
Published in the Proceedings of the 26th International Symposium on Computer Architecture, May 1999.

A Scalable Front-End Architecture for Fast Instruction Delivery

Glenn Reinmany Todd Austinz Brad Caldery

yDepartment of Computer Science and Engineering, University of California, San Diego
zMicrocomputer Research Labs, Intel Corporation

Abstract

In the pursuit of instruction-level parallelism, signifi-
cant demands are placed on a processor’s instruction de-
livery mechanism. Delivering the performance necessary to
meet future processor execution targets requires that the per-
formance of the instruction delivery mechanism scale with
the execution core. Attaining these targets is a challenging
task due to I-cache misses, branch mispredictions, and taken
branches in the instruction stream. To further complicate
matters, a VLSI interconnect scaling trend is materializing
that further limits the performance of front-end designs in
future generation process technologies.

To counter these challenges, we present a fetch architec-
ture that permits a faster cycle time than previous designs
and scales better with future process technologies. Our de-
sign, called the Fetch Target Buffer, is a multi-level fetch
block-oriented predictor. We decouple the FTB from the in-
struction fetch and decode pipelines to afford it the fastest
clock possible. Through cycle-based simulation and circuit-
level delay analysis, we find that our multi-level FTB design
is capable of delivering instructions 25% faster than the best
single-level BTB-based pipeline configuration. Moreover, we
show that our design scales better to future process technolo-
gies than traditional single-level designs.

1 Introduction

At a high-level, a modern high-performance processor is
composed of two processing engines: thefront-end proces-
sor and theexecution core. The front-end processor is re-
sponsible for fetching and preparing (e.g., decoding, renam-
ing, etc.) instructions for execution. The execution core or-
chestrates the execution of instructions and the retirement
of their register and memory results to non-speculative stor-
age. Typically, these processing engines are connected by a
buffering stage of some form,e.g., instruction fetch queues
or reservation stations – the front-end acts as a producer, fill-
ing the connecting buffers with instructions for consumption
by the execution core.

This producer/consumer relationship between the front-

end and execution core creates a fundamental bottleneck in
computing,i.e., execution performance is strictly limited by
fetch performance. The trend towards exploiting more ILP
in execution cores works to place further demands on the rate
of instruction delivery from the front-end. Without comple-
mentary increases in front-end delivery performance, more
exploitation of ILP will only decrease functional unit utiliza-
tion with little or no increase in overall performance.

Unfortunately, scaling the performance of the front-end
is no easy task. Three primary detractors work to make this
a very challenging endeavor. First, instruction cache misses
stall instruction delivery until instructions are returned from
the next level of the instruction memory hierarchy. Sec-
ond, the misprediction of the address or direction of a branch
forces a pipeline flush, resulting in wasted fetch bandwidth
between the time the branch was mispredicted and the time
the misprediction was detected. Third, in modern front-end
designs, resolving the target of a taken branch requires an ac-
cess to the branch predictor and branch target buffer (BTB).
As a result, the rate at which these devices can be cycled
times the average basic block size places an upper limit on
instruction delivery rates.

To further compound the challenge of front-end design,
a process technology trend is materializing that will make it
more difficult to design fast front-ends,i.e., front-ends with
low cycle times. Looking ahead a few process technology
generations (e.g., 0.18�m and 0.10�m)1 it becomes appar-
ent that the performance (latency) of wires is not scaling as
well as the performance of transistors [2, 3]. Wire perfor-
mance may not scale at all and may even deteriorate in a few
process generations. The problem is worse for large memo-
ries, like those typically found in front-end designs, because
they are composed of significantly more interconnect. Large
front-end designs may see little improvement and possibly
even a reduction in therate at which the processor can de-
liver instructions to the execution core.

As a result of this trend, architects must start concern-
ing themselves less with theamount of logic in the critical

1The notation 0.18�m indicates a process fabrication technology with a 0.18 mi-
crometer minimum feature size.

1

path of a design and instead focus on theamount of wire in
the critical path. Designs with less wire will naturally scale
better because their latency is more a function of transistor
latency which scales with process feature size. Ascalable
design is one that can perform well in the face of process
technology trends - ideally we would like to see performance
increases commencerate with the feature size scaling factor.
We predict, given the interconnect scaling bottleneck, a scal-
able design will be one with minimal wire lengths on the
critical path of the design.

In this paper, we present a new scalable front-end design.
Our design decouples the branch predictors and branch target
buffers from the I-cache, to allow maximum performance for
each. We call this new design aFetch Target Buffer (FTB).
The FTB organization was chosen to (1) maximize the num-
ber of instructions fetched for each prediction, and (2) per-
form a useful prediction every cycle. Each FTB entry rep-
resents a large variable length sequential fetch block up un-
til the next taken branch. In an effort to provide fast cycle
times, while allowing sufficient capacity to maintain history
and targets for a large number of branches, the FTB uses
a multi-level memory hierarchy. The top-level (L1) FTB is
able to store its targets and predictor history into a larger
second-level (L2) FTB. Through cycle-based simulation and
circuit-level timing analysis, we show that this multi-level
design performs better than traditional single-level designs,
and is scalable to future process generations.

The remainder of this paper is organized as follows. In
Section 2 we detail the interconnect scaling bottleneck and
its impact on front-end design. In Section 3 we present a new
scalable front-end architecture, and in Section 4 we detail
the organization and operation of the fetch target buffer. In
Section 5 we describe the methodology used to gather our
results. In Section 6 we evaluate the scalability of the new
designs, comparing the performance of single and two-level
FTB designs with traditional BTB-based designs, both in the
cycle and time domains. Section 7 presents related work.
Finally, Section 8 provides a summary and concludes with
future directions.

2 How Poor Interconnect Scaling Affects Front-
End Performance

The interconnect scaling bottleneck is as follows: As process
technology feature size scales by a factor S, the performance
(i.e., delay) of transistors scales linearly at roughly a factor
S. Wire latency, on the other hand, scales at a rate less than
S due to parasitic capacitance effects. There are three impor-
tant results of this trend:

i. memory structures experience the full extent of
this trend because they are composed of significant
amounts of closely packed interconnect,

ii. larger memory performance scales worse than small
memory because they are composed of significantly
more interconnect, and

iii. interconnect scaling degrades as process feature size
decreases due to increasing parasitic capacitance ef-
fects; if current trends continue, wire latency will no
longer scale and may increase in future process gener-
ations.

There has been a significant amount of analytical [16]
and empirical [2, 18] analyses of this trend in the process
technology literature. Recently, these analyses have carried
over into the computer architecture literature where their ef-
fects on the execution core have been examined [19]. In this
section we provide a brief introduction to the problem, read-
ers are referred to [2] or [19] for a more in-depth analysis of
this bottleneck.

