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Abstract

In the pursuit of instruction-level parallelism, signifi-
cant demands are placed on a processor’s instruction de-
livery mechanism. Delivering the performance necessary to
meet future processor execution targets requiresthat the per-
formance of the instruction delivery mechanism scale with
the execution core. Attaining these targets is a challenging
task due to I-cache misses, branch mispredictions, and taken
branches in the instruction stream. To further complicate
matters, a VLS interconnect scaling trend is materializing
that further limits the performance of front-end designs in
future generation process technologies.

To counter these challenges, we present a fetch architec-
ture that permits a faster cycle time than previous designs
and scales better with future process technologies. Our de-
sign, called the Fetch Target Bufferis a multi-level fetch
block-oriented predictor. We decouple the FTB from the in-
struction fetch and decode pipelines to afford it the fastest
clock possible. Through cycle-based simulation and circuit-
level delay analysis, we find that our multi-level FTB design
is capable of delivering instructions 25% faster than the best
single-level BTB-based pipeline configuration. Moreover, we
show that our design scal es better to future processtechnolo-
giesthan traditional single-level designs.

1 Introduction

At a high-level, a modern high-performance processor is
composed of two processing engines: fitumt-end proces-

sor and theexecution core. The front-end processor is re-
sponsible for fetching and preparingd., decoding, renam-

end and execution core creates a fundamental bottleneck in
computing,.e., execution performance is strictly limited by
fetch performance. The trend towards exploiting more ILP
in execution cores works to place further demands on the rate
of instruction delivery from the front-end. Without comple-
mentary increases in front-end delivery performance, more
exploitation of ILP will only decrease functional unit utiliza-
tion with little or no increase in overall performance.

Unfortunately, scaling the performance of the front-end
is no easy task. Three primary detractors work to make this
a very challenging endeavor. First, instruction cache misses
stall instruction delivery until instructions are returned from
the next level of the instruction memory hierarchy. Sec-
ond, the misprediction of the address or direction of a branch
forces a pipeline flush, resulting in wasted fetch bandwidth
between the time the branch was mispredicted and the time
the misprediction was detected. Third, in modern front-end
designs, resolving the target of a taken branch requires an ac-
cess to the branch predictor and branch target buffer (BTB).
As a result, the rate at which these devices can be cycled
times the average basic block size places an upper limit on
instruction delivery rates.

To further compound the challenge of front-end design,
a process technology trend is materializing that will make it
more difficult to design fast front-endise., front-ends with
low cycle times. Looking ahead a few process technology
generationsdg., 0.18m and 0.1Qum)! it becomes appar-
ent that the performance (latency) of wires is not scaling as
well as the performance of transistors [2, 3]. Wire perfor-
mance may not scale at all and may even deteriorate in a few
process generations. The problem is worse for large memo-
ries, like those typically found in front-end designs, because

ing, etc.) instructions for execution. The execution core or- oy are composed of significantly more interconnect. Large
chestrates the execution of instructions and the retirementg. 0 g designs may see little improvement and possibly

of their register and memory results to non-speculative stor-

even a reduction in theate at which the processor can de-

age. Typically, these processing engines are connected by Jiver instructions to the execution core.

buffering stage of some forng,g., instruction fetch queues

or reservation stations — the front-end acts as a producer, fill-

ing the connecting buffers with instructions for consumption
by the execution core.
This producer/consumer relationship between the front-

As a result of this trend, architects must start concern-
ing themselves less with themount of logic in the critical

L The notation 0.18m indicates a process fabrication technology with a 0.18 mi-
crometer minimum feature size.



path of a design and instead focus on éin@unt of wire in ii. larger memory performance scales worse than small
the critical path. Designs with less wire will naturally scale memory because they are composed of significantly
better because their latency is more a function of transistor more interconnect, and

latency which scales with process feature sizescalable
design is one that can perform well in the face of process
technology trends - ideally we would like to see performance
increases commencerate with the feature size scaling factor.
We predict, given the interconnect scaling bottleneck, a scal-
able design will be one with minimal wire lengths on the
critical path of the design. There has been a significant amount of analytical [16]

In this paper, we present a new scalable front-end design.and empirical [2, 18] analyses of this trend in the process
Our design decouples the branch predictors and branch targetechnology literature. Recently, these analyses have carried
buffers from the I-cache, to allow maximum performance for OVer into the computer architecture literature where their ef-
each. We call this new designFetch Target Buffer (FTB). fects on the execution core have been examined [19]. In this
The FTB organization was chosen to (1) maximize the num- Section we provide a brief introduction to the problem, read-
ber of instructions fetched for each prediction, and (2) per- ers are referred to [2] or [19] for a more in-depth analysis of
form a useful prediction every cycle. Each FTB entry rep- this bottleneck.
resents a large variable length sequential fetch block up un- ~ To better understand why on-chip memory performance
til the next taken branch. In an effort to provide fast cycle scales poorly with process feature size, we need to examine
times, while allowing sufficient capacity to maintain history more closely their structure. On-chip memory devices are
and targets for a large number of branches, the FTB usescomposed of large two-dimensional arrays of memory cells.

a multi-level memory hierarchy. The top-level (L1) FTB is Connecting these memory cells to other parts of the chipis a
able to store its targets and predictor history into a larger tapestry of wire that forms two buses. Tierdline bus runs
second-level (L2) FTB. Through cycle-based simulation and the rows of the array, bringing signals to the cells that indi-
circuit-level timing analysis, we show that this multi-level cate if the cells are being accessed. Bttine bus runs the
design performs better than traditional single-level designs, columns of the array, providing access to memory cell con-
and is scalable to future process generations. tents. To access the memory, a decoder “turns on” a row of

