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Abstract

Traditional parallel compilers do not effectively parallelize irregular applications because they con-
tain little loop-level parallelism. We explore Speculative Task Parallelism (STP), where tasks are full
procedures and entire natural loops. Through profiling and compiler analysis, we find tasks that are
speculatively memory- and control-independent of their neighboring code. Via speculative futures, these
tasks may be executed in parallel with preceding code when there is a high probability of indepen-
dence. We estimate the amount of STP in irregular applications by measuring the number of memory-
independent instructions these tasks expose. We find that 7 to 22% of dynamic instructions are within
memory-independent tasks, depending on assumptions.

1 Introduction

Today’s microprocessors rely heavily on instruction-level parallelism (ILP) to gain higher performance.
Flow control imposes a limit to available ILP in single-threaded applications [8]. One way to overcome this
limit is to find parallel tasks and employ multiple flows of control (threads). Task-level parallelism (TLP)
arises when a task is independent of its neighboring code. We focus on finding these independent tasks and
exploring the resulting performance gains.

Traditional parallel compilers exploit one variety of TLP, loop level parallelism (LLP), where loop iter-
ations are executed in parallel. LLP can overwhelming be found in numeric, typically FORTRAN programs
with regular patterns of data accesses. In contrast, general purpose integer applications, which account for
the majority of codes currently run on microprocessors, exhibit little LLP as they tend to access data in
irregular patterns through pointers. Without pointer disambiguation to analyze data access dependences,
traditional parallel compilers cannot parallelize these irregular applications and ensure correct execution.

In this paper we explore task-level parallelism in irregular applications by focusing on Speculative Task
Parallelism (STP), where tasks are speculatively executed in parallel under the following assumptions: 1)
tasks are full procedures or entire natural loops, 2) tasks are speculatively memory-independent and control-
independent, and 3) our architecture allows the parallelization of tasks via speculative futures (discussed
below). Figure 1 illustrates STP, showing a dynamic instruction stream where a task Y has no memory ac-
cess conflicts with a group of instructions, X, that precede Y. The shorter of X and Y determines the overlap
of memory-independent instructions as seen in Figures 1(b) and 1(c). In the absence of any register depen-
dences, X and Y may be executed in parallel, resulting in shorter execution time. It is hard for traditional
parallel compilers of pointer-based languages to expose this parallelism.
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Figure 1: STP example: (a) shows a section of code where the task Y is known to be memory-independent of
the preceding code X. (b) the shaded region shows memory- and control-independent instructions that are
essentially removed from the critical path when Y is executed in parallel with X. (c) when task Y is longer
than X.

The goals of this paper are to identify such regions within irregular applications and to find the number of
instructions that may thus be removed from the critical path. This number represents the maximum possible
STP. To facilitate our discussion, we offer the following definitions.

A task, exemplified by Y in Figure 1, is a bounded set of instructions inherent to the application. Two
sections of code are memory-independent when neither contains a store to a memory location that the other
accesses. When all load/store combinations of the type [load,store], [store,load] and [store,store] between
two tasks, X and Y, access different memory locations, X and Y are said to be memory-independent. A
launch point is the point in the code preceding a task where the task may be initiated in parallel with the
preceding code. This point is determined through profiling and compiler analysis. A launched task is one
that begins execution from an associated launch point on a different thread.

Because the biggest barrier to detecting independence in irregular codes is memory disambiguation,
we identify memory-independent tasks using a profile-based approach and measure the amount of STP by
estimating the amount of memory-independent instructions those tasks expose. As successive executions
may differ from the profiled execution, any launched task would be inherently speculative. One way of
launching a task in parallel with its preceding code is through a parallel language construct called a future.
A future conceptually forks a thread to execute the task and identifies an area of memory in which to relay
status and results. When the original thread needs the results of the futured task, it either waits on the futured
task thread, or in the case that the task was never futured due to no idle threads, it executes the futured task
itself.