To better understand why on-chip memory performance
scales poorly with process feature size, we need to examine
more closely their structure. On-chip memory devices are
composed of large two-dimensional arrays of memory cells.
Connecting these memory cells to other parts of the chip is a
tapestry of wire that forms two buses. Thewordline bus runs
the rows of the array, bringing signals to the cells that indi-
cate if the cells are being accessed. Thebitline bus runs the
columns of the array, providing access to memory cell con-
tents. To access the memory, a decoder “turns on” a row of
the memory array by asserting a single wordline, this results
in the contents of every cell in the row being asserted on the
bitline bus. A MUX at the end of the bitlines is used to select
the accessed data.

The latency of a memory device, to a first order, is the
latency to exercise the logic in the decoder, assert the word-
line wire, read the memory cell logic, assert the bitline wire,
and finally exercise the logic in the bitline MUX to select
the accessed data. As the process feature size is scaled, the
latency of the transistors is scaled proportional to their size,
thus the latency of the logic scales linearly with feature size
reductions.

The latency of the wordlines and bitlines, on the other
hand, does not scale as well due toparasitic capacitance ef-
fects that occur between the closely packed wires that form
these buses. As the technology is scaled to smaller feature
sizes, the thickness of the wires does not scale.2 As a re-
sult, the parasitic capacitance formed between wires remains
fixed in the new process technology (assuming wire length
and spacing are scaled similarly). Since wire delay is pro-
portional to its capacitance, signal propagation delay over
the scaled wire remains fixed even as its length and width
are scaled. This effect is what creates theinterconnect scal-
ing bottleneck.

2The reasons behind poor interconnect thickness scaling are numerous and com-
plex. Two main reasons include 1) it is difficult to manufacture thinner wires, and 2)
keeping wires thick increases their cross-sectional area, which in turn reduces current
densities and reliability problems associated with metal electromigration.

2

FTQ
L1 I-Cache
(pipelined) Decode . . . Execute

RSB, etc.

L1 FTB

M
U

X next PC

branch type

fetch block target

mis-fetched branch target

call return target

mis-predicted branch target

L2 FTB
L2

I-Cache

Figure 1: A Decoupled Multi-level Front-End.

Recently, some process technologies have begun em-
ploying copper interconnect and low-k dielectrics as a way
to reduce the impact of poor interconnect scaling [14, 15].
These material lower the resistance and capacitance of wires,
respectively, thereby improving signal propagation perfor-
mance. However, these techniques only offer a one time
reprieve for the first process generation that employs them.
Poor interconnect scaling trends continue. It has been shown
that splitting long wires with buffers can reduce their prop-
agation delay [1]. However, this approach cannot be ap-
plied to the the densely packed interconnect of memory ar-
rays without significantly increasing their area (due to many
buffers).

Front-end designs tend to contain a significant amount
of on-chip memory - in the branch predictors, BTBs, and I-
caches. As a result, future generation front-end designs will
scale poorly unless architects strive to limit the amount of
wire on the critical paths of their designs. One effective ap-
proach to reduce wire lengths is to decrease the size of mem-
ory structures in the critical path of the front-end design. In
the following section, we present a new scalable front-end
design that attains this goal while at the same time provid-
ing competitive cycle times and prediction rates compared to
traditional front-end designs.

3 A Scalable Front-End Architecture

In this section we describe our scalable front-end architec-
ture illustrated in Figure 1. To create a scalable design, we
decouple the I-cache from branch predictor, thereby elimi-
nating this large and slow memory from the front-end critical
path. Note that this implies that the instruction cache has its
own local fetch address to control the cache fetching, and the
branch predictor has its own local PC to control the branch
predictions. The PC used for the current cycle’s branch pre-

diction, will be used in a subsequent cycle for the cache fetch
address.

To provide a decoupled front-end, a Fetch Target Queue
(FTQ) is used to bridge the gap between the branch predic-
tor and the instruction cache. Every cycle, the branch pre-
dictor will produce a fetch target block prediction and store
it in the FTQ, where it will be eventually consumed by the
instruction cache. The FTQ provides the buffering neces-
sary to permit the branch predictor and I-cache to operate au-
tonomously; the branch predictor can miss and stall while the
I-cache continues fetching blocks. In contrast, the FTQ al-
lows the branch predictor to work ahead of the I-cache when
it is stalled due to a cache miss or a full instruction buffer.
If the I-cache is multi-ported, multiple valid FTQ entries can
be consumed in a single cycle (possibly out-of-order) until
ports are exhausted.

Recall from Section 2, the interconnect scaling bottle-
neck only allows low access latency and good scalability for
small memory arrays. As a result, large instruction caches
will have to be pipelined to accommodate future clock rates.
Fortunately, the decoupled design only exposes this addi-
tional I-cache latency during branch mispredictions. As
an added benefit, pipelining the I-cache makes it easier to
increase the cache size or associativity without impacting
front-end critical path lengths.

To maintain good branch throughput and scalability it is
important to make the branch predictors and branch target
buffers as small as possible. At the same time however, a
large branch predictor is desirable as this will ensure that we
have sufficient capacity to predict the direction and targets of
most branches, thereby eliminating most branch mispredic-
tion latencies. To solve this conundrum we turn to the time-
tested solution of multi-level memory hierarchies, and use
a multi-level branch prediction architecture called the Fetch
Target Buffer (FTB).

To further improve instruction delivery throughput, the
FTB is crafted to return information about the dynamic in-
struction stream each cycle it is accessed. It does this by
predicting the address and size of fetch blocks. A fetch
block is a sequence of instructions starting at a branch target,
and ending with a strongly biased taken or unbiased branch.
Branches which are biased and not taken may be embedded
within fetch blocks. This optimization permits fetch block
sizes to increase without cost. Since a strongly biased not
taken branch does not change the flow of control, we can
predict this branch by simply ignoring it. Our predictor al-
location policy (described later) ensures that strongly biased
not taken branches are embedded within fetch blocks.

During operation, the FTB provides branch address and
target predictions. It is tagged and split into multiple levels.
Predictor history and branch target data is demand fetched
(or prefetched) from the L2 FTB into the L1 FTB. To mini-
mize FTB access latency, only the information necessary to
cycle the next PC computation is stored within it. Each cy-

3

cle, the FTB produces a starting address for the next fetch
block, the address where the fetch block ends, and the pre-
dicted target address (fall-through or taken) to be used for
the prediction in the next cycle. These addresses are stored
in an FTQ entry after each prediction, and are consumed in
subsequent cycles by the instruction cache.

4 Fetch Prediction Architectures

In this section we describe prior branch target buffer archi-
tectures. We then describe our multi-level fetch target buffer
design to provide fetch prediction for our decoupled front-
end.

4.1 Branch Target Buffers

Branch Target Buffers (BTB) have been proposed and eval-
uated to provide branch and fetch prediction for wide issue
architectures. A BTB entry holds the taken target address for
a branch along with other information, such as the type of the
branch, conditional branch prediction information, and pos-
sibly the fall-through address of the branch.