The remainder of this paper is organized as follows. In the memory array by asserting a single wordline, this results
Section 2 we detail the interconnect scaling bottleneck and In the contents of every cell in the row being asserted on the
its impact on front-end design. In Section 3 we present a new bitline bus. AMUX at the end of the bitlines is used to select
scalable front-end architecture, and in Section 4 we detail the accessed data. . _ _
the organization and operation of the fetch target buffer. In ~ The latency of a memory device, to a first order, is the
Section 5 we describe the methodology used to gather ourlatency to exercise the logic in the decoder, assert the word-
results. In Section 6 we evaluate the scalability of the new line wire, read the memory cell logic, assert the bitline wire,
designs, comparing the performance of single and two-level @nd finally exercise the logic in the bitline MUX to select
FTB designs with traditional BTB-based designs, both in the the accessed data. As the process feature size is scaled, the
cycle and time domains. Section 7 presents related work. latency of the transistors is scaled proportional to their size,
Finally, Section 8 provides a summary and concludes with thus the latency of the logic scales linearly with feature size

future directions. reductions. ' N
The latency of the wordlines and bitlines, on the other

hand, does not scale as well dugtvasitic capacitance ef-
2 How Poor Interconnect Scaling Affects Front- fects that occur between the closely packed wires that form
End Performance these buses. As the technology is scaled to smaller feature
sizes, the thickness of the wires does not scalés a re-

The interconnect scaling bottleneck is as follows: As process Sult, the parasitic capacitance formed between wires remains
technology feature size scales by a factor S, the performancefixed in the new process technology (assuming wire length
(i.e, delay) of transistors scales linearly at roughly a factor and spacing are scaled similarly). Since wire delay is pro-
S. Wire latency, on the other hand, scales at a rate less tharportional to its capacitance, signal propagation delay over

S due to parasitic capacitance effects. There are three importhe scaled wire remains fixed even as its length and width
tant results of this trend: are scaled. This effect is what createsithterconnect scal-

ing bottleneck.

i memory structures experience the full extent of 2The reasons behind poor interconnect thickness scaling are numerous and com-

: PPN plex. Two main reasons include 1) it is difficult to manufacture thinner wires, and 2)
this trend because they are Composed of Slgmflcant keeping wires thick increases their cross-sectional area, which in turn reduces current

amounts of closely packed interconnect, densities and reliability problems associated with metal electromigration.

iii. interconnect scaling degrades as process feature size
decreases due to increasing parasitic capacitance ef-
fects; if current trends continue, wire latency will no
longer scale and may increase in future process gener-
ations.
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Figure 1: A Decoupled Multi-level Front-End.

Recently, some process technologies have begun em-
ploying copper interconnect and low-k dielectrics as a way
to reduce the impact of poor interconnect scaling [14, 15].
These material lower theresistance and capacitance of wires,
respectively, thereby improving signal propagation perfor-
mance. However, these techniques only offer a one time
reprieve for the first process generation that employs them.
Poor interconnect scaling trends continue. It has been shown
that splitting long wires with buffers can reduce their prop-
agation delay [1]. However, this approach cannot be ap-
plied to the the densely packed interconnect of memory ar-
rays without significantly increasing their area (due to many
buffers).

Front-end designs tend to contain a significant amount
of on-chip memory - in the branch predictors, BTBs, and I-
caches. Asaresult, future generation front-end designs will
scale poorly unless architects strive to limit the amount of
wire on the critical paths of their designs. One effective ap-
proach to reduce wire lengthsisto decrease the size of mem-
ory structures in the critical path of the front-end design. In
the following section, we present a new scalable front-end
design that attains this goal while at the same time provid-
ing competitive cycle times and prediction rates compared to
traditional front-end designs.

3 A Scalable Front-End Architecture

In this section we describe our scalable front-end architec-
tureillustrated in Figure 1. To creste a scalable design, we
decouple the I-cache from branch predictor, thereby elimi-
nating thislarge and slow memory from the front-end critical
path. Note that thisimplies that the instruction cache hasits
own local fetch addressto control the cache fetching, and the
branch predictor has its own local PC to control the branch
predictions. The PC used for the current cycle's branch pre-

diction, will be used in asubsequent cyclefor the cachefetch
address.

To provide a decoupled front-end, a Fetch Target Queue
(FTQ) is used to bridge the gap between the branch predic-
tor and the instruction cache. Every cycle, the branch pre-
dictor will produce afetch target block prediction and store
it in the FTQ, where it will be eventually consumed by the
instruction cache. The FTQ provides the buffering neces-
sary to permit the branch predictor and |-cache to operate au-
tonomously; the branch predictor can miss and stall whilethe
I-cache continues fetching blocks. In contrast, the FTQ al-
lows the branch predictor to work ahead of the I-cache when
it is stalled due to a cache miss or a full instruction buffer.
If the I-cache is multi-ported, multiple valid FTQ entries can
be consumed in a single cycle (possibly out-of-order) until
ports are exhausted.

Recall from Section 2, the interconnect scaling bottle-
neck only allows low access latency and good scalahility for
small memory arrays. As aresult, large instruction caches
will have to be pipelined to accommodate future clock rates.
Fortunately, the decoupled design only exposes this addi-
tional I-cache latency during branch mispredictions. As
an added benefit, pipelining the I-cache makes it easier to
increase the cache size or associativity without impacting
front-end critical path lengths.

To maintain good branch throughput and scalability it is
important to make the branch predictors and branch target
buffers as small as possible. At the same time however, a
large branch predictor is desirable as this will ensure that we
have sufficient capacity to predict the direction and targets of
most branches, thereby eliminating most branch mispredic-
tion latencies. To solve this conundrum we turn to the time-
tested solution of multi-level memory hierarchies, and use
amulti-level branch prediction architecture called the Fetch
Target Buffer (FTB).