To exploit STP, we assume a speculative machine that supports speculative futures. Such a processor
could speculatively execute code in parallel when there is a high probability of independence, but no guaran-
tee. Our work identifies launch points for this speculative machine, and estimates the parallelism available
to such a machine. With varying levels of control and memory speculation, 7 to 22% of dynamic instruc-
tions are within tasks that are found to be memory-independent, on a set of irregular applications for which
traditional methods of parallelization are ineffective.

In the next section we discuss related work. Section 3 contains a description of how we identify and
quantify STP. Section 4 describes our experiment methodology and Section 5 continues with some results.
Implementation issues are highlighted in Section 6, followed by a summary in Section 7.
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2 Related Work

In order to exploit Speculative Task Parallelism, a system would minimally need to include multiple flows of
control and memory disambiguation to aid in mis-speculation detection. Current proposed structures that aid
in dynamic memory disambiguation are implemented in hardware alone [3] or rely upon a compiler [5, 4].
All minimally allow loads to be speculatively executed above stores and detect write-after-read violations
that may result from such speculation.

Some multithreaded machines [21, 19, 2] and single-chip multiprocessors [6, 7] facilitate multiple flows
of control from a single program, where flows are generated by compiler and/or dynamically. All of these
architectures could exploit non-speculative TLP if the compiler exposed it, but only Hydra [6] could support
STP without alteration.

Our paper examines speculatively parallel tasks in non-traditionally parallel applications. Other pro-
posed systems, displaying a variety of characteristics, also use speculation to increase parallelism. They
include Multiscalar processors [16, 12, 20], Block Structured Architecture [9], Speculative Thread-level
Parallelism [15, 14], Thread-level Data Speculation [18], Dynamic Multithreading Processor [1], and Data
Speculative Multithreaded hardware architecture [11, 10].

In these systems, the type of speculative tasks include fixed-size blocks [9], one or more basic blocks [16],
dynamic instruction sequences [18], loop iterations [15, 11], instructions following a loop [1], or following
a procedure call [1, 14]. These tasks were identified dynamically at run-time [11, 1], statically by compil-
ers [20, 9, 14], or by hand [18]. The underlying architectures include traditional multiprocessors [15, 18],
non-traditional multiprocessors [16, 9, 10], and multithreaded processors [1, 11].

Memory disambiguation and mis-speculation detection was handled by an Address Resolution Buffer [16],
the Time Warp mechanism of time stamping requests to memory [9], extended cache coherence schemes [14,
18], fully associative queues [1], and iteration tables [11]. Control mis-speculation was always handled by
squashing the mis-speculated task and any of its dependents. While a few handled data mis-speculations by
squashing, one rolls back speculative execution to the wrong data speculation [14] and others allow selective,
dependent re-execution of the wrong data speculation [9, 1].

Most systems facilitate data flow by forwarding values produced by one thread to any consuming
threads [16, 9, 18, 1, 11]. A few avoid data mis-speculation through synchronization [12, 14]. Some systems
enable speculation by value prediction using last-value [1, 14, 11] and stride-value predictors [14, 11].

STP identifies a source of parallelism that is complimentary to that found by most of the systems above.
Armed with a speculative future mechanism, these systems may benefit from exploiting STP.

3 Finding Task-based Parallelism

We find Speculative Task Parallelism by identifying all tasks that are memory-independent of the code that
precedes the task. This is done through profiling and compiler analysis, collecting data from memory access
conflicts and control flow information. These conflicts determine proposed launch points that mark the
memory dependences of a task. Then for each task, we traverse the control flow graph (CFG) in reverse
control flow order to determine launch points based upon memory and control dependences. Finally, we
estimate the parallelism expected from launching the tasks early. The following explain the details of our
approach to finding STP.

Task Selection

The type of task chosen for speculative execution directly affects the amount of speculative parallelism
found in an application. Oplinger, et. al. [14], found that loop iterations alone were insufficient to make
speculative thread-level parallelism effective for most programs. To find STP, we look at three types of
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Figure 2: PLP Locations: conflict source, conflict destination, PLP candidate, PLP overlap, and task over-
lap, when the latest conflict source is (a) before the calling routine, (b) within a sibling task (c) within the
calling routine.

tasks: leaf procedures (procedures that do not call any other procedure), non-leaf procedures, and entire
natural loops. When profiling a combination of task types, we profile them concurrently, exposing memory-
independent instructions within an environment of interacting tasks.