Perleberg and Smith [21] conducted a detailed study into
BTB design for single issue processors. They even looked
at using a multi-level BTB design, where each level contains
different amounts of prediction information. Because of the
cycle time, area costs, and branch miss penalties they were
considering, they found that the “additional complexity of
the multi-level BTB is not cost effective” [21]. Technology
has changed since their study, and as we show in this paper,
a multi-level branch prediction design is advantageous.

Yeh and Patt proposed using a Basic Block Target Buffer
(BBTB) [30, 31]. The BBTB is indexed by the starting ad-
dress of the basic block. Each entry contains a tag, type in-
formation, the taken target address of the basic block, and the
fall-through address of the basic block. If the branch ending
the basic block is predicted as taken, the taken address is
used for the next cycle’s fetch. If the branch is predicted as
not-taken, the fall-through address is used for the next cycle’s
fetch. If there is a BBTB miss, then the current fetch address
plus a fixed offset is fetched in the next cycle. In their design,
the BBTB is coupled with the instruction cache, so there is
no fetch target queue. If the current fetch basic block spans
several cache blocks, the BBTB will not be used and will sit
idle until the current basic block has finished being fetched.
In comparison, our decoupled front-end and FTQ allow our
FTB predictor to speed ahead of the I-cache, potentially per-
forming a useful prediction every cycle.

4.2 Fetch Target Buffer

The branch prediction architecture we model in this paper is
an extension of the BBTB design by Yeh and Patt [30, 31],
with two changes to their design. The first change is that

we do not store basic blocks in our fetch target buffer that
are fall-through basic blocks or basic blocks with branches
that are seldom taken [6]. The BBTB design stores an entry
for all basic blocks. Storing non-taken basic blocks wastes
BBTB entries, and decreases the size of fetch blocks, which
requires additional predictions to traverse what could have
been one larger fetch block.

The second change we made to the BBTB design is that
we do not store the full fall-through address in our FTB. In-
stead, we store only the pre-computed lower bits of the fall-
through address along with a carry bit used to calculate the
rest of the fall-through address [6]. This helps reduce the
amount of storage for each BBTB entry, since the typical
distance between the current fetch address and the BBTB’s
fall-through address is not large.

Our Fetch Target Buffer (FTB) design is shown in Fig-
ure 2. The FTB table is accessed with the start address of
a fetch target block. Each entry in the FTB contains a tag,
taken address, partial fall-through address, fall-through carry
bit, branch type, oversize bit, and conditional branch predic-
tion information. The FTB entry represents the start of a
fetch block. The fall-through address minus 4 represents the
location of a branch that ends the fetch block. The goal is for
fetch blocks to end only with branches that have been taken
during execution. If the FTB entry is predicted as taken, the
taken address is used as the next cycle’s prediction address.
Otherwise, the fall-through address is used as the next cy-
cle’s prediction address.

As described earlier, the fall-through address is not
stored in its entirety in the FTB entry. Only the N low
order bits of the fall-through address are stored along with
a carry bit. If the carry bit is not set, the complete fall-
through address is calculated by concatenating the upper
address size�N bits of the current fetch address with the
N fall-through address bits stored in the FTB entry. If the
carry bit is set, the complete fall-through address is calcu-
lated by adding one to the upper address size � N bits of
the current fetch address, and then concatenating this with
the N fall-through address bits stored in the FTB entry. The
calculation of adding the carry bit to the upper bits of the PC
is done in parallel with the FTB lookup. Then if the branch is
predicted as not-taken, the carry bit chooses between the two
possible values for the upper bits of the fall-through address,
and then performs the concatenation.

The size of the N partial fall-through bit field determines
the size of the fetch blocks that can be represented in the
fetch target buffer. If the fall-through is farther than 2

N in-
structions away from the start address of the fetch block, the
fetch block is broken into chunks of size 2

N , and only the
last chunk is inserted into the FTB. The other chunks will
miss in the FTB, predict not-taken, and set the next PC equal
to the current PC plus 2N , which is the max fetch distance.

An oversize bit is used to represent whether or not a fetch
block spans a cache block [30]. This is used by the instruc-

4

tag targetcarry partial
fall thru

type over-
size

meta bimod

4-12
bits

15+
bits1 bit 3-6 bits 2-3

bits
1 bit 2-4

bits 2 bits

...

predicted target
(from next PC MUX)

L2 FTB local
history

speculative
history
queue

hash

global
predictor
(tagless)

global history

N-to-1 MUX (N-way associativity)=
>

pattern
history

N:1 MUX

hit/miss

2:1 MUX

+

1

2:1 MUX

predicted target
(to next PC MUX)

type
(to next

PC MUX)

carry
bit

local
pred

1 bit

CONCAT

upper bits of
fall-through addr

T/N

oversize
(to FTQ)

Figure 2: The Fetch Target Buffer.

tion cache to determine how many predictions to consume
from the FTQ in a given cycle. We simulated our results
with two I-cache ports. The oversize bit is used to distinguish
whether a prediction is contained within one cache block or
if its fetch size spans two or more cache blocks. If the over-
size bit is set, the predicted fetch block will span two cache
blocks, and the cache will use its two ports to fetch the first
two sequential cache blocks. If the bit is not set, the predic-
tion only requires a single cache block, so the second port
can be used to start fetching the target address of the next
FTQ entry.

The branch direction predictor shown in the FTB in Fig-
ure 2 is a hybrid predictor with a meta-predictor that can se-
lect between a local history-based predictor, a global history
predictor, and a bimodal predictor. Other combinations are
possible, as well as non-hybrid predictors. The local history
is composed of the last N branch directions for the branch at
the end of the fetch block. The local branch history is used to
index the pattern history table, returning a pattern prediction.
The global history is XORed with the fetch block address
and used as an index into a global pattern history table. The
meta-prediction is used to select between the various predic-
tions available, depending on the specifics of the design. The
meta-predictor is typically implemented as a counter to se-
lect between two predictions or as a per-predictor confidence
mechanism to select amongst three or more predictors. The

final prediction result is used to select either the target ad-
dress of the branch at the end of the fetch block or the fetch
block fall-through address.

