phases found in two programs (4M instruction inter-
vals) and a co-phase matrix. The table on the top shows the
phase-ID trace gathered from SimPoint. The matrix on the
bottom shows an example final co-phase matrix from simulat-
ing the two threads together.

Thread 0 Thread 1 Co-Phase Cycles (M)
Inst (M) Inst (M)
0–8 0–4 ax 4
8–10 4–8 by 2
10–16 8–14 bx 3
16–20 14–16 ax 2
20–24 16–24 ay 4

Table 3: Example of a co-phase matrix simulation.

phases (co-phase) that occurs when co-executing two or more
programs we store into the co-phase matrix the per-thread IPC
found during a sample of detailed simulation.

5.3 Guiding Fast-Forwarding
We can estimate the co-execution of multiple programs at a
given point in time if we have two items: the phase-ID trace
and the co-phase matrix entry that corresponds to the phases
currently executing. If we have the entry in the co-phase ma-
trix then we can predict per-thread IPC because we have ob-
served and recorded this set of phases executing in the past.
From SimPoint we obtain the phase-ID trace, which is used to
determine how many instructions each program must execute
before it encounters the next phase change. Using the IPC es-
timates from the co-phase matrix and the phase-ID trace we
determine how many cycles it would take for the next phase
change to occur for any of the co-executing threads. This is
used to guide how far to fast-forward each thread using the
estimated IPCs from the co-phase matrix. The following is an
overview of the algorithm:

1. Co-Phase Matrix Lookup - The current co-execution
thread combination represents a co-phase identifier, which
is looked up in the co-phase matrix. If a sample exists, re-
trieve the per-thread IPC for each thread. If a sample does

not exist, then perform detailed simulation for a specified
sample size (see Section 6.2), and store the per-thread IPC
into the co-phase matrix to reuse later.

2. Determine Number of Cycles to Fast-Forward - Using each
program’s phase-ID trace, calculate the number of instruc-
tions until the next phase change for each thread. Use this
and the per-thread IPC from the co-phase matrix to calcu-
late the number of cycles to reach that phase change. The
thread with the smallest number of cycles until the next
phase change determines how far to fast-forward.

3. Fast-Forward to Next Phase Change - Take the number
of cycles from step 2, and multiply this by the per-thread
IPC from the co-phase matrix to determine how many in-
structions to fast-forward each thread. Fast-forward each
thread that many instructions. This results in a new phase-
combination, and go back to step 1.

An example of using this approach can be found in Ta-
bles 2 and 3. The top part of Table 2 shows the per-thread
phase-ID trace. The bottom part of the Table shows the re-
sulting co-phase matrix built up using detailed samples during
simulation.

In Table 3’s example, both programs are executed from
the start. From the phase-ID trace we see that thread 0 is in
phase a for the first 8M instructions of its execution. Thread 1
will remain in phase x for only 4M instructions. Collectively
they are in co-phase ab, in which thread 0 has an IPC of 2
and thread 1 has an IPC of 1. After 4M cycles thread 0 exe-
cutes 8M instructions and thread 1 executes 4M instructions,
at which point both change phase, making the new co-phase
by. Now thread 0 has an IPC of 1 and thread 1 has an IPC
of 2. At this rate thread 0 will not change phase for 8M cy-
cles but thread 1 will change phase after only 2M cycles. So
after 2M additional cycles thread 0 has executed 10M instruc-
tions and thread 1 has executed 8M instructions. At this point
thread 0 stays in phase b but thread 1 returns to phase x; the
new co-phase is bx. At this point the co-phase matrix entry
bx is examined to determine the IPC for both of the threads,
and the rest of the example proceeds in the same manner.

Next we examine two different approaches for guiding
simulation using the contents of the co-phase matrix.

5.4 Estimating Performance with a Dynamic Co-Phase
Matrix

The first approach we propose for guiding simulation dynam-
ically populates the co-phase matrix as we simulate. For this
technique, we start a simulation from a desired initial offset
of each program with an empty co-phase matrix. The start of
execution represents the first co-phase matrix entry needed to
execute, so we perform a detailed simulation of that co-phase
at the current execution and fill in the corresponding co-phase
matrix entry. From this matrix entry we estimate how many
instructions are going to execute from each program before
the next phase change, using knowledge of how many instruc-
tions we have executed from each individual program and the
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single program phase-ID trace. We then fast-forward each
program thread by that many instructions, and examine the
new co-phase that the workload is at. If this co-phase is not
in our co-phase matrix (or, for example, is based on too few
samples), we perform detailed SMT simulation and fill it in.
If it is in our matrix, we use the existing entry to estimate the
number of instructions executed for each program and fast-
forward each program. This process is repeated until we have
completed simulation. When we are done we have a co-phase
matrix filled out with all of the co-phases that were observed
during this workload’s execution, and a weight is assigned to
each co-phase matrix entry corresponding to the fraction of
time each co-phase occurred during this process. The perfor-
mance results gathered in this co-phase matrix are then com-
bined to achieve an overall estimated IPC of the combined
run, and a per thread IPC.