Although all tasks of the chosen type(s) are profiled, only those that expose at least a minimum number
of memory-independent instructions are chosen to be launched early. The final task selection is made after
evaluating memory and control dependences to determine actual launch points.

Memory Access Conflicts

Memory access conflicts are used to determine the memory dependences of a task. They occur when two
load/store instructions access the same memory region. Only a subset of memory conflicts that occur during
execution are useful for calculating launch points. Useful conflicts span task boundaries and are of the form
[load, store], [store, load], or [store, store]. We also disregard stores or loads due to register saves and
restores across procedure calls. We call the conflicting instruction preceding the task the conflict source, and
the conflicting instruction within the task is called the conflict destination. Specifically, when the conflict
destination is a load, the conflict source will be the last store to that memory region that occurred outside the
task. When the conflict destination is a store, the conflict source will be the last load or store to that memory
region that occurred outside the task.

Proposed Launch Points
The memory dependences for a task are marked, via profiling, as proposed launch points (PLPs). A PLP
represents the memory access conflict with the latest (closest) conflict source in the dynamic code preceding
one execution of that task. Exactly one PLP is found for each dynamic task execution. In our approach,
launch points for a task occur only within the task’s calling region, limiting the amount and scope of ex-
ecutable changes that would be needed to exploit STP. Thus, PLPs must also lie within a task’s calling
routine.

Figure 2 contains an example that demonstrates the latest conflict sources and their associated PLPs.
Task Z calls tasks X and Y. Y is the currently executing task in the example and Z is its calling routine.
When the conflict source occurs before the beginning of the calling routine, as in Figure 2(a), the PLP is
directly before the first instruction of the task Z. When the conflict source occurs within a sibling task or its
child tasks, as in Figure 2(b), the PLP immediately follows the call to the sibling task. In Figure 2(c), the
conflict source is a calling routine instruction and the PLP immediately follows the conflict source.
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Figure 3: Task Launch Points: Dotted areas have not been fully visited by the back-trace for task Y. (a) CFG
block contains a PLP. (b) CFG block is calling routine head. (c) Loop contains a PLP. (d) Incompletely
visited CFG block. (e) Incompletely visited loop.

Two measures of memory-independence are associated with each PLP. They are the PLP overlap and
the task overlap, as seen in Figure 2. The PLP overlap represents the number of dynamic instructions found
between the PLP and the beginning of the task. The task overlap represents the number of dynamic in-
structions between the beginning of the task and the conflict destination. With PLPs determined by memory
dependences that are dynamically closest to the task call site, and by recording the smallest task overlap, we
only consider conservative, safe locations with respect to the profiling dataset.

Task Launch Points
Both memory dependences and control dependences influence the placement of task launch points. Our
initial approach to exposing STP determines task launch points that provide two guarantees. First, static
control dependence is preserved: all paths from a task launch point lead to the original task call site. Second,
profiled memory dependence is preserved: should the threaded program be executed on the profiling dataset,
all instructions between the task launch point and the originally scheduled task call site will be free of
memory conflicts. Variations which relax these guarantees are described in Section 5.2.

For each task, we recursively traverse the CFG in reverse control flow order starting from the original
call site, navigating conditionals and loops, to identify task launch points. We use two auxiliary structures:
a stalled block list to hold incompletely visited blocks, and a stalled loop list to hold incompletely visited
loops. There are five conditions under which we record a task launch point. These conditions are described
below. The first three will halt recursive back-tracing along the current path. As illustrated in Figure 3, we
record task launch points:

a. when the current CFG block contains a PLP for that task. The task launch point is the last PLP in the
block.

b. when the current CFG block is the head of the task’s calling routine and contains no PLPs. The task
launch point is the first instruction in the block.

c. when the current loop contains a PLP for that task. Back-tracing will only get to this point when it
visits a loop, and all loop exit edges have been visited. As this loop is really a sibling of the current
task, task launch points are recorded at the end of all loop exit edges.

d. for blocks that remain on the stalled block list after all recursive back-tracing has exited. A task launch
point is recorded only at the end of each visited successor edge of the stalled block.

e. for loops that remain on the stalled loop list after all recursive back-tracing has exited. A task launch
point is recorded only at the end of each visited loop exit edge.