For good predictor performance, especially for machines
with deep speculation and large instruction windows, it be-
comes beneficial to recover branch history in the event the
processor detects a mispredicted branch. This is even more
important in our scalable front-end architecture design, be-
cause the branch predictor can get several predictions ahead
of the instruction cache fetch. To facilitate the recovery of
branch history, a small Speculative History Queue (SHQ)
holds the speculative history of branches. When branches are
predicted their updated local or global history is inserted into
the SHQ. When predictions are made, the SHQ is searched
in parallel with the L1 FTB, if a newer history is detected
in the SHQ, it takes precedence over the history in the L1
FTB. Entries are only allocated in the SHQ when the his-
tory changes; this reduces capacity requirements in the SHQ.
When the branch at the end of a fetch block retires, its spec-
ulative history is written into the FTB. When a misprediction
is detected, the point in the SHQ of the mispredicted branch
and later allocated entries are released. The SHQ is kept
small to keep it off the critical path of the L1 FTB. If the
speculative history queue becomes full, the oldest entry is
written into the FTB. Skandron et al., independently devel-
oped a similar approach for recovering branch history, and

5

they provide detailed analysis of their design in [26].
The meta predictor, bimodal, and 2-bit pattern history ta-

ble values are not updated speculatively. The front-end can
only assume it made the correct prediction and thus reinforce
bimodal or pattern history predictions. It has been shown
in [13] that better performance results when the meta predic-
tor and 2-bit PHT updates are delayed until the result of the
branch outcome is known, i.e., at execute or retirement.

Since the FTB can make predictions far beyond the cur-
rent PC, it can pollute the return address stack if it predicts
multiple calls and returns. It is necessary to use sophisticated
recovery mechanisms to return the stack to the correct state.
Simply keeping track of the top of stack is not sufficient [25],
as the predictor may encounter several returns or calls down
a misspeculated path that will affect more than just the top
of stack. We use two return address stacks to solve this prob-
lem. One is speculative (S-RAS) and is updated by the FTB
during prediction. The other is nonspeculative (N-RAS) and
is updated during writeback. When a misprediction is de-
tected, the S-RAS will likely be polluted and can be recov-
ered from the N-RAS. Then prediction can restart as normal,
using the S-RAS. This provides accurate return address pre-
diction. Additional analysis of our RAS recovery mechanism
and our SHQ design can be found in [22].

4.3 Functionality of the 2-Level FTB

The L1 FTB is accessed each cycle using the predicted fetch
block target of the previous cycle. At the same time, the
speculative history queue, the return address stack, and the
global history prediction table are accessed. If there is an L1
FTB hit, then the fetch block address, the oversize bit, the
last address of the fetch block, and the target address of the
fetch block are inserted into the next free FTQ entry.

L1 FTB Miss and L2 FTB Hit If the L1 FTB misses, the
L2 FTB needs to be probed for the referenced FTB entry. To
speed this operation, the L2 FTB access begins in parallel
with the L1 FTB access. If at the end of the L1 FTB access
cycle a hit is detected, the L2 FTB access is ignored. If an
L1 miss is detected, the L2 FTB information will return in
N � 1 cycles, where N is the access latency of the L2 FTB
(in L1 FTB access cycles). On an L1 FTB miss, the predic-
tor has the target fetch block address, but doesn’ t know the
size of the fetch block. To make use of the target address, the
predictor injects fall-through fetch blocks starting at the miss
fetch block address into the FTQ with a predetermined fixed
length. Once the L2 FTB entry is returned, it is compared
to the speculatively generated fetch blocks: if it is larger, an-
other fetch block is generated and injected into the FTQ. If
it is smaller, the L1 FTB initiates a pipeline squash at the
end of the fetch block. If the fetch target has not made it
out of the FTQ, then no penalty occurs. If the fetch target
was being looked up in the instruction cache, those instruc-
tions are just ignored when the lookup finishes. In our mod-

els, we achieved good performance with L2 FTBs that have
shorter latencies than one would use for a first level instruc-
tion cache, so this was not a problem. The final step is to
remove the LRU entry from the corresponding L1 FTB set,
and insert the entry brought in from the L2 FTB. The entry
removed from the L1 FTB, is then inserted into the L2 FTB
also using LRU replacement.

L1 FTB Miss and L2 FTB Miss If the L2 FTB indicates
the requested FTB entry is not in the L2 FTB, the L1 FTB
enters a state where it continually injects sequential fetch
blocks into the machine until a misprediction is detected in
the decode or writeback stage of the processor. Once a mis-
prediction is detected, the L1 FTB will be updated with the
correct information regarding this new fetch block, and then
the L1 FTB will once again begin normal operation. By in-
jecting fetch blocks sequentially into the machine, it’s pos-
sible to partially overlap the generation of FTB entries with
their execution.

Branch Misprediction Recovery In the decode stage, the
predicted direction of unconditional branches, e.g., jumps,
calls and returns, and the targets of direct branches, e.g., PC
relative and absolute, are validated. In the writeback stage,
the targets of indirect branches and the direction of condi-
tional branches are validated. Fetch block targets and sizes
are propagated down the pipeline with instructions. During
validation, if a branch target does not match the accompa-
nying fetch block, a branch misprediction recovery sequence
is initiated. The FTB entry is updated with the correct fetch
block information, misspeculated entries in the speculative
history queue are released, and the pipeline is flushed behind
the misspeculated branch. In any event, the prediction his-
tory of branches is updated. To facilitate the embedding of
strongly biased not-taken branches within fetch blocks, not
taken branches do not update history or create FTB entries
unless they are already contained in the FTB and at the tail
of a fetch block. In addition, new FTB entries are only allo-
cated when branches are taken.

5 Methodology

The simulators used in this study are derived from the Sim-
pleScalar/Alpha 3.0 tool set [5], a suite of functional and tim-
ing simulation tools for the Alpha AXP ISA. The timing sim-
ulator executes only user-level instructions, performing a de-
tailed timing simulation of an aggressive 8-way dynamically
scheduled microprocessor with two levels of instruction and
data cache memory. Simulation is execution-driven, includ-
ing execution down any speculative path until the detection
of a fault, TLB miss, or branch mis-prediction.

To perform our evaluation, we collected results for six of
the SPEC95 C benchmarks plus 2 C++ programs. Groff is
a text formatting program, and deltablue is a constraint

6

instr # instr % br
Program Input fwd (M) exec (M) exe

compress ref 0 93 13.9
deltablue ref 0 96 17.0
gcc 1cp-decl 400 1041 17.3
groff someman 0 52 17.3
go 5stone21 2000 32699 14.0
ijpeg specmun 2000 34716 10.5
li ref 2000 18089 19.1
m88ksim ref 2000 76271 14.8
perl scrabbl 2000 28243 16.1
vortex vortex 2000 90882 14.7

Table 1: Program statistics for the baseline architecture.

solving system. The programs were compiled on a DEC Al-
pha AXP-21164 processor using the DEC C and C++ com-
pilers under OSF/1 V4.0 operating system using full com-
piler optimization (-O4 -ifo). Table 1 shows the data set
we used in gathering results for each program, the number of
instructions executed in the program to completion (in mil-
lions), and the percent of executed branches in each program.
Also shown is the number of instructions that were executed
(fast forwarded) before actual simulation. Results are then
reported for simulating each program for up to 100 million
instructions.