To further improve instruction delivery throughput, the
FTB is crafted to return information about the dynamic in-
struction stream each cycle it is accessed. It does this by
predicting the address and size of fetch blocks. A fetch
block is a sequence of instructions starting at a branch target,
and ending with a strongly biased taken or unbiased branch.
Branches which are biased and not taken may be embedded
within fetch blocks. This optimization permits fetch block
sizes to increase without cost. Since a strongly biased not
taken branch does not change the flow of control, we can
predict this branch by simply ignoring it. Our predictor a-
location policy (described later) ensures that strongly biased
not taken branches are embedded within fetch blocks.

During operation, the FTB provides branch address and
target predictions. It istagged and split into multiple levels.
Predictor history and branch target data is demand fetched
(or prefetched) from the L2 FTB into the L1 FTB. To mini-
mize FTB access latency, only the information necessary to
cycle the next PC computation is stored within it. Each cy-



cle, the FTB produces a starting address for the next fetch
block, the address where the fetch block ends, and the pre-
dicted target address (fall-through or taken) to be used for
the prediction in the next cycle. These addresses are stored
in an FTQ entry after each prediction, and are consumed in
subsequent cycles by the instruction cache.

4 Fetch Prediction Architectures

In this section we describe prior branch target buffer archi-
tectures. We then describe our multi-level fetch target buffer
design to provide fetch prediction for our decoupled front-
end.

4.1 Branch Target Buffers

Branch Target Buffers (BTB) have been proposed and eval-
uated to provide branch and fetch prediction for wide issue
architectures. A BTB entry holdsthe taken target address for
abranch a ong with other information, such asthetype of the
branch, conditional branch prediction information, and pos-
sibly the fall-through address of the branch.

Perleberg and Smith [21] conducted a detailed study into
BTB design for single issue processors. They even looked
at using amulti-level BTB design, where each level contains
different amounts of prediction information. Because of the
cycle time, area costs, and branch miss penalties they were
considering, they found that the “additional complexity of
the multi-level BTB is not cost effective’ [21]. Technology
has changed since their study, and as we show in this paper,
amulti-level branch prediction design is advantageous.

Yeh and Patt proposed using a Basic Block Target Buffer
(BBTB) [30, 31]. The BBTB isindexed by the starting ad-
dress of the basic block. Each entry contains atag, typein-
formation, the taken target address of the basic block, and the
fall-through address of the basic block. If the branch ending
the basic block is predicted as taken, the taken address is
used for the next cycle's fetch. If the branch is predicted as
not-taken, thefall-through addressis used for the next cycle's
fetch. If thereisaBBTB miss, then the current fetch address
plusafixed offset isfetched in the next cycle. Intheir design,
the BBTB is coupled with the instruction cache, so thereis
no fetch target queue. If the current fetch basic block spans
severa cache blocks, the BBTB will not be used and will sit
idle until the current basic block has finished being fetched.
In comparison, our decoupled front-end and FTQ allow our
FTB predictor to speed ahead of the I-cache, potentially per-
forming a useful prediction every cycle.

4.2 Fetch Target Buffer

The branch prediction architecture we model in this paper is
an extension of the BBTB design by Yeh and Patt [30, 31],
with two changes to their design. The first change is that

we do not store basic blocks in our fetch target buffer that
are fall-through basic blocks or basic blocks with branches
that are seldom taken [6]. The BBTB design stores an entry
for all basic blocks. Storing non-taken basic blocks wastes
BBTB entries, and decreases the size of fetch blocks, which
requires additional predictions to traverse what could have
been one larger fetch block.

The second change we made to the BBTB design is that
we do not store the full fall-through addressin our FTB. In-
stead, we store only the pre-computed lower bits of the fall-
through address along with a carry bit used to calculate the
rest of the fall-through address [6]. This helps reduce the
amount of storage for each BBTB entry, since the typical
distance between the current fetch address and the BBTB’s
fall-through addressis not large.

Our Fetch Target Buffer (FTB) design is shown in Fig-
ure 2. The FTB table is accessed with the start address of
afetch target block. Each entry in the FTB contains a tag,
taken address, partial fall-through address, fall-through carry
bit, branch type, oversize bit, and conditional branch predic-
tion information. The FTB entry represents the start of a
fetch block. The fall-through address minus 4 represents the
location of abranch that endsthe fetch block. Thegoal isfor
fetch blocks to end only with branches that have been taken
during execution. If the FTB entry is predicted as taken, the
taken address is used as the next cycle's prediction address.
Otherwise, the fall-through address is used as the next cy-
cle's prediction address.

As described earlier, the fall-through address is not
stored in its entirety in the FTB entry. Only the N low
order hits of the fall-through address are stored along with
a carry bit. If the carry bit is not set, the complete fall-
through address is calculated by concatenating the upper
address_size — N bits of the current fetch address with the
N fall-through address bits stored in the FTB entry. If the
carry bit is set, the complete fall-through address is calcu-
lated by adding one to the upper address_size — N bits of
the current fetch address, and then concatenating this with
the NV fall-through address hits stored in the FTB entry. The
calculation of adding the carry hit to the upper bits of the PC
isdonein parallel withthe FTB lookup. Thenif thebranchis
predicted as not-taken, the carry bit chooses between the two
possible values for the upper bits of the fall-through address,
and then performsthe concatenation.

Thesize of the N partia fall-through bit field determines
the size of the fetch blocks that can be represented in the
fetch target buffer. If the fall-through is farther than 2% in-
structions away from the start address of the fetch block, the
fetch block is broken into chunks of size 2V, and only the
last chunk is inserted into the FTB. The other chunks will
missin the FTB, predict not-taken, and set the next PC equal
to the current PC plus 2%V, which is the max fetch distance.

