
Next Cache Line and Set Prediction

Brad Calder and Dirk Grunwald

Department of Computer Science,
Campus Box 430, University of Colorado,

Boulder, CO 80309–0430 USA
fcalder,grunwaldg@cs.colorado.edu

Abstract

Accurate instruction fetch and branch prediction is increasingly
important on today’s wide-issue architectures. Fetch prediction is
the process of determining the next instruction to request from the
memory subsystem. Branch prediction is the process of predicting
the likely out-come of branch instructions. Several researchershave
proposed very effective fetch and branch prediction mechanisms
including branch target buffers (BTB) that store the target addresses
of taken branches. An alternative approach fetches the instruction
following a branch by using an index into the cache instead of a
branch target address. We call such an index anext cache line and
set (NLS) predictor. A NLS predictor is a pointer into the instruction
cache, indicating the target instruction of a branch.

In this paper we examine the use of NLS predictors for effi-
cient and accurate fetch and branch prediction. Previous studies
associated each NLS predictor with a cache line and provided only
one-bit conditional branch predictors. Our study examines the use
of NLS predictors with highly accurate two-level correlated con-
ditional branch architectures. We examine the performance of de-
coupling the NLS predictors from the cache line and storing them
in a separate tag-less memory buffer. Our results show that the
decoupled architecture performs better than associating the NLS
predictors with the cache line, that the NLS architecture benefits
from reduced cache miss rates, and it is particularly effective for
programs containing many branches. We also provide an in-depth
comparison between the NLS and BTB architectures, showing that
the NLS architecture is a competitive alternative to the BTB design.

Keywords: Instruction fetch prediction, Branch prediction,
Branch target buffers

1 Introduction

Modern superscalar processor designs are extremely sensitive to
control flow changes. Changes in control flow, be they conditional
or unconditional branches,direct or indirect function calls,or returns
are not detected until those instructions are decoded. The target ad-
dresses for conditional, unconditional branches, and procedure calls
are typically not calculated until the instruction is decoded. To keep
the pipeline fully utilized, processors typically fetch the address
following the most recent address. If the decoded instruction is a
break in control flow, the previously fetched instruction can not be
used, and a new instruction must be fetched after the target address

This paper appeared in the 22nd Annual International Symposium on Computer
Architecture, Italy, June 1995.

is calculated, introducing a pipeline bubble or unused pipeline step.
This is called an instructionmisfetch penalty, and is causedby wait-
ing to identify the instruction as a branch and to calculate the target
address.

The final destination for conditional branches, indirect function
calls and returns are typically not available until a later stage of the
pipeline. The processor may elect to fetch and decode instructions
on the assumption that the eventual branch target can be accurately
predicted. If the processor mispredicts the branch destination, in-
structions fetched from the incorrect instruction stream must be dis-
carded, leading to several pipeline bubbles. This is called a branch
mispredict penalty. In practice, pipeline stalls due to mispredicted
breaks in control flow degrade a programs performance more than
the misfetch penalty.

As processors issuemore instructions concurrently, these penal-
ties increase, and it is more likely that a branch will occur as more
instructions are fetched per cycle, decreasing the likely-hood that
the fall-through instruction will be executed. A branch target buffer
(BTB) is one mechanism for efficiently predicting the next instruc-
tion fetch when a branch is encountered. In this paper we examine
an alternative to the BTB called next cache line and set (NLS) pre-
diction. A NLS predictor is a pointer into the instruction cache
indicating the target instruction of a taken branch. Johnson [5]
proposed a similar design using cache indices to predict the next in-
struction fetch. We propose an alternate organization that improves
fetch prediction accuracy.

In this paper we examine two varieties of the NLS architec-
ture. The NLS-cache is similar to the branch architecture described
by Johnson, where each NLS predictor is associated with a cache
line. The NLS-table uses NLS predictors stored in a separate di-
rect mapped tag-less memory buffer. We also examine the effects
of combining the NLS predictors with modern two-level correlated
branch prediction architectures. Our results show that the NLS ar-
chitecture’s performance improves as the instruction cachemiss rate
is lowered, and that the NLS architecture is particularly effective
for programs with many branches.