5.1 Baseline Architecture

Our baseline simulation configuration models a future gen-
eration out-of-order processor microarchitecture. We’ve se-
lected the parameters to capture underlying trends in mi-
croarchitecture design. The processor has a large window
of execution; it can fetch up to 8 instructions per cycle and
issue up to 16 instructions per cycle. It has a 128 entry re-
order buffer with a 32 entry load/store buffer. Loads can only
execute when all prior store addresses are known. In addi-
tion, all stores are issued in-order with respect to prior stores.
To compensate for the added complexity of disambiguating
loads and stores in a large execution window, we increased
the store forward latency to 3 cycles.

There is an 8 cycle minimum branch mis-prediction
penalty. The processor has 8 integer ALU units, 4-
load/store units, 2-FP adders, 2-integer MULT/DIV, and 2-
FP MULT/DIV. The latencies are: ALU 1 cycle, MULT 3
cycles, Integer DIV 12 cycles, FP Adder 2 cycles, FP Mult
4 cycles, and FP DIV 12 cycles. All functional units, except
the divide units, are fully pipelined allowing a new instruc-
tion to initiate execution each cycle.

The processor we simulated has a 64k 2-way set-
associative direct-mapped instruction cache and a 64k 4-way
set-associative data cache. Both caches have block sizes of
32 bytes. The data cache is write-back, write-allocate, and
is non-blocking with 2 ports. The data cache is pipelined
to allow up to 2 new requests each cycle. There is a uni-

fied second-level 1 MB 4-way set-associative cache with 64
byte blocks, with a 10 cycle cache hit latency. If there is
a second-level cache miss it takes a total of 120 cycles to
make the round trip access to main memory. We model the
bus latency to main memory with a 10 cycle bus occupancy
per request. There is a 32 entry 8-way associative instruction
TLB and a 32 entry 8-way associative data TLB, each with a
30 cycle miss penalty.

For this paper, we used the McFarling gshare predic-
tor [17] for our conditional branch predictor. The predic-
tor has a 2-bit meta-chooser and a 2-bit bimodal predictor,
both stored in the FTB (or BBTB) entry with the branch.
In addition, a tagless Gshare predictor is also available, ac-
cessed in parallel with the L1 FTB. The meta-chooser is in-
cremented/decremented if the bimodal/Gshare predictors are
correct. The most significant bit of the meta-chooser selects
between the bimodal and Gshare predictions.

5.2 Timing Model

We report our results using device timing metrics for four
process technologies gathered using a modified version of
the Cacti cache compiler [29]. Cacti contains a detailed
model of the wire and transistor structure of on-chip memo-
ries. We modified Cacti to model a BBTB, FTB, and tagless
branch predictors, and extended the 0.80�m process model
to include timings for 0.35�m, 0.18�m, and 0.10�m pro-
cesses. The 0.80�m process is a previous generation pro-
cess with 0.80 micron minimum feature sizes. The 0.35�m
process is a current generation process, and the 0.18�m and
0.10�m processes represent future generation technologies.
The 0.80�m, 0.35�m, and 0.18�m process parameters are
from [19]; the 0.10�m process parameters are expected val-
ues based on empirical analysis of experimental fabrication
processes, taken from [2]. The specifics of the Cacti on-chip
memory model and process models used are detailed in [22].

Table 2 lists the front-end architectures analyzed and
their timing parameters for the four process technologies.
The table lists the FTB sizes (in number of entries), and FTB,
branch predictor, and cache latencies (in clock cycles). The
latencies are shown for each process technology in the fol-
lowing order: 0.80�m, 0.35�m, 0.18�m, and 0.10�m tech-
nologies. The latencies for the L2 FTB, I-cache, and D-cache
were selected by dividing the access times for these devices
by the access latency of the L1 FTB. Since these devices have
a multiple cycle latency, we simulate them as fully pipelined
memories. We scaled the branch predictors to the maximum
size that could be accessed in less time than the L1 FTB. The
timing of the devices sometimes changed between process
technologies due to varied interconnect scaling effects. All
FTB organizations are 4-way set-associative. L1 FTB access
latencies (in nanoseconds) are listed in the column labeled
tclk min. The size of L1 FTB entries varies depending on the
size of the tag used, although most experiments have about 8
bytes of data per entry.

7

Config L1 FTB/BTB Predictor L2 FTB I-cache D-cache t
clk

min
size latency size latency size latency latency latency (ns)

F64 64 1,1,1,1 4k 1,1,1,1 n/a n/a 2,2,3,4 2,2,3,4 6.05,2.03,1.03,0.76
F256 256 1,1,1,1 8k 1,1,1,1 n/a n/a 2,2,2,3 2,2,3,3 6.33,2.21,1.16,0.95
F1k 1k 1,1,1,1 16k 1,1,1,1 n/a n/a 2,2,2,2 2,2,2,2 7.06,2.55,1.44,1.30
F4k 4k 1,1,1,1 16k 1,1,1,1 n/a n/a 2,2,2,2 2,2,2,2 8.30,3.40,2.07,2.03
F8k 8k 1,1,1,1 16k 1,1,1,1 n/a n/a 1,1,1,1 1,1,1,1 9.16,3.91,2.57,2.68

F64x1k 64 1,1,1,1 4k 1,1,1,1 1k 2,2,2,2 2,2,3,4 2,2,3,4 6.05,2.03,1.03,0.76
F64x4k 64 1,1,1,1 4k 1,1,1,1 4k 2,2,2,3 2,2,3,4 2,2,3,4 6.05,2.03,1.03,0.76
F256x1k 256 1,1,1,1 8k 1,1,1,1 1k 2,2,2,2 2,2,2,3 2,2,3,3 6.33,2.21,1.16,0.95
F256x4k 256 1,1,1,1 8k 1,1,1,1 4k 2,2,2,2 2,2,2,3 2,2,3,3 6.33,2.21,1.16,0.95

Table 2: Analyzed Configurations. L1 and L2 FTB sizes are listed in terms of total number of entries. I-cache and D-cache sizes
are all 64k bytes. F64x1k stands for a 64 entry L1 FTB with a 1k entry 2nd level FTB. n/a indicates the field is not applicable
to the listed configuration.

6 Results

First we present a comparison of the BBTB design and the
single-level FTB design. Next, we compare our single level
FTB to a two level FTB, presenting results in Instructions
Per nanoSecond (IPS). We then investigate how the perfor-
mance of the FTB tolerates changes in factors such as the
number of bits allocated to the fetch distance and variance
in the size of the FTQ. For all of the FTB results we used
a fetch distance of size 16 instructions (4 bits for the par-
tial fall-through address), which we found to be sufficient as
described in Section 6.3. Finally, the scalability of the FTB
across different feature sizes is considered.

6.1 BBTB Comparison

Figure 3 shows IPC results comparing the BBTB design our
single-level FTB configurations. Both architectures were
simulated with a coupled front-end (no FTQ) to provide a fair
comparison with non-pipelined caches. Overall, the FTB de-
signs provide slightly better fetch bandwidth than the BBTB
designs, since the FTB does not need to store every encoun-
tered basic block (branch) - only those that have been taken
in the past.