The results labeled First Phase, 1% Phase and 5% Phase
use this dynamic co-phase matrix approach. First Phase uses
only the first sample found. The results labeled 1% and 5%
add new samples at regular intervals. To sample 5% of exe-
cution, for example, a new sample is taken every 20 times (5
out of 100) that a specific co-phase matrix entry occurs during
simulation.

5.5 Estimating Performance with a Static Co-Phase Ma-
trix

We now describe using a static co-phase matrix to guide sim-
ulation. For each co-phase that could occur in the matrix we
simulate the programs together at representative simulation
points. We used the SimPoint algorithm to find the representa-
tive simulation points from each phase. The simulation points
might not actually co-execute during the baseline comparison
we are trying to model, but they embody an average behavior
for that co-phase that makes them representative. For this ap-
proach, only a single sample is used for each co-phase matrix
entry from running the SimPoint simulation point combina-
tions together.

To arrive at an overall IPC, the multi-program workload
will start its execution in one of the co-phase matrix entries.
Using that co-phase matrix entry and the individual program
phase-ID trace information, we predict how many cycles until
the next phase change and the number of instructions to be
executed from each program. We then advance to a new co-
phase simulation matrix entry and advance each program by
its number of estimated instructions executed, and we repeat
this process. Once we reach the stopping criteria for our simu-
lation (e.g., reaching a total number of simulated instructions
or a minimum number from each thread) we have the total
number of cycles to execute the workload and the number of
instructions executed per thread. Note, this analytical simu-
lation is done after we have the co-phase matrix. It requires
neither functional nor detailed simulation after the static ma-
trix has been created. At this point the analytical simulation
is completely driven by the co-phase matrix.
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Figure 4: Number of phases found for each program.
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Figure 5: Number of phase combinations that could have oc-
curred and the number that actually occurred during detailed
simulation.

This method is extremely efficient when used with check-
points. One set of checkpoints suffices for each combination
of programs, and can be used for every architectural change
to be examined. For a particular architecture configuration,
after simulating each phase combination once for just tens of
millions of instructions, we can then arrive at the estimated
performance results for all possible thread starting offsets.
With checkpoints, these simulations may be done in parallel if
there are sufficient resources. Unfortunately, if the number of
threads is large or they have complicated phase behavior, there
will be too many potential co-phase matrix entries to simulate.
In this case, the dynamic approach described above for filling
in the co-phase matrix to guide sampling and fast-forwarding
would be preferred. Alternately, the static co-phase matrix
can be collected as each entry is needed during simulation and
the partial static co-phase matrix can be shared and updated
by several simulations concurrently.

6 Results
All of our results are compared against complete detailed sim-
ulation of the 10 billion instruction interval described in Sec-
tion 3. Each workload is labeled with thread 0 first and thread
1 second, so thread 0 in gcc-vpr is gcc, and thread 1 is
vpr. We examine both the overall and per-thread IPC. Al-
though the overall IPC is of importance, it is also critical that
the per-thread performance be accurate so that our simula-
tion model can be used to study throughput, fairness, per-
ceived user time and scheduling. Additionally, if a simulation
method weights two executing threads differently than would
occur in practice, then it may be effectively simulating a dif-
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Figure 6: Error in IPC for co-phase matrix simulation using the dynamic co-phase matrix with 1% Phase sampling.
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Figure 7: Error in IPC for co-phase matrix simulation using the Static co-phase matrix.

ferent workload than would occur naturally.
The warmup technique we use for the start of a sample in

this paper is what we call Cold Start Hit. Each cache block
uses a warmup bit to that indicates the first time an entry is
used. When starting the simulation of a sample, the first ac-
cess to a cache block is assumed to be a hit. This a very simple
method but it provides reasonable warmup accuracy, since the
miss rates for caches is usually fairly low.