Anoversizebit is used to represent whether or not afetch
block spans a cache block [30]. Thisis used by the instruc-
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Figure 2: The Fetch Target Buffer.

tion cache to determine how many predictions to consume
from the FTQ in a given cycle. We simulated our results
with two I-cacheports. The oversizebit isused to distinguish
whether a prediction is contained within one cache block or
if its fetch size spans two or more cache blocks. If the over-
size hit is set, the predicted fetch block will span two cache
blocks, and the cache will use its two ports to fetch the first
two sequential cache blocks. If the bit is not set, the predic-
tion only requires a single cache block, so the second port
can be used to start fetching the target address of the next
FTQ entry.

The branch direction predictor shown in the FTB in Fig-
ure 2 is a hybrid predictor with a meta-predictor that can se-
lect between alocal history-based predictor, aglobal history
predictor, and a bimodal predictor. Other combinations are
possible, as well as non-hybrid predictors. Thelocal history
is composed of thelast IV branch directionsfor the branch at
the end of thefetch block. Thelocal branch history isused to
index the pattern history table, returning a pattern prediction.
The globa history is XORed with the fetch block address
and used as an index into a global pattern history table. The
meta-prediction is used to select between the various predic-
tions available, depending on the specifics of the design. The
meta-predictor is typically implemented as a counter to se-
lect between two predictions or as a per-predictor confidence
mechanism to select amongst three or more predictors. The

final prediction result is used to select either the target ad-
dress of the branch at the end of the fetch block or the fetch
block fall-through address.

For good predictor performance, especially for machines
with deep speculation and large instruction windows, it be-
comes beneficial to recover branch history in the event the
processor detects a mispredicted branch. This is even more
important in our scalable front-end architecture design, be-
cause the branch predictor can get several predictions ahead
of the instruction cache fetch. To facilitate the recovery of
branch history, a small Speculative History Queue (SHQ)
holdsthe speculative history of branches. When branchesare
predicted their updated local or global history isinserted into
the SHQ. When predictions are made, the SHQ is searched
in parallel with the L1 FTB, if a newer history is detected
in the SHQ, it takes precedence over the history in the L1
FTB. Entries are only allocated in the SHQ when the his-
tory changes; this reduces capacity requirementsinthe SHQ.
When the branch at the end of a fetch block retires, its spec-
ulative history iswritten into the FTB. When amisprediction
is detected, the point in the SHQ of the mispredicted branch
and later allocated entries are released. The SHQ is kept
small to keep it off the critical path of the L1 FTB. If the
speculative history queue becomes full, the oldest entry is
written into the FTB. Skandron et al., independently devel-
oped a similar approach for recovering branch history, and



they provide detailed analysis of their designin [26].

The meta predictor, bimodal, and 2-bit pattern history ta-
ble values are not updated speculatively. The front-end can
only assumeit madethe correct prediction and thusreinforce
bimodal or pattern history predictions. It has been shown
in[13] that better performance results when the meta predic-
tor and 2-bit PHT updates are delayed until the result of the
branch outcomeis known, i.e., at execute or retirement.

Since the FTB can make predictions far beyond the cur-
rent PC, it can pollute the return address stack if it predicts
multiple callsand returns. It is necessary to use sophisticated
recovery mechanismsto return the stack to the correct state.
Simply keeping track of thetop of stack is not sufficient [25],
as the predictor may encounter several returns or calls down
a misspeculated path that will affect more than just the top
of stack. We use two return address stacks to solve this prob-
lem. Oneis speculative (S-RAS) and is updated by the FTB
during prediction. The other is nonspeculative (N-RAS) and
is updated during writeback. When a misprediction is de-
tected, the SSRAS will likely be polluted and can be recov-
ered from the N-RAS. Then prediction can restart as normal,
using the S-RAS. This provides accurate return address pre-
diction. Additional analysisof our RAS recovery mechanism
and our SHQ design can be found in [22].

4.3 Functionality of the2-Level FTB

TheL1FTB is accessed each cycle using the predicted fetch
block target of the previous cycle. At the same time, the
speculative history queue, the return address stack, and the
global history prediction table are accessed. If thereisanL1
FTB hit, then the fetch block address, the oversize hit, the
last address of the fetch block, and the target address of the
fetch block are inserted into the next free FTQ entry.

L1FTB Missand L2 FTB Hit If theL1 FTB misses, the
L2 FTB needsto be probed for the referenced FTB entry. To
speed this operation, the L2 FTB access begins in parallel
with the L1 FTB access. If at the end of the L1 FTB access
cycle a hit is detected, the L2 FTB access isignored. If an
L1 miss is detected, the L2 FTB information will return in
N — 1 cycles, where N is the access latency of the L2 FTB
(in L1 FTB access cycles). On an L1 FTB miss, the predic-
tor has the target fetch block address, but doesn’t know the
size of thefetch block. To make use of the target address, the
predictor injectsfall-through fetch blocks starting at the miss
fetch block address into the FTQ with a predetermined fixed
length. Once the L2 FTB entry is returned, it is compared
to the speculatively generated fetch blocks: if it islarger, an-
other fetch block is generated and injected into the FTQ. If
it is smaller, the L1 FTB initiates a pipeline squash at the
end of the fetch block. If the fetch target has not made it
out of the FTQ, then no penalty occurs. If the fetch target
was being looked up in the instruction cache, those instruc-
tions are just ignored when the lookup finishes. In our mod-

els, we achieved good performance with L2 FTBs that have
shorter latencies than one would use for afirst level instruc-
tion cache, so this was not a problem. The fina step is to
remove the LRU entry from the corresponding L1 FTB s&t,
and insert the entry brought in from the L2 FTB. The entry
removed from the L1 FTB, isthen inserted into the L2 FTB
also using LRU replacement.