Figure 3 shows that a small 64 entry FTB can hold the
majority of branches executed by compress, ijpeg, and
m88ksim whereas the rest of the programs benefit from
having a large FTB. For all programs, little performance gain
is seen when increasing the predictor size beyond 4K entries.
The results show that the FTB design consistently outper-
formed or performed as well as a comparably sized BBTB
design. The remainder of the results compare the perfor-
mance of the two-level FTB with the single level FTB.

6.2 Two-level FTB Performance

Table 3 shows the average fetch block size in instructions
and the percent of correct predictions provided by a 64 entry
single-level predictor, and a 64 entry first level FTB with

1 Level FTB 2 Level FTB
64 entry 64-1K entry

fetch %cor %cor fetch %cor %cor %cor
program size pred miss size L1 L2 miss

compress 5.7 70.4 13.7 5.7 72.3 0.3 12.7
deltablue 6.6 56.7 4.9 5.9 64.2 9.6 3.2
gcc 7.7 35.3 10.3 6.5 49.3 17.1 7.7
go 7.7 55.1 12.5 7.0 63.2 5.3 9.9
groff 8.0 31.1 8.5 6.5 47.7 23.9 6.8
ijpeg 7.5 84.6 12.8 7.5 84.7 0.0 12.8
li 6.2 62.7 3.6 5.5 70.4 9.1 2.0
m88ksim 7.4 84.0 7.9 6.5 85.6 0.0 3.7
perl 8.5 18.7 11.3 6.3 44.3 32.5 7.8
vortex 9.7 29.1 17.7 8.3 49.9 19.9 16.6

average 7.5 52.8 10.3 6.6 63.2 11.8 8.3

Table 3: FTB Performance. Average fetch block size pro-
vided by the FTB, along with the percent of fetch block pre-
dictions that were correct when hitting in the first (L1) or
second (L2) level FTB, and the percent of correct predictions
that occurred when missing in the FTB.

a 1K entry second-level FTB (64-1K). The average fetch
block size is the dynamic size obtained for predictions on the
non-speculative path. The correct prediction rates show the
percent of time the FTB provided a correct prediction from
each FTB level, and the percent of time predicting a fixed
fall-through fetch distance was correct for an FTB hierarchy
miss. For a miss, a fall-through fetch block of size 16 in-
structions is predicted. Once an FTB entry has been brought
into the first level from the second level, it is counted as a L1
correct prediction for all subsequent predictions - until it is
again swapped out of the first level. The average fetch block
size of the single level FTB configuration is higher due to
increased FTB misses. On FTB misses, the large fixed fetch
distance (16 instructions) is predicted which makes the av-
erage fetch block size larger, but also increases the chance
of including a taken branch. The two-level FTB structure
provides a total of 83.3% correct fetch block predictions on

8

1

1.5

2

2.5

3

3.5

compress deltablue gcc go groff li m88ksim perl vortex ijpeg average

In
st

ru
ct

io
ns

 P
er

 C
yc

le
BBTB-64 BBTB-256 BBTB-1K BBTB-4K BBTB-8K

FTB-64 FTB-256 FTB-1K FTB-4K FTB-8K

Figure 3: Instruction Per Cycle for BBTB and single-level FTB configurations.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

compress deltablue gcc go groff li m88ksim perl vortex ijpeg average

In
st

ru
ct

io
ns

 P
er

 n
an

o-
S

ec
on

d FTB-64 FTB-256 FTB-1K FTB-4K FTB-8K

FTB-64x1K FTB-64x4K FTB-256x1K FTB-256x4K

Figure 4: Fetch Target Buffer performance for 0.10�m feature size. Simulation results are shown in terms of the number of
committed instructions per nano-second, which is computed from the IPC and cycle time used to simulate each configuration.

average, with an average fetch size of 6.6 instructions.
To fully assess the tradeoffs between different table sizes

and the multi-level designs, we need to also look at their im-
pacts on circuit performance. By combining the IPCs mea-
sured by the simulator with the front-end cycle time com-
puted by our Cacti memory models shown in Table 2, we
can compute the instruction delivery rates for each of the
designs. 3 We report results in terms of of the number of
Instructions Per nanoSecond (IPS), which is the number of
instructions committed each nano-second. To calculate this
number we divide the IPC by the cycle time of the front end
(FTB). Remember that the second-level FTB, I-cache, and
D-cache have additional latency for accessing them since
they are pipelined for these simulations based on the laten-
cies shown in Table 2.

Figure 4 shows the instruction delivery rates in IPS for all

3Technically, these rates represent the maximum instruction fetch rates possible
with the proposed designs. A longer critical path elsewhere in the machine could
reduce the front-end cycle time and instruction delivery rate.

benchmarks using the 0.10�m timing and simulation mod-
els. The results show an average speedup of 25% using a 64
entry L1 FTB with a 1K entry L2 FTB (F64x1k) in compar-
ison to the best performing single level FTB design (F256).
The results show that the larger designs have fallen behind in
performance. The F1k, F4k, andF8k designs, while having
very good IPCs, also have long access latencies which works
to reduce their front-end cycle times. The increases in IPC
do not offset the impacts to cycle time and all these designs
perform poorly. The two-level FTB designs perform best in
almost all cases. These designs have fast cycle times and at
the same time the L2 FTB provides additional resources in
which to store prediction and target information.

The results for m88ksim show that the F64 FTB single-
level design outperforms the F64x1K FTB. This is due to
fetch block fragmentation. If a branch inside a fetch block
is infrequently taken, it will still cause that fetch block to
be broken into two entries in the FTB. This effect causes
the fetch block to require two predictions in order to fetch

9

it. Since the F64x1K case has more capacity, it holds on
to the fragmented fetch blocks, whereas the F64 case may
replace the fragmented blocks with other entries. If the entry
is replaced and then brought back in again, the branch that
caused the fragmentation may not be encountered as taken
again, which will allow larger fetch blocks to be delivered
into the FTQ with only one prediction. This is confirmed
by Table 3, which shows that the single-level FTB has only
a 84% correct prediction rate for m88ksim, which is lower
than the 85.6% correct prediction rate of L1 FTB hits for
the two-level design. The additional performance for single-
level FTB comes from having 7.9% correct predictions from
missing in the FTB, whereas the two-level FTB only gets
3.7% correct predictions from missing in the FTB.

6.3 FTB Design Parameters

Figure 5 shows how many bits are used to represent fetch dis-
tances over all nonspeculative FTB predictions for a given
benchmark. The size of the fetch distance represents the
number of bits needed to represent the partial fall-through
address in Figure 2. The categories are disjoint and re-
sults are shown for the F64+1K configuration. For example,
on average, 18.9% of predictions used only 1 bit for their
fetch distance (corresponding to a distance of 1 instruction),
23.7% used exactly 2 bits (corresponding to a distance of 2-4
instructions), and 91.2% of all predictions could have been
covered with 4 bits (a maximum distance of 16 instructions).
This demonstrates that increasing the number of bits allo-
cated to fetch distance in a FTB entry beyond 4 or 5 bits
will not result in improvement. To test this, we simulated re-
sults with larger branch distance fields in the FTB entry. Our
confirmed that fetch distances past 16 instructions do not ap-
preciably improve either performance or prediction accuracy
for the programs examined.