6.1 Phase Selection
For each program to be run in the multi-program work-
loads, we gathered the Basic Block Vectors for that program
and identified the phases and simulation points as described
in [11]. To ensure that fine-grained behavior would be evi-
dent we used 10 million instruction intervals. We used the
SimPoint tools to find up to 20 phases (max K was set to 20)
in each program. In Figure 4, we show the number of phases
that were actually found for each program.

During the detailed simulation of a two-program work-
load, in the worst case, the number of possible co-phases be-
tween the two different programs is the product of the number
of simulation points for each program. For example, in Fig-
ure 4 we see that gcc had 12 phases and vpr had 7, so the
total possible number of co-phases is 84. Figure 5 shows the
maximum possible number of co-phase identifiers for each
two program combination we examined, as well as the num-
ber observed during simulation. Even though gcc-vpr had
84 possible co-phases, only 51 of the possible pairings oc-

curred during the baseline simulation we performed. Figure 8
shows that the overall, and per-thread IPC of each of the pro-
gram combination. The pairs varied greatly in performance,
with overall IPC between 2.2 and 4.5 and single-threaded per-
formance between 0.7 and 3.2. Depending on its partners, a
program’s IPC can vary by as much as 1.3.

6.2 Picking a Sample Size
For each sample gathered during SMT simulation, we consid-
ered the following three sampling methods. In these sampling
techniques, a sample stops when one of the conditions below
is met:

Total 5M: total 5M instructions are committed,

First 5M: a single thread commits 5M instructions,

Both 5M: both threads commit at least 5M instructions.

The Total 5M method performed worst because it executes
the fewest instructions. There is a similar problem with First
5M, which may be dominated by the best-performing thread.
In cases where one thread significantly outperforms the other
this could lead to unbalanced sampling. Both 5M was the
overall best method with only gcc’s frequent phase changes
as notable weakness, so in our dynamic co-phase matrix ex-
periments we sample long enough that each thread executes at
least 5M instructions during the sampling. When populating
a co-phase matrix entry, it is not always possible to sample
that long before hitting a co-phase change. When this occurs,
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Figure 8: IPC statistics for all two-program combinations.
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Figure 9: Overall IPC error comparing the different SMT sampling techniques.

we take additional samples when the co-phase re-occurs and
combine them with the earlier sample results. This avoids
the problems with frequent phase changes. With resampling
techniques, the additional samples do not need to contain 5M
instructions for each thread.

The experiments with static co-phases matrices do not
have the advantage of sampling from multiple locations, so
they use Both 10M. The faster thread can overrun the end
of the co-phase but longer samples seem to be an advantage
overall. Experiments with many different ways to terminate
a sample (including all of the 5M methods just mentioned)
demonstrated that no technique is best for all pairs of pro-
grams.

6.3 Pairwise Simulation Results
We first examine the error in IPC seen using the dynamic and
static co-phase matrix simulation approach described in Sec-
tion 5. Figure 6 shows the error in IPC when guiding simu-
lation dynamically building up the co-phase matrix using 1%
sampling as described in Section 5.4. Figure 7 shows the error
in IPC when using the static co-phase matrix to guide simu-
lation. Results are shown for overall IPC error and per-thread
error. Overall, for both techniques, the average error rate was
4% and the average per-thread error rate was below 8%. In
the worst case (mesa-perl), the overall error was 16%, and
the per-thread error was 27%.

Figure 9 compares our dynamic and static co-phase ma-
trix approaches with alternate sampling techniques described
in Section 4, concentrating on overall error in IPC. The first
bar shows the result of co-simulating the best Single simula-
tion points until one thread executes 100M instructions. 5%

Last shows the estimated performance, where we regularly
sample the per-thread IPC to predict how far to fast-forward
each thread to the next sample. Each sample simulates until
both threads execute at least 5M instructions. 5% of the work-
load has detailed simulation performed on it, and the rest of
execution is skipped via fast-forwarding.

The next bar, First Phase, shows our dynamic co-phase
matrix approach, where sampling is done for a co-phase ma-
trix entry until a total of 5M instructions are simulated for
each thread. This represents taking the 1st sample for each
co-phase matrix entry, and using that to guide fast-forwarding
for that entry for the rest of the simulation. The N% Phase
methods resample each co-phase, where detailed simulation
is performed for 1% or 5% of the workload’s execution, and
the rest is fast-forwarding. For this approach new samples
are combined with the old ones. Finally, Static uses the static
co-phase matrix.