Each task launch point indicates a position in the executable in which to place a task future. At each
task’s original call site, a check on the status of the future will indicate whether to execute the task serially
or wait on the result of the future.
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Figure 4: Task Types: Individual data points identify memory independent instructions as a percentage of
all instructions profiled and represent our starting configuration.

Parallelization Estimation
We estimate the number of memory-independent instructions that would have been exposed had the tasks
been executed at their launch points during the profile run. Our approach ensures that each instruction is
counted as memory-independent at most once. When the potential for instruction overlap exceeds the task
selection threshold the task is marked for STP. We use the total number of claimed memory-independent
instructions as an estimate of the limit of STP available on our hypothetical speculative machine.

4 Methodology

To investigate STP, we used the ATOM profiling tools [17] and identified natural loops as defined by Much-
nick [13]. We profiled the SPECint95 suite of benchmark programs. Each benchmark was profiled for 650
million instructions. We used the reference datasets on all benchmarks except compress. For compress, we
used a smaller dataset, in order to profile a more interesting portion of the application.

We measure STP by the number of memory-independent task instructions that would overlap preceding
non-task instructions should a selected task be launched (as a percentage of all dynamic instructions).

The task selection threshold comprises two values, both of which must be exceeded. For all runs, the task
selection threshold was set at 25 memory-independent instructions per task execution and a total of 0.2%
of instructions executed. We impose this threshold to compensate for the expected overhead of managing
speculative threads and to enable allocation of limited resources to tasks exposing more STP.

Our results show a limit to STP exposed by the launched execution of memory-independent tasks. No
changes, such as code motion, were made or assumed to have been made to the original benchmark codes
that would heighten the amount of memory-independent instructions. Overhead due to thread creation,
along with wakeup and commit, will be implementation dependent, and thus is not accounted for. Register
dependences between the preceding code and the launched task were ignored. Therefore, we show an upper
bound to the amount of STP in irregular applications.

5 Results

We investigated the amount of Speculative Task Parallelism under a variety of assumptions about task types,
memory conflict granularity, control and memory dependences. Our starting configuration includes profiling
at the page-level (that is, conflicts are memory accesses to the same page) with no explicit speculation and
is thus our most conservative measurement.

5.1 Task Type

We first look to see which task types exhibit the most STP. We then explore various explicit speculation
opportunities to find additional sources of STP. Finally, we investigate any additional parallelism that might
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, 90% , and 100% , respectively, profiled control dependence and speculative control dependence allow task
A to be launched outside of the inner if statement. The corresponding CFG displays the launch points as
placed by each type of control dependence. The edge frequencies reflect that the code was executed 100
times.

be exposed by profiling at a finer memory granularity.
We investigate leaf procedures, non-leaf procedures, and entire natural loops. We profiled these three

task types to see if any one task type exhibited more STP than the others. Figure 4 shows that, on average, a
total of 7.3% of the profiled instructions were identified as memory independent, with task type contributions
differing by less than 1% of the profiled instructions. This strongly suggests that all task types should be
considered for exploiting STP. The succeeding experiments include all three task types in their profiles.

5.2 Explicit Speculation

The starting configuration places launch points conservatively, with no explicit control or memory depen-
dence speculation. Because launched tasks will be implicitly speculative when executed with different
datasets, our hypothetical machine must already support speculation and recovery. We explore the level of
STP exhibited by explicit speculation, first, by speculating on control dependence, where the launched task
may not actually be needed. Next, we speculate on memory dependence, where the launched task may not
always be memory-independent of the preceding code. Finally, we speculate on both memory and control
dependences by exploiting the memory-independence of the instructions within the task overlap.