Figure 6 shows the percent of cycles in which there were
a given number of occupied FTQ entries. These results show
how far the predictor was able to run ahead of the fetch unit.
On average, the FTQ is empty 21.1% of the time, and it is
completely full 10.7% of the time. Some programs, such
as ijpeg, fill up the FTQ a lot faster than they consume
entries, which indicates that instruction cache stalls and re-
source contention (i.e. a full reorder/instruction buffer) are
preventing the fetch unit from consuming FTQ entries as
rapidly. m88ksim has an empty FTQ a larger proportion of
the time than other programs, which indicates that the FTB
is not keeping up with the speed of the fetch unit. Again, this
can be traced back to the fragmentation of fetch blocks in the
FTB for m88ksim.

6.4 Scalability

When designing a high-performance front-end architecture,
the ideal design is one that is both fast and scalable. Fast, so

0%

20%

40%

60%

80%

100%

co
m

pr
es

s

de
lta

bl
ue gc

c

go

gr
of

f

ijp
eg

li

m
88

ks
im pe
rl

vo
rt

ex

av
er

ag
e

P
er

ce
nt

 P
re

di
ct

io
ns

 U
si

ng
 a

 F
et

ch
 D

is
ta

nc
e

S
iz

e

1 bit 2 bits 3 bits 4 bits 5 bits 6 bits

Figure 5: Percent of FTB predictions requiring a given num-
ber of bits to represent the fall-through fetch distance.

0%

20%

40%

60%

80%

100%
co

m
pr

es
s

de
lta

bl
ue gc

c

go

gr
of

f

ijp
eg

li

m
88

ks
im pe
rl

vo
rt

ex

av
er

ag
e

P
er

ce
nt

 o
f C

yc
le

s
w

ith
 N

um
 o

f F
ul

l F
T

Q
 E

nt
rie

s

0 1 2--3 4--7 8--15 16--31 32

Figure 6: Percent of cycles with a given number of occupied
FTQ entries during execution.

that it will deliver good performance in a particular imple-
mentation, and scalable, so that the investment in designing
the initial implementation and later improving it can be car-
ried forward into future process generations. Figure 7 shows
the performance of the analyzed workload in IPS across four
process technologies shown in Table 2. Each data point rep-
resents average performance across the entire benchmark set.

10

0

0.5

1

1.5

2

2.5

.8um .35um .18um .1um

In
st

ru
ct

io
ns

 P
er

 n
an

o-
S

ec
on

d
F64

F256

F1024

F4096

F8192

F64x1024

F64x4096

F256x1024

F256x4096

Figure 7: Impact of Process Technology on Performance.

The graph is drawn on a linear scale to highlight the scaling
effects, if a device’s latency scales with process feature size
it will be drawn as a straight line with unit slope; less steep
lines indicate poorer scaling properties.

Figure 7 shows that the multi-level FTB designs, espe-
cially the F64x1k and F64x4k, scale across the process
generations. The F64 and F256 designs also scale well, but
lack the IPC gains afforded by the L2 FTBs, making their de-
sign less attractive. The F1K, F4K, and F8K designs do not
scale as well as the F64 based design due to larger on-chip
prediction memories and thus more interconnect in the crit-
ical paths of these designs. The F4k and F8k designs have
significantly larger memories on the front-end critical path,
thus they scale poorly in the future generation processes. The
F8k design even experiences a slight reduction in perfor-
mance in the 0.10�m process technology.

7 Related Fetch Bandwidth Research

Much work has been put into the front-end architecture in an
effort to improve the rate of instruction delivery to the execu-
tion core. Techniques to reduce the impact of I-cache misses
include multi-level instruction memory hierarchies [12] and
instruction prefetch [28]. Techniques to reduce the impact
of branch mispredictions include hybrid [17] and indirect [8]
branch predictors, and recovery miss caches to reduce mis-
prediction latencies [4]. A number of compiler-based tech-
niques work to improve instruction delivery performance.
They include branch alignment [7], trace scheduling [10],

and block-structured ISAs [11].
Stark et. al., [27] proposed an out-of-order fetch mecha-

nism that features a decoupled branch target buffer that can
continue cycling independent of instruction cache misses, to
provide non-blocking I-cache fetch addresses. Their idea is
similar to our decoupled front-end design, except there is no
FTQ to allow the predictor to run ahead of the fetch unit.

Several architectures have been examined for efficient in-
struction throughput including the two-block ahead predic-
tor [24], the collapsing buffer [9], and the trace cache [23].
Seznec et. al., [24] proposed a high-bandwidth design based
on two-block ahead prediction. By predicting not the target
of a branch but rather the target of the basic block the branch
will enter permits pipelining of the critical next PC compu-
tation. Conte et. al., [9] proposed the collapsing buffer as
a mechanism to fetch two basic blocks simultaneously. The
design features a multiported instruction cache and instruc-
tion alignment network capable of replicating and aligning
instructions for the processor core. Rotenberg et. al., [23]
proposed the use of a trace cache to improve instruction fetch
throughput. The trace cache holds traces of possibly non-
contiguous basic blocks within a single trace cache line. A
start trace address plus multiple branch predictions are used
to access the trace cache. If the trace cache holds the trace
of instructions, all instructions are delivered aligned to the
processor core in a single access. Patel et. al., [20] extended
the organization of the trace cache to include associativity,
partial matching of trace cache lines, and path associativity.

8 Conclusions

A scalable front-end architecture was presented and evalu-
ated. The design features the fetch target buffer (FTB), a
multi-level fetch block-oriented target predictor. Simulation-
based evaluations indicate the design is more capable than
traditional BTB designs and single-level FTB designs.
Circuit-level analyses show that the design also features a
higher instruction delivery rate, measured in instructions per
nano-second (IPS). For a 0.10�m technology, a two-level
FTB design with a 64-entry first level and a 1k-entry second
level provides a 25% improvement in IPS over the best per-
forming single-level designs. When the performance of the
various designs is examined across multiple process gener-
ations, the multi-level FTB designs exhibit the best perfor-
mance and scalability of all the designs investigated.

We feel our approach is quite promising since it focuses
on simplicity and raw speed. Unlike techniques that work
to increase the number of instruction delivered per cycle, we
were able to gain marked increases in performance while be-
ing able to sidestep the very difficult problems of multiple
branch and target prediction.