L1FTB Missand L2 FTB Miss If the L2 FTB indicates
the requested FTB entry isnot inthe L2 FTB, the L1 FTB
enters a state where it continually injects sequential fetch
blocks into the machine until a misprediction is detected in
the decode or writeback stage of the processor. Once amis-
prediction is detected, the L1 FTB will be updated with the
correct information regarding this new fetch block, and then
the L1 FTB will once again begin normal operation. By in-
jecting fetch blocks sequentially into the machine, it's pos-
sible to partially overlap the generation of FTB entries with
their execution.

Branch Misprediction Recovery In the decode stage, the
predicted direction of unconditional branches, e.g., jumps,
calls and returns, and the targets of direct branches, eg., PC
relative and absolute, are validated. In the writeback stage,
the targets of indirect branches and the direction of condi-
tional branches are validated. Fetch block targets and sizes
are propagated down the pipeline with instructions. During
validation, if a branch target does not match the accompa-
nying fetch block, a branch misprediction recovery sequence
isinitiated. The FTB entry is updated with the correct fetch
block information, misspeculated entries in the speculative
history queue are released, and the pipelineis flushed behind
the misspeculated branch. In any event, the prediction his-
tory of branchesis updated. To facilitate the embedding of
strongly biased not-taken branches within fetch blocks, not
taken branches do not update history or create FTB entries
unless they are already contained in the FTB and at the tail
of afetch block. In addition, new FTB entries are only allo-
cated when branches are taken.

5 Methodology

The simulators used in this study are derived from the Sim-
pleScalar/Alpha3.0tool set [5], asuite of functional and tim-
ing simulation toolsfor the AlphaAXP1SA. Thetiming sim-
ulator executes only user-level instructions, performing ade-
tailed timing simulation of an aggressive 8-way dynamically
scheduled microprocessor with two levels of instruction and
data cache memory. Simulation is execution-driven, includ-
ing execution down any speculative path until the detection
of afault, TLB miss, or branch mis-prediction.

To perform our evaluation, we collected results for six of
the SPEC95 C benchmarks plus 2 C++ programs. G of f is
atext formatting program, and del t abl ue is a constraint



#instr #instr % br
Program Input fwd (M) | exec (M) exe
compress || ref 0 93 | 139
deltablue || ref 0 9% | 17.0
gce 1cp-dec 400 1041 | 17.3
groff someman 0 52 | 17.3
go 5stone21 2000 32699 | 14.0
ijpeg specmun 2000 34716 | 10.5
li ref 2000 18089 | 19.1
m88ksim || ref 2000 76271 | 14.8
perl scrabbl 2000 28243 | 16.1
vortex vortex 2000 90882 | 14.7

Table 1: Program statistics for the baseline architecture.

solving system. The programswere compiled on a DEC Al-
pha AXP-21164 processor using the DEC C and C++ com-
pilers under OSF/1 V4.0 operating system using full com-
piler optimization (- O4 -i f 0). Table 1 shows the data set
we used in gathering results for each program, the number of
instructions executed in the program to completion (in mil-
lions), and the percent of executed branchesin each program.
Also shown is the number of instructions that were executed
(fast forwarded) before actual smulation. Results are then
reported for simulating each program for up to 100 million
instructions.

5.1 Basdine Architecture

Our baseline simulation configuration models a future gen-
eration out-of-order processor microarchitecture. We've se-
lected the parameters to capture underlying trends in mi-
croarchitecture design. The processor has a large window
of execution; it can fetch up to 8 instructions per cycle and
issue up to 16 instructions per cycle. It has a 128 entry re-
order buffer with a 32 entry load/store buffer. Loads can only
execute when all prior store addresses are known. In addi-
tion, all storesareissued in-order with respect to prior stores.
To compensate for the added complexity of disambiguating
loads and stores in a large execution window, we increased
the store forward latency to 3 cycles.

There is an 8 cycle minimum branch mis-prediction
penalty. The processor has 8 integer ALU units, 4-
load/store units, 2-FP adders, 2-integer MULT/DIV, and 2-
FP MULT/DIV. The latencies are: ALU 1 cycle, MULT 3
cycles, Integer DIV 12 cycles, FP Adder 2 cycles, FP Mult
4 cycles, and FP DIV 12 cycles. All functional units, except
the divide units, are fully pipelined allowing a new instruc-
tion to initiate execution each cycle.

The processor we simulated has a 64k 2-way set-
associative direct-mapped instruction cache and a 64k 4-way
set-associative data cache. Both caches have block sizes of
32 bytes. The data cache is write-back, write-allocate, and
is non-blocking with 2 ports. The data cache is pipelined
to alow up to 2 new requests each cycle. Thereis a uni-

fied second-level 1 MB 4-way set-associative cache with 64
byte blocks, with a 10 cycle cache hit latency. If there is
a second-level cache miss it takes a total of 120 cycles to
make the round trip access to main memory. We model the
bus latency to main memory with a 10 cycle bus occupancy
per request. Thereis a 32 entry 8-way associativeinstruction
TLB and a 32 entry 8-way associative data TLB, each with a
30 cycle miss penalty.

For this paper, we used the McFarling gshare predic-
tor [17] for our conditional branch predictor. The predic-
tor has a 2-bit meta-chooser and a 2-bit bimodal predictor,
both stored in the FTB (or BBTB) entry with the branch.
In addition, a tagless Gshare predictor is also available, ac-
cessed in parallel with the L1 FTB. The meta-chooser isin-
cremented/decremented if the bimodal/Gshare predictorsare
correct. The most significant bit of the meta-chooser selects
between the bimodal and Gshare predictions.