Our starting configuration determines task launch points that preserve static control dependences, such
that all paths from the task’s launch points lead to the original task call site. Thus, a task that is statically
control dependent upon a condition whose outcome is constant, or almost constant, throughout the profile,
will not be selected, even though launching this task would lead to almost no mis-speculations. We consid-
ered two additional control dependence schemes that would be able to exploit the memory-independence of
this task.

Profiled control dependences exclude any static control dependences that are based upon branch paths
that are never traversed. When task launch points preserve profiled control dependences, all traversed paths
from the launch points lead to the original call site.

When task launch points preserve speculative control dependences, all frequently traversed paths from
the launch points lead to the original call site. The amount of speculation is controlled by setting a minimum
frequency percentage, c. For example, when c is set to 90, then at least 90% of the traversed paths from the
launch points must lead to the original call site.

In Figure 5, the call statement of task A is statically control dependent on all three if-statements. The
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corresponding CFG in Figure 5 highlights the launch points as determined by the three control dependence
options. All paths beginning with block H, all traversed paths beginning with block E, and 90% of the
traversed paths beginning with block C lead to the call of task A. Therefore, the static control dependence
launch point is before block H, the profiled control dependence launch point is before block E, and with c
set to 90, the speculative control dependence launch point is before block C.

The price of using speculative control dependences will be the waste of resources used to speculatively
initiate a launched task when the executed path does not lead to the task call site. These extra launches can
be squashed at the first mis-speculated conditional.

The first three bars per benchmark in Figure 6 show the effect of control dependence speculation. The
bars display static control dependence, profiled control dependence, and speculative control dependence
at c = 90, respectively. On average, profiled control dependence exposed an additional 1.3% of dynamic
instructions as memory-independent, while speculative control dependence only exposed an additional 0.6%
over profiled.

The choice of using profiled or speculative control dependence will be influenced by the underlying ar-
chitecture, and the degree to which speculative threads compete with non-speculative for resources. Further
results in this paper use profiled control dependence, due to the low gain from speculative control depen-
dence.

Memory dependence provides another opportunity for explicit speculation. Our starting configuration
determines launch points that preserve profiled
memory dependences such that all instructions between each launch point and its original task call site
are memory-independent of the task. This approach results in a conservative, but still speculative, place-
ment of launch points.

We also consider the less conservative approach of determining task launch points by speculative mem-
ory dependences, which ignores profiled memory conflicts that occur infrequently. The amount of specu-
lation is controlled by setting a minimum frequency percentage, m. For example, when m is set to 90, then
at least 90% of the traversed paths from the task launch points to the original call site must be memory-
independent of the task. Using speculative memory dependences is especially attractive when PLPs are far
apart, and the ones nearest the task call site seldom cause a memory conflict.

We examine the effect of task launch points that preserve speculative memory dependence at m = 90
(the fourth bar in Figure 6). Speculative memory dependence provides small increases in parallelism.
Despite the small gains, we include task launch points determined by speculative memory dependence for
the remaining results.

By placing launch points (futures) at control dependences or memory dependences (PLPs), we have used
the limited synchronization inherent within futures to synchronize these dependences with the beginning
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Figure 7: Synchronization Points: Gray areas represent memory-independent instructions. (a) a task with a
large amount of task overlap on a serial thread. (b) When the dependence is used as a launch point, only LP
overlap contributes to memory-independence. (c) By synchronizing the dependence with the earliest conflict
destination, both LP overlap and task overlap contribute to memory-independence.

of the speculative task. This limits the amount of STP that we have been able to expose to the number
of dynamic instructions between the launch point and the original task call site, which we call the LP
overlap. The instructions represented by the task overlap, between the beginning of the speculative task
and the earliest profiled conflict destination, are profiled memory-independent of all of the preceding code.
By using explicit additional synchronization around the earliest profiled conflict destination, early start
with synchronization enables the task overlap to contribute to the number of exposed memory-independent
instructions.