The Single SimPoint method produced errors much
greater than would be expected when using single SimPoints
in the single-threaded case. Even though the intervals are rep-
resentative of the overall instruction mix, the pairing of single
simulation points cannot capture the complexity of ongoing
phase interactions. The high single-thread errors show that
pairings can be quite atypical. In terms of average error rate,
phase-based sampling techniques are significantly better than
the Single and 5% Last techniques.

6.3.1 Relative Progress Graphs
To better explain and compare the errors seen in Figure 9, we
now examine the relative progress of each through execution
using a Relative Progress Graph.
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Figure 10: Relative progress for bzip2-gcc.
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Figure 11: Relative progress for bzip2-vpr.

Figures 10 and 11 compare the baseline execution of pro-
gram pairs with the estimated execution derived from sam-
pling. A point plotted at (x, y) indicates that when thread 0
has executed x instructions, thread 1 has executed y instruc-
tions. The solid line represents the baseline detailed simula-
tion and the broken lines represent the progress estimated by
our various sampling methods. The slope of the line at a point
indicates the relative IPCs of the two programs, but actual IPC
values cannot be derived from this graph because it does not
show how many cycles have executed. The graph can be used
to verify that the sampled runs enter the correct co-phases to-
gether. The ideal behavior is for the sampling approach to
identically follow the baseline run.

In Figure 10 we examine the co-execution of bzip2 and
gcc. This pairing has the most dramatic variation in relative
IPCs amongst our test cases, as can be seen by the nearly hor-
izontal and vertical line segments midway through execution.
Each sharp bend in the graph represents a transition between
significantly different co-phases. It is immediately obvious
that the last sample method does not track the behavior of the
baseline (the top line in the graph). It does a reasonable job of
tracking the sharp bend at 2.5 billion instructions, but because
it has already deviated from the baseline it does not match
the nearly horizontal phase for even a third of its length, an

error which cannot be corrected. The static method (the bot-
tom line in the graph) sampled unfortunately just before the
nearly vertical section, causing it to switch to the horizontal
too late and hence continue in that co-phase too long. De-
spite this error it manages to track subsequent phase changes
fairly accurately. All of the other methods make better use
of phase knowledge, ensuring that they take samples at the
phase combinations. The slight deviation from the baseline
is determined by how representative of the entire phase are
the samples. The close tracking of the baseline indicates that
sufficiently many phases were used for both programs.

Figure 11 shows a poorly-performing pairing with about
10% error in the non-static methods. Here the phase behavior
settles into an undulating line after the first billion instruc-
tions. Although Last 5% sampling looks the best here, it can
be seen that this is almost an accident. It crosses the baseline
many times but rarely has a similar slope; the frequent vari-
ations caused by bzip2 repeatedly send it back towards the
baseline but it does not correct its course again until it is too
late. These errors make its IPC estimate no better than that
of the other techniques. The phase-based techniques track
changes in the baseline admirably, but these runs consistently
diverge over time, suggesting that the samples are slightly off
from the average trend. The static method gets an advantage
in this case by not taking the earliest samples, keeping its error
in vpr’s execution much lower.

In each case it is clear that attention to phases provides
essential information for tracking SMT execution behavior.
Regular sampling without phase information succumbs to er-
ror for reasonable sampling frequencies. Shorter samples
would allow more frequent sampling but would decrease sam-
ple accuracy; this will only give reasonable results for pro-
gram pairs with consistent behavior such as bzip2-vpr, but
not for complex combinations such as bzip2-gcc.

The analysis for bzip2-vpr indicates that advanced
warmup techniques may improve our results. Functional
warming during fast-forwarding, as used by Wunderlich et
al. [16] is a promising technique. Keeping caches and branch
predictors warm has a modest impact on the performance of
fast-forwarding, so the increased execution time should not
outweigh the anticipated benefits to accuracy. SMT functional
warming requires that state updates from the threads be inter-
leaved, so each thread will need to be fast-forwarded in small
increments according to their estimated relative IPCs.

6.3.2 Variability of Co-phase Samples
We now examine the benefit of using co-phase information to
guide sampling. We find that samples taken from co-phases
exhibit less variation than samples taken across all co-phases
during our baseline runs. We break the execution of an SMT
workload into 10M combined instruction intervals. We then
calculate the Coefficient of Variation (CoV) over all of these
intervals of execution, as shown in Figure 12. This represents
the variation seen when randomly sampling over the complete
baseline execution of the workload.
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Figure 12: Coefficient of variation improvements through
phase separation.