5.2 Timing Model

We report our results using device timing metrics for four
process technologies gathered using a modified version of
the Cacti cache compiler [29]. Cacti contains a detailed
model of the wire and transistor structure of on-chip memo-
ries. We modified Cacti to model aBBTB, FTB, and tagless
branch predictors, and extended the 0.80um process model
to include timings for 0.35um, 0.18um, and 0.10um pro-
cesses. The 0.80um process is a previous generation pro-
cess with 0.80 micron minimum feature sizes. The 0.35um
process is a current generation process, and the 0.18um and
0.10um processes represent future generation technologies.
The 0.80um, 0.35um, and 0.18um process parameters are
from [19]; the 0.10pum process parameters are expected val-
ues based on empirical analysis of experimental fabrication
processes, taken from [2]. The specifics of the Cacti on-chip
memory model and process models used are detailed in [22].

Table 2 lists the front-end architectures analyzed and
their timing parameters for the four process technologies.
Thetableliststhe FTB sizes (in number of entries), and FTB,
branch predictor, and cache latencies (in clock cycles). The
latencies are shown for each process technology in the fol-
lowing order: 0.80um, 0.35um, 0.18um, and 0.10um tech-
nologies. Thelatenciesfor theL2 FTB, I-cache, and D-cache
were selected by dividing the access times for these devices
by the accesslatency of the L1 FTB. Sincethesedeviceshave
amultiple cycle latency, we simulate them as fully pipelined
memories. We scaled the branch predictors to the maximum
sizethat could be accessed in lesstimethanthe L1 FTB. The
timing of the devices sometimes changed between process
technologies due to varied interconnect scaling effects. All
FTB organizationsare 4-way set-associative. L1 FTB access
latencies (in nanoseconds) are listed in the column labeled
t.r min. Thesize of L1 FTB entries varies depending on the
size of the tag used, although most experiments have about 8
bytes of data per entry.



Config L1FTB/BTB Predictor L2FTB I-cache | D-cache t.r MiN

size [ Tatency | size [ Tatency | size | Tatency | latency latency (ns)
F64 64 | 1,111 a4 [ 11,11 na na| 2234 2,2,3,4 | 6.05,2.03,1.03,0.76
F256 25 | 1,111 8k | 1,111 n/a na| 2223 2,233 | 6.33,2.21,1.16,0.95
F1k 1k | 1,121 | 16k | 1,111 n/a na| 2222 2,2,2,2 | 7.06,2.55,1.44,1.30
Fak 4 | 1,111 | 16k | 1111 n/a na| 2222 2,2,2,2 | 8.30,3.40,2.07,2.03
F8k 8k | 1,1,1,1 | 16k | 1,111 n/a na| 1,111 1,1,1,1 | 9.16,3.91,2.57,2.68
F64x1k 64 [ 1111 k| 1111 k| 2222 2234 2234 ] 6.052.031.03,0.76
F64x4k 64 [ 1111 k| 1111 4k | 2223 2234 2,234 | 6.052.031.03,0.76
F256x1k | 256 | 1,111 8k | 1111 k| 2222 2223 2,233 | 6.332.21,1.16,0.95
F256x4k | 256 | 1,111 8k | 1111 k| 2222 2223 2,233 | 6.332.21,1.16,0.95

Table 2: Analyzed Configurations. L1 and L2 FTB sizesarelisted in terms of total number of entries. I-cache and D-cache sizes
are al 64k bytes. F64x1k standsfor a64 entry L1 FTB with a 1k entry 2nd level FTB. n/aindicates the field is not applicable

to the listed configuration.

6 Results

First we present a comparison of the BBTB design and the
single-level FTB design. Next, we compare our single level
FTB to a two level FTB, presenting results in Instructions
Per nanoSecond (1PS). We then investigate how the perfor-
mance of the FTB tolerates changes in factors such as the
number of bits allocated to the fetch distance and variance
in the size of the FTQ. For all of the FTB results we used
a fetch distance of size 16 instructions (4 bits for the par-
tial fall-through address), which we found to be sufficient as
described in Section 6.3. Finally, the scalability of the FTB
across different feature sizesis considered.

6.1 BBTB Comparison

Figure 3 shows | PC results comparing the BBTB design our
single-level FTB configurations. Both architectures were
simulated with acoupled front-end (no FTQ) to provideafair
comparison with non-pipelined caches. Overall, the FTB de-
signs provide dlightly better fetch bandwidth than the BBTB
designs, since the FTB does not need to store every encoun-
tered basic block (branch) - only those that have been taken
inthe past.

Figure 3 shows that a small 64 entry FTB can hold the
majority of branches executed by conpr ess, i j peg, and
nB8ksi mwhereas the rest of the programs benefit from
having alarge FTB. For al programs, little performancegain
is seen when increasing the predictor size beyond 4K entries.
The results show that the FTB design consistently outper-
formed or performed as well as a comparably sized BBTB
design. The remainder of the results compare the perfor-
mance of the two-level FTB with the single level FTB.