5.2.1 Early Start with Synchronization

Currently, a task with a large task overlap and a small LP overlap would not be selected as memory-
independent, even though a large portion of the task is memory-independent with its preceding code. By
synchronizing the control or memory dependence with the earliest conflict destination, the task may be
launched earlier than the dependence. Where possible, we placed the task launch point above the depen-
dence a distance equal to the task overlap. Any control dependences between the new task launch point and
the synchronization point would be handled as speculative control dependences.

Figure 7 illustrates synchronization points. When the dependence determines a launch point, in Fig-
ure 7(b), all memory-independent instructions come from the LP overlap. Figure 7(c) shows that by syn-
chronizing the dependence with the earliest conflict destination, both the LP overlap and the task overlap
contribute to the number of memory-independent instructions.

Early start shows the greatest increase in parallelism so far, exposing on the average an additional 6.6%
of dynamic instructions as memory-independent (the fifth bar per benchmark of Figure 6). The big increase
in parallelism came from tasks that had not previously exhibited a significant level of STP, but now are able
to exceed our thresholds.

The extra parallelism exposed through early start will come at the cost of additional dynamic instructions
and the cost of explicit synchronization. We did not impose any penalties to simulate those costs as they
will be architecture-dependent.

5.3 Memory Granularity

We define a memory access conflict to occur with two accesses to the same memory region. The memory
granularity (the size of these regions) effects the amount of parallelism that is exposed. Reasonable gran-
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with static control dependence and profiled memory dependence. Aggressive is word-level profiling on all
task types with profiled control dependence, speculative memory dependence, and early start.

ularities are full bytes, words, cache-lines, or pages. When a larger memory granularity is used, this may
result in a conservative placement of launch points. The actual granularity used will depend on the granular-
ity at which the processor can detect memory ordering violations. Managing profiled-parallel tasks whose
launch points were determined with a memory granularity of a page would allow the use of existing page
protection mechanisms to detect and recover from dependence violations. Thus, our starting configuration
used page-level profiling. We also investigate word-level profiling.

In Figure 6, the last bar shows the results of word-level profiling on top of profiled control depen-
dence, speculative memory dependence and early start. The average gain in memory-independence across
all benchmarks was about 6% of dynamic instructions.

5.4 Experiment Summary

Figure 8 re-displays the extremes of our STP results from conservative to aggressive speculation broken
down by task types. The conservative configuration includes page-level profiling on all task types with
static control dependence and profiled memory dependence. The aggressive configuration comprises word-
level profiling on all task types with profiled control dependence, speculative memory dependence, and early
start. M88ksim showed the largest increase in the percentage of memory-independent instructions at over
28%, with vortex very close at over 25%, and the average across benchmarks at about 14%. Each of these
increases in parallelism were largely seen in the non-leaf procedures. Ijpeg was the only benchmark to see
a sizable increase contributed by leaf procedures. Loops accounted for increases in gcc, go, li and perl.

Table 1 displays statistics from the conservative and aggressive speculation of those tasks which exceed
our thresholds. The average overlap is that part of the average task length that can be overlapped with other
execution. The number of tasks selected for STP is greatly affected by aggressive speculation.

In this Section, early start with synchronization provided the highest single increase among all alterna-
tives. Speculative systems with fast synchronization should be able to exploit STP the most effectively. Our
results also indicate that a low-overhead word-level scheme to exploit STP would be profitable.

6 Implementation Issues

For our limit study of Speculative Task Parallelism, we have assumed a hypothetical speculative machine
that supports speculative futures with mechanisms for resolving incorrect speculation. When implementing
this machine, a number of issues need to be addressed.
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Conservative Aggressive
Selected Avg Dynamic Average Selected Avg Dynamic Average

Tasks Task Length Overlap Tasks Task Length Overlap
compress 0 0 0 1 282 42
gcc 22 412 93 74 363 89
go 12 546 118 49 334 76
ijpeg 5 803 300 12 996 266
li 3 50 50 9 14198 55
m88ksim 5 34 29 20 123 43
perl 0 0 0 10 515 42
vortex 14 114 45 92 215 47
average 8 245 79 33 2128 83

Table 1: Task Statistics (Conservative vs. Aggressive)

Speculative Thread Management

Any system that exploits STP would need to include instructions for initialization, synchronization, com-
munication and termination of threads. As launched tasks may be speculative, any implementation would
need to handle mis-speculations.