Next, we compare this to the variance in samples seen
when guiding sampling with the co-phase matrix. To calculate
this, we bin all of the SMT workload intervals into co-phase
matrix entries, and we calculate the CoV of each co-phase ma-
trix entry. We then weight each CoV based upon the amount
of execution each phase accounted for. These weighted CoVs
are then combined to arrive at an average CoV that would be
seen when gathering samples based upon the co-phase matrix.
The co-phase CoV is also shown in Figure 12. The results
show that the co-phase sampling always made an improve-
ment, reducing the variance by one-third on average.

We also verified that the co-phase methods are suitable for
comparing different simulator configurations. We ran differ-
ent pairs of programs through eight configurations, varying
the size of the L1 caches, the L2 cache and the branch pre-
dictor tables. Timing parameters were changed so that the
smaller structures had lower latency. The bzip2-gcc pair
was particularly sensitive to architectural changes so in Fig-
ure 13 we show real and estimated overall and per-thread IPC.
The Static Phase method is particularly consistent in its error,
and the magnitude of the error is relatively constant over most
of the configurations. It changes at the 5th processor configu-
ration, where the error drops to nearly zero.

6.4 Four-Context Simulation Results
We also examined applying our co-phase matrix approach to
a four-context SMT processor. Table 4 shows the the overall
IPC and per-thread IPC for the four program combinations
we examined. The last two columns show the total possible
number of co-phase combinations and the number observed
during simulation.

Figure 14 shows the overall IPC error rates for the four
program combinations we examined. We compare the results
for Single, 1% Phase, 5% Phase and Static methods. The re-
sults show that when using all four contexts the machine is
completely resource constrained so errors in different threads
balance out, making the overall IPC error negligible.

Figure 15 shows the detailed breakdown of per-thread er-
ror for one combination. Results are shown across the differ-
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Figure 13: Overall and per-thread performance for bzip2-
gcc under different architecture configurations.

ent sampling techniques for the overall error, and per-thread
error for equake, gzip, lucas, and perl. As in the
two-threaded case, perl is a significant source of error be-
cause of the limited number of phases found. Static errors are
more pronounced than the other methods, unlike the situa-
tion with two threads, because the larger number of programs
produce shorter co-phases, increasing the probability that a
the static sample will not match the dynamic instances of the
co-phase. This is similar to the problem noted with gcc’s fre-
quent phase changes, but worse. Nonetheless, the magnitude
of the errors is smaller than in many two-threaded cases be-
cause more of the simulated machine’s resources are used at
capacity, allowing less variation in performance.

7 Summary
Simultaneous Multithreading architectures are appearing in
commercial processors, yet there is still relatively little sup-
port for sampling or determining where to simulate to achieve
representative simulation results. The challenge in creating a
sampling approach to SMT is in determining how far to fast-
forward each individual thread between samples. This dis-
tance will vary between different architecture configurations
and as the threads execute through different phases of execu-
tion.

In this paper, we present the co-phase matrix method for
sampling the execution of Simultaneous Multithreading ma-
chines. Our simulation approach builds a co-phase matrix and
uses it to guide fast-forwarding between samples. In perform-
ing detailed simulation using the co-phase matrix, we were
able to estimate the IPC for multi-program workloads with an
average error of 4% when using the 1% co-phase sampling
approach. Our static co-phase method allows parallel simula-
tion and can estimate workload performance from all possible
thread starting positions with just 4.3% error. We also showed
that the co-phase matrix can be used to estimate the progress
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Programs Instructions Per Cycle Co-phases
Overall Thread 0 Thread 1 Thread 2 Thread 3 Possible Observed

bzip2-equake-gcc-lucas 5.09 1.41 1.07 1.68 0.93 15552 469
bzip2-gcc-mesa-vpr 4.56 1.20 1.64 1.19 0.53 2688 305
equake-gzip-lucas-perl 4.03 0.96 1.31 0.99 0.77 1944 375
gzip-mesa-perl-vpr 3.65 1.15 1.41 0.61 0.48 336 62

Table 4: IPC and number of co-phases found for each set of four programs.
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Figure 14: Overall IPC error rates for four four-threaded
combinations.

equake gzip lucas perl Overall0

5

10

15

P
er

ce
n

ta
g

e 
E

rr
o

r Single
1% Phase
5% Phase
Static

21.71 18.81 64.22

Figure 15: Per-thread IPC accuracy for the equake-gzip-
lucas-perl combination.

of up to four threads on an SMT machine. This has lead to
future work including using our co-phase matrix to guide the
symbiotic scheduling of threads for SMT.
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