6.2 Two-level FTB Performance

Table 3 shows the average fetch block size in instructions
and the percent of correct predictions provided by a 64 entry
single-level predictor, and a 64 entry first level FTB with

lLevel FTB 2Level FTB
64 entry 64-1K entry
fetch | %cor | %cor fetch | %cor | %cor | %cor
program size pred miss size L1 L2 miss
compress 5.7 704 13.7 5.7 72.3 0.3 12.7
deltablue 6.6 56.7 4.9 5.9 64.2 9.6 32
gce 7.7 35.3 10.3 6.5 | 493 17.1 1.7
go 1.7 55.1 125 70 | 632 53 9.9
groff 8.0 311 85 6.5 | 47.7 239 6.8
ijpeg 75 84.6 12.8 75| 847 0.0 12.8
li 6.2 62.7 36 55 70.4 9.1 2.0
m88ksim 74 84.0 7.9 6.5 | 856 0.0 37
perl 8.5 18.7 11.3 6.3 | 443 325 7.8
vortex 9.7 29.1 17.7 83| 499 19.9 16.6
[average | 75] 528] 103]] 66 632 11.8] 83|

Table 3: FTB Performance. Average fetch block size pro-
vided by the FTB, along with the percent of fetch block pre-
dictions that were correct when hitting in the first (L1) or
second (L2) level FTB, and the percent of correct predictions
that occurred when missing in the FTB.

a 1K entry second-level FTB (64-1K). The average fetch
block sizeisthe dynamic size obtained for predictionson the
non-speculative path. The correct prediction rates show the
percent of time the FTB provided a correct prediction from
each FTB level, and the percent of time predicting a fixed
fall-through fetch distance was correct for an FTB hierarchy
miss. For a miss, a fall-through fetch block of size 16 in-
structionsis predicted. Once an FTB entry has been brought
into thefirst level from the second level, itiscountedasal 1
correct prediction for all subsequent predictions - until it is
again swapped out of thefirst level. The average fetch block
size of the single level FTB configuration is higher due to
increased FTB misses. On FTB misses, the large fixed fetch
distance (16 instructions) is predicted which makes the av-
erage fetch block size larger, but also increases the chance
of including a taken branch. The two-level FTB structure
provides atotal of 83.3% correct fetch block predictions on
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Figure 3: Instruction Per Cycle for BBTB and single-level FTB configurations.
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Figure 4: Fetch Target Buffer performance for 0.10um feature size. Simulation results are shown in terms of the number of
committed instructions per nano-second, which is computed from the I|PC and cycle time used to simulate each configuration.

average, with an average fetch size of 6.6 instructions.

To fully assess the tradeoffs between different table sizes
and the multi-level designs, we need to also look at their im-
pacts on circuit performance. By combining the IPCs mea-
sured by the simulator with the front-end cycle time com-
puted by our Cacti memory models shown in Table 2, we
can compute the instruction delivery rates for each of the
designs. 3 We report results in terms of of the number of
Instructions Per nanoSecond (IPS), which is the number of
instructions committed each nano-second. To calculate this
number we divide the IPC by the cycle time of the front end
(FTB). Remember that the second-level FTB, I-cache, and
D-cache have additional latency for accessing them since
they are pipelined for these simulations based on the laten-
ciesshownin Table 2.

Figure4 showstheinstruction delivery ratesin IPSfor all

3Technically, these rates represent the maximum instruction fetch rates possible
with the proposed designs. A longer critical path elsewhere in the machine could
reduce the front-end cycle time and instruction delivery rate.

benchmarks using the 0.10um timing and simulation mod-
els. The results show an average speedup of 25% using a 64
entry LLFTB withalK entry L2 FTB (F64x1k) in compar-
ison to the best performing single level FTB design (F256).
The results show that the larger designs have fallen behind in
performance. TheF1k, F4k, and F8k designs, while having
very good I PCs, also have long access |atencies which works
to reduce their front-end cycle times. The increases in IPC
do not offset the impacts to cycle time and all these designs
perform poorly. The two-level FTB designs perform best in
almost al cases. These designs have fast cycle times and at
the same time the L2 FTB provides additional resources in
which to store prediction and target information.

Theresultsfor mB8ksi mshow that the F64 FTB single-
level design outperforms the F64x1K FTB. This is due to
fetch block fragmentation. If a branch inside a fetch block
is infrequently taken, it will still cause that fetch block to
be broken into two entries in the FTB. This effect causes
the fetch block to require two predictions in order to fetch



it. Since the F64x 1K case has more capacity, it holds on
to the fragmented fetch blocks, whereas the F64 case may
replace the fragmented blocks with other entries. If the entry
is replaced and then brought back in again, the branch that
caused the fragmentation may not be encountered as taken
again, which will allow larger fetch blocks to be delivered
into the FTQ with only one prediction. This is confirmed
by Table 3, which shows that the single-level FTB has only
a 84% correct prediction rate for m88ksi m which is lower
than the 85.6% correct prediction rate of L1 FTB hits for
the two-level design. The additional performancefor single-
level FTB comes from having 7.9% correct predictionsfrom
missing in the FTB, whereas the two-level FTB only gets
3.7% correct predictions from missing in the FTB.

6.3 FTB Design Parameters

Figure 5 shows how many bits are used to represent fetch dis-
tances over all nonspeculative FTB predictions for a given
benchmark. The size of the fetch distance represents the
number of bits needed to represent the partia fal-through
address in Figure 2. The categories are digoint and re-
sults are shown for the F64+1K configuration. For example,
on average, 18.9% of predictions used only 1 bit for their
fetch distance (corresponding to a distance of 1 instruction),
23.7% used exactly 2 bits (corresponding to adistance of 2-4
instructions), and 91.2% of all predictions could have been
covered with 4 bits (a maximum distance of 16 instructions).
This demonstrates that increasing the number of bits allo-
cated to fetch distance in a FTB entry beyond 4 or 5 bits
will not result in improvement. To test this, we simulated re-
sultswith larger branch distance fields in the FTB entry. Our
confirmed that fetch distances past 16 instructions do not ap-
preciably improve either performanceor prediction accuracy
for the programs examined.