In x2, we describe prior branch prediction work. Inx3 we
describe an efficient BTB architecture and inx4 we describe the
NLS architecture. We use trace-driven simulation to compare the
performance of these two architectures. Section 5 describes the
programs we traced and how we analyzed them. Inx6, we describe
the NLS and BTB results and compare our NLS architecture to the
cache index architecture proposed by Johnson. Inx7, we provide a
detailed performancecomparisonof the NLS and BTB architectures
and we summarize our findings inx8.

1

2 Prior Branch and Fetch Prediction Research

This section briefly surveys prior work on branch prediction tech-
niques used in this paper. Branch target buffers (BTB) have been
used as a mechanism for branch and instruction fetch prediction,
effectively predicting the behavior of a branch [1, 7, 10, 13, 15, 21].
The Intel Pentium is an example of a modern architecture using
BTBs – it has a 256-entry BTB organized as a four-way associative
cache. Only branches that are ‘taken’ are entered into the BTB. If
a branch address appears in the BTB and the branch is predicted as
taken, the stored address is used to fetch future instructions, oth-
erwise the fall-through address is used. For each BTB entry, the
Pentium uses a two-bit saturating counter to predict the direction of
a conditional branch [7]. In this BTB architecture, the branch pre-
diction information (the two-bit counter), is associated orcoupled
with the BTB entry. Thus, the dynamic prediction can only be used
for branches in the BTB, and branches that miss in the BTB must
use less accurate static prediction.

An alternative BTB architecture is thedecoupled design, where
the branch prediction information is not associated with the BTB
and is used for all conditionalbranches, including thosenot recorded
in the BTB. In an earlier study [2], we found that decoupleddesigns
performed better than coupled designs. This allows conditional
branches that do not hit in the BTB to use dynamic prediction. The
PowerPC 604 is an example of an architecture using a decoupled
design [16]. ThePowerPC 604 hasa 64-entry fully associativeBTB
that holds the target address of the most recently taken branches,
and uses a separate 512 entry pattern history table (PHT) to predict
the direction for conditional branches.

There are several different PHT variations. Panet al. [12] and
Yeh and Patt [20, 22] investigatedbranch-correlation or two-level
branch prediction mechanisms. Although there are a number of
variants, these mechanismsgenerally combine the history of several
recent branches to predict the outcome of a branch. The simplest
example is thedegeneratemethod of Panet al.[12]. Whenusing a2k

entry table, the processor maintains ak-bit shift register (the global
history register) that records the outcome of previous branches (a
taken branch is encoded as a 1, and a not-taken branch as a 0).
The shift register is used as an index into the PHT, much as the
program counter is used for a direct-mapped PHT. This provides
contextual information and correlation about particular patterns of
branches. Recently, McFarling [9] showed that combining branch
history with the branch’s address was more effective. His method
used the exclusive-or of the global history register and the branch
address as the index into the PHT.

The NLS and BTB architectures we study in this paper use
a decoupled design with a separate PHT to predict the direction
of conditional branches. For both of the architectures, we use
McFarling’s form of the two-level PHT [9]. In the next two sections
we first describe the BTB architecture and then our alternative NLS
architecture.

3 A BTB-based Instruction Fetch Architecture

Figure 1 is a schematic representation of the decoupled BTB and
PHT branch prediction and instruction fetch architecture we simu-
lated. In Figure 1 the next instruction fetch address is concurrently
offered to: the instruction cache, the BTB, and the PHT. The ad-
dress is also used to compute the fall-through instruction’s address.
A 32-entry return address stack [6] predicts return instructions, and
conditional branches are predicted using the pattern history table
organization described by McFarling [9]. This is the degenerate

Instruction
Fetch

Address

Instruction
Fetch Size

Add

Top Of Stack

Return
Address Stack

Next Instruction
Fetch Address

MUXG
lo

b
al

 X
O

R

T
w

o
-L

ev
el

 P
at

te
rn

 H
is

to
ry

 T
ab

le

Select Next
Fetch

Branch Type
Address Tag
Target Address

Branch Target
Buffer

Figure 1: A schematic representation of a coupled BTB branch
prediction architecture using two-level correlated branch prediction
for conditional branches and a return stack for return instructions.

scheme of Pan et al [12], where we XOR the global history reg-
ister with the program counter and use this to index into a 4096
entry (1KByte) PHT. In this model, we store only taken branches in
the BTB, since previous studies have shown this to be more effec-
tive [2, 13]. If a branch is not taken while it is in the BTB, we leave
the branch (target address) in the BTB until it is removed due to
the LRU replacement policy, since we might need the taken target
address again in the near future. In this architecture, the BTB’s
main purpose is to provide the taken target address and the branch
type.