Managing speculative tasks would include detecting load/store conflicts between the preceding code
and the launched task, buffering stores in the launched task, and checking for memory-independence before
committing the buffered stores to memory. One conflict detection model includes tracking the load and
store addresses in both the preceding code and the launched task. The amount of memory-independence
accommodated by this model will be determined by the size and access of load-store address storage, and
the conflict granularity.

Another conflict detection model uses a system’s page-fault mechanism. When static analysis can de-
termine the page access pattern of the preceding code, the launched task is given restricted access to those
pages, while the preceding code is given access to only those pages. Any page access violation would cause
the speculative task to fail.

Inter-thread Communication

Any implementation that exploits STP will benefit from a system with fast communication between threads.
At the minimum, inter-thread communication is needed at the end of a launched task and when the task
results are used. Fast communication would be needed to enable early start with synchronization. The
ability to quickly communicate a mis-speculation would reduce the number of instructions that are issued
but never committed. This is especially important for systems where threads compete for the same resources.

Adaptive STP

We select tasks that exhibit STP based upon memory access profiling and compiler analysis. The memory
access pattern from one dataset may or may not be a good predictor for another dataset. Two feedback
opportunities arise that allow the execution of another data set to adapt to differences from the profiled
dataset. The first would monitor the success rate of particular launch points, and suspend further launches
when it fails too frequently.

The second feedback opportunity is found in continuous profiling. Rather than have a single dataset
dictate the launched tasks for all subsequent runs, let datasets from all previous runs dictate the launched
tasks for the current run. It is possible that the aggregate information from the preceding runs would have
a better predictive relationship with future runs. Additionally, the profiled information from the current run
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could be used to supersede the profiled information from previous runs, with the idea that the current run
may be its own best predictor. Although profiling is expensive and must be optimized, the exact cost is
beyond the scope of this paper.

7 Summary

Traditional parallel compilers do not effectively parallelize irregular applications because they contain lit-
tle loop-level parallelism due to ambiguous memory references. A different source of parallelism, namely
Speculative Task Parallelism arises when a task (either a leaf-procedure, a non-leaf procedure or an entire
loop) is control- and memory-independent of its preceding code, and thus could be executed in parallel. To
exploit STP, we assume a speculative machine that supports speculative futures (a parallel programming
construct that executes a task early on a different thread or processor) with mechanisms for resolving incor-
rect speculation when the task is not, after all, independent. This allows us to speculatively parallelize code
when there is a high probability of independence, but no guarantee.

Through profiling and compiler analysis, we find memory-independent tasks that have no memory con-
flicts with their preceding code, and thus could be speculatively executed in parallel. We estimate the amount
of STP in an irregular application by measuring the number of memory-independent instructions these tasks
expose. We vary the level of control dependence and memory dependence to investigate their effect on the
amount of memory-independence we found. We profile at different memory granularities and introduced
synchronization to expose higher levels of memory-independence.

We find that no one task type exposes significantly more memory-independent instructions, which
strongly suggests that all three task types should be profiled for STP. We also find that starting a task early
with synchronization around dependences exposes the highest additional amount of memory-independent
instructions, an average across the SPECint95 benchmarks of 6.6% of profiled instructions. Profiling mem-
ory conflicts at the word-level shows a similar gain in comparison to page-level profiling. Speculating
beyond profiled memory and static control dependences shows the lowest gain which is modest at best.
Overall, we find that 7 to 22% of instructions are within memory-independent tasks. The lower amount
reflects tasks launched in parallel from the least speculative locations.
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