Figure 6 shows the percent of cyclesin which there were
agiven number of occupied FTQ entries. These results show
how far the predictor was able to run ahead of the fetch unit.
On average, the FTQ is empty 21.1% of the time, and it is
completely full 10.7% of the time. Some programs, such
asij peg, fill up the FTQ a lot faster than they consume
entries, which indicates that instruction cache stalls and re-
source contention (i.e. a full reorder/instruction buffer) are
preventing the fetch unit from consuming FTQ entries as
rapidly. m88ksi mhas an empty FTQ alarger proportion of
the time than other programs, which indicates that the FTB
is not keeping up with the speed of the fetch unit. Again, this
can be traced back to the fragmentation of fetch blocksin the
FTB for nB8ksi m

6.4 Scalability

When designing a high-performance front-end architecture,
theideal designis onethat is both fast and scalable. Fast, so
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Figure 5: Percent of FTB predictionsrequiring agiven num-
ber of bits to represent the fall-through fetch distance.
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Figure 6: Percent of cycleswith a given number of occupied
FTQ entries during execution.

that it will deliver good performance in a particular imple-
mentation, and scalable, so that the investment in designing
the initial implementation and later improving it can be car-
ried forward into future process generations. Figure 7 shows
the performance of the analyzed workload in I PS across four
process technologies shown in Table 2. Each data point rep-
resents average performance across the entire benchmark set.
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Figure 7: Impact of Process Technology on Performance.

The graph is drawn on alinear scale to highlight the scaling
effects, if adevice's latency scales with process feature size
it will be drawn as a straight line with unit slope; less steep
lines indicate poorer scaling properties.

Figure 7 shows that the multi-level FTB designs, espe-
cialy the F64x1k and F64x4k, scale across the process
generations. The F64 and F256 designs also scale well, but
lack the IPC gainsafforded by the L2 FTBs, making their de-
sign less attractive. The F1K, F4K, and F8K designs do not
scale as well as the F64 based design due to larger on-chip
prediction memories and thus more interconnect in the crit-
ical paths of these designs. The F4k and F8k designs have
significantly larger memories on the front-end critical path,
thusthey scale poorly in the future generation processes. The
F8k design even experiences a dlight reduction in perfor-
mance in the 0.10um process technology.

7 Related Fetch Bandwidth Research

Much work has been put into the front-end architecturein an
effort toimprovetherate of instruction delivery to the execu-
tion core. Techniquesto reduce the impact of |-cache misses
include multi-level instruction memory hierarchies [12] and
instruction prefetch [28]. Techniques to reduce the impact
of branch mispredictionsinclude hybrid [17] and indirect [8]
branch predictors, and recovery miss caches to reduce mis-
prediction latencies [4]. A number of compiler-based tech-
niques work to improve instruction delivery performance.
They include branch alignment [7], trace scheduling [10],
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and block-structured ISAs [11].

Stark et. al., [27] proposed an out-of-order fetch mecha-
nism that features a decoupled branch target buffer that can
continue cycling independent of instruction cache misses, to
provide non-blocking I-cache fetch addresses. Their ideais
similar to our decoupled front-end design, except thereis no
FTQ to alow the predictor to run ahead of the fetch unit.

Severd architectureshave been examined for efficient in-
struction throughput including the two-block ahead predic-
tor [24], the collapsing buffer [9], and the trace cache [23].
Seznec et. al., [24] proposed a high-bandwidth design based
on two-block ahead prediction. By predicting not the target
of abranch but rather the target of the basic block the branch
will enter permits pipelining of the critical next PC compu-
tation. Conte et. al., [9] proposed the collapsing buffer as
a mechanism to fetch two basic blocks simultaneously. The
design features a multiported instruction cache and instruc-
tion alignment network capable of replicating and aligning
instructions for the processor core. Rotenberg et. al., [23]
proposed the use of atrace cacheto improveinstruction fetch
throughput. The trace cache holds traces of possibly non-
contiguous basic blocks within a single trace cache line. A
start trace address plus multiple branch predictions are used
to access the trace cache. If the trace cache holds the trace
of instructions, all instructions are delivered aligned to the
processor corein asingle access. Patel et. al., [20] extended
the organization of the trace cache to include associativity,
partial matching of trace cache lines, and path associativity.

8 Conclusions

A scalable front-end architecture was presented and evalu-
ated. The design features the fetch target buffer (FTB), a
multi-level fetch block-oriented target predictor. Simulation-
based evaluations indicate the design is more capable than
traditional BTB designs and single-level FTB designs.
Circuit-level analyses show that the design also features a
higher instruction delivery rate, measured in instructions per
nano-second (IPS). For a 0.10um technology, a two-level
FTB design with a 64-entry first level and a 1k-entry second
level provides a 25% improvement in |PS over the best per-
forming single-level designs. When the performance of the
various designs is examined across multiple process gener-
ations, the multi-level FTB designs exhibit the best perfor-
mance and scalability of all the designsinvestigated.

We feel our approach is quite promising since it focuses
on simplicity and raw speed. Unlike techniques that work
to increase the number of instruction delivered per cycle, we
were able to gain marked increasesin performancewhile be-
ing able to sidestep the very difficult problems of multiple
branch and target prediction.

We are currently extending thisresearch in several direc-
tions. First, we are examining other FTB designs that may
provideincreased fetch block sizes. Second, we are eval uat-



ing using the FTQ to provide streaming of datafrom second-
level cache to the first level. If the FTQ is full, because of
I-cache misses or a backed up pipeline, the FTQ entries can
be used to stream in cache blocks from the L2 cache into
a stream buffer, eliminating L1 I-cache misses. Third, we
are extending the multi-level FTB design to provide multiple
branch prediction, which will produce multiple FTQ entries
per cycle. Finally, we are comparing the performance of the
FTB to other promising high-fetch bandwidth architectures
like the trace cache. A complete evauation of some of the
above ideas along with a more detailed description of the
Cacti timing models used in this paper can be found in [22].
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