We are currently extending this research in several direc-
tions. First, we are examining other FTB designs that may
provide increased fetch block sizes. Second, we are evaluat-

11

ing using the FTQ to provide streaming of data from second-
level cache to the first level. If the FTQ is full, because of
I-cache misses or a backed up pipeline, the FTQ entries can
be used to stream in cache blocks from the L2 cache into
a stream buffer, eliminating L1 I-cache misses. Third, we
are extending the multi-level FTB design to provide multiple
branch prediction, which will produce multiple FTQ entries
per cycle. Finally, we are comparing the performance of the
FTB to other promising high-fetch bandwidth architectures
like the trace cache. A complete evaluation of some of the
above ideas along with a more detailed description of the
Cacti timing models used in this paper can be found in [22].

Acknowledgments

We would like to thank the anonymous reviewers for provid-
ing useful comments on this paper. This work was funded in
part by NSF CAREER grant No. CCR-9733278, NSF grant
No. CCR-9808697, a grant from Compaq Computer Corpo-
ration, and an equipment grant from Intel.

References

[1] H. Bakoglu and J. Meindl. Optimal interconnect circuits for VLSI.
IEEE Transactions on Computers, 32(5):903–909, May 1985.

[2] M. Bohr. Interconnect scaling - the real limiter to high-performance
ulsi. In Tech. Dig. of the International Electron Devices Meeting,
pages 241–244, December 1995.

[3] M. Bohr. Silicon trends and limits for advanced microprocessors.
Communications of the ACM, 41(3):80–87, March 1998.

[4] J. O. Bondi, A. K. Nanda, and S. Dutta. Integrating a misprediction
recovery cache (MRC) into a superscalar pipeline. In Proceedings of
the 29th Annual International Symposium on Microarchitecture, pages
14–23, December 2–4, 1996.

[5] D. C. Burger and T. M. Austin. The simplescalar tool set, version 2.0.
Technical Report CS-TR-97-1342, University of Wisconsin, Madison,
June 1997.

[6] B. Calder and D. Grunwald. Fast and accurate instruction fetch and
branch prediction. In Proceedings of the 21st International Sympo-
sium on Computer Architecture, pages 2–11, April 1994.

[7] B. Calder and D. Grunwald. Reducing branch costs via branch align-
ment. In 6th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 242–251, Oc-
tober 1994.

[8] P. Chang, E. Hao, and Y. Patt. Target prediction for indirect jumps.
In Proceedings of the 24th Annual International Symposium on Com-
puter Architecture, pages 274–283, June 1997.

[9] T. M. Conte, K. N. Menezes, P. M. Mills, and B. A. Patel. Optimiza-
tion of instruction fetch mechanisms for high issue rates. In 22nd An-
nual International Symposium on Computer Architecture, pages 333–
344, June 1995.

[10] J. A. Fisher. Trace scheduling : A technique for global microcode
compaction. IEEE Trans. Comput., C-30(7):478–490, 1981.

[11] E. Hao, P. Chang, M. Evers, and Y. Patt. Increasing the instruction
fetch rate via block-structured instruction set architectures. In Pro-
ceedings of the 29th Annual International Symposium on Microarchi-
tecture, pages 191–200, December 1996.

[12] N. P. Jouppi and S. J. E. Wilton. Tradeoffs in two-level on-chip
caching. In Proceedings of the 21st Annual International Symposium
on Computer Architecture, pages 34–45, April 1994.

[13] S. Jourdan, T. Hsing, J. Stark, and Y. Patt. The effects of mispredicted-
path execution on branch prediction structures. In Proceedings of the
International Conference on Parallel Architectures and Compilation
Techniques, October 1996.

[14] D. Lammers. IBM’s copper interconnects hit the market. EETimes,
9/3 issue, September 1998.

[15] D. Lammers. TI’s 0.13-micron process speeds system-on-a-chip de-
signs. EETimes, 10/23 issue, October 1998.

[16] G. McFarland and M. Flynn. Limits of scaling mosfets. CSL TR-95-
62, Stanford University, November 1995.

[17] S. McFarling. Combining branch predictors. Technical Report TN-36,
Digital Equipment Corporation, Western Research Lab, June 1993.

[18] S. Oh, K. Rahmat, O. Nakagawa, and J. Moll. A scaling scheme and
optimization methodology for deep sub-micron interconnect. In IEEE
International Conference on Computer Design, pages 320–325, Octo-
ber 1996.

[19] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective su-
perscalar processors. In Proceedings of the 24th Annual International
Symposium on Computer Architecture, pages 206–218, June 1997.

[20] S. Patel, D. Friendly, and Y. Patt. Critical issues regarding the trace
cache fetch mechanism. CSE-TR-335-97, University of Michigan,
May 1997.

[21] C.H. Perleberg and A.J. Smith. Branch target buffer design and opti-
mization. IEEE Transactions on Computers, 42(4):396–412, 1993.

[22] G. Reinman, B. Calder, and T. Austin. Scalable multi-level instruction
fetch prediction. Technical Report UCSD-CS99-613, University of
California, San Diego, March 1999.

[23] E. Rotenberg, S. Bennett, and J. E. Smith. Trace cache: A low latency
approach to high bandwidth instruction fetching. In Proceedings of
the 29th Annual International Symposium on Microarchitecture, pages
24–34, December 1996.

[24] A. Seznec, S. Jourdan, P. Sainrat, and P. Michaud. Multiple-block
ahead branch predictors. In Proceedings of the Seventh International
Conference on Architectural Support for Programming Languages
and Operating Systems, pages 116–127, October 1996.

[25] K. Skadron, P. Ahuja, M. Martonosi, and D. Clark. Improving pre-
diction for procedure returns with return-address-stack repair mecha-
nisms. In Proceedings of the 31st Annual International Symposium on
Microarchitecture, pages 259–271, December 1998.

[26] K. Skadron, M. Martonosi, and D. Clark. Speculative updates of local
and global branch history: A quantitative analysis. Technical Report
TR-589-98, Princeton Dept. of Computer Science, December 1998.

[27] J. Stark, P. Racunas, and Y. Patt. Reducing the performance impact
of instruction cache misses by writing instructions into the reserva-
tion stations out-of-order. In Proceedings of the 30th International
Symposium on Microarchitecture, pages 34–45, December 1997.

[28] R. Uhlig, D. Nagle, T. Mudge, S. Sechrest, and J. Emer. Instruction
fetching: Coping with code bloat. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pages 345–356,
June 1995.

[29] S. Wilton and N. Jouppi. An enhanced access and cycle time model
for on-chip caches. Compaq WRL TR-93-5, July 1994.

[30] T. Yeh. Two-level adpative branch prediction and instruction fetch
mechanisms for high performance superscalar processors. Ph.D. Dis-
sertation, University of Michigan, 1993.

[31] T. Yeh and Y. Patt. A comprehensive instruction fetch mechanism
for a processor supporting speculative execution. In Proceedings of
the 25th Annual International Symposium on Microarchitecture, pages
129–139, December 1992.

12