4 Next Cache Line and Set Prediction Architecture

The NLS architecture is similar to the BTB architecture and is illus-
trated in Figure 2. The difference between these two architectures
is the NLS architecture is a tagless table providing a pointer into
the instruction cache to the next instruction to execute rather than
the target address, as in the BTB. Like the BTB, the main purpose
of the NLS architecture is to eliminate misfetch penalties by pro-
viding a pointer to the cache line and instruction that is the target
of a branch. This allows the next instruction to be correctly fetched
from the instruction cache while the branch instruction is decoded
and the target address is calculated. The NLS predictor also predicts
indirect jumps and provides the branch type.

As shown in Figure 2 there are three predicted addresses avail-
able for the next instruction fetch. These are the NLS predictor,
the fall-through line (previous predicted line + fetch size), and the
top of the return stack. Each NLS predictor contains the following
fields:

Type Field: The following table shows the possible prediction
sources represented by the NLS type field. The type field is
used to determine the proper prediction mechanism, shown
in Figure 2, to use when fetching the next instruction. Un-

2

Instruction
Fetch
Line

Instruction
Fetch Size

Add

Top Of Stack

Return
Address Stack

MUXG
lo

ba
l

 X
O

R

T
w

o-
L

ev
el

 P
at

te
rn

 H
is

to
ry

 T
ab

le

Select Next
Fetch

Branch Type
Set
Line

Next Line & Set
Table

Next Instruction
Fetch Line

Figure 2: A schematic representation of the NLS-table architecture.

used NLS entries have “00” stored in the type field indicating
the entry is invalid.1

Branch Type Prediction Source
0 0 Invalid Entry
0 1 Return Instruction Return Stack
1 0 Conditional Branch NLS Entry,

Conditional on PHT
1 1 Other Types of Branches Always use NLS Entry

Line Field: This field contains the line number to be fetched from
the instruction cache. The high-order bits indicate the line
in the instruction cache and the low-order bits are used to
indicate the actual instruction in that line.

Set Field: In a multi-associative instruction cache, the destination
line may be in any set. The set field is used to indicate where
the predicted line is located if a multi-associative cache is
used. It is not needed for a direct mapped cache.

The NLS architecture assumes that during the instruction fetch
stage of the pipeline, each instruction can easily be identified as a
branch or non-branch instruction. The BTB does not have to make
this assumption since an instruction is known to be a branch if it hits
in the BTB. If the instruction set encoding does not contain such a
distinguishing bit in the instruction, that information can be stored
in the instruction cache or an instruction type prediction table, as
described in [2]. Encoding this information in the instruction im-
proves the fetch accuracyfor the NLS architecture, since non-branch
instructions fetch the fall-through address while branch instructions
use NLS predictors.

If the instruction being fetched from the instruction cache indi-
cates that it is a branch instruction, the NLS predictor is used and
the type field is examined to choose among the possible next fetch
addresses. Return instructions use the return stack. Unconditional
branches and indirect branches use the cache line specified by the
NLS entry. If the type field indicates a conditional branch, the archi-
tecture uses the prediction given by the PHT, as is done in the BTB

1The type field is not needed for the NLS or BTB architectures if the type information
can be easily extracted from the fetched instruction before the fetch cycle completes,
or from the instruction cache if the information has been pre-decoded.

architecture. If the branch is predicted as taken, the NLS line and
set fields are used to fetch the appropriate cache line and instruction
from the instruction cache. If the conditional branch is predicted as
not-taken, the precomputed fall-through line address is used on the
next instruction fetch.

The NLS entries are updated after instructions are decoded and
the branch type and destinations are resolved. The instruction type
determines the type field and the branch destination determines the
set and line field. Only taken branches update the set and line field,
but all branches update the type field. A conditional branch which
executes the fall-through should not update the set and line field,
since that would erase the pointer to the target instruction. For
conditional branches, this allows the branch prediction hardware to
use either the NLS predictor for taken conditional branches or to
use the precomputed fall-through line, depending on the outcome
of the PHT.

4.1 NLS-Table versus NLS-Cache

There are several possible variations on the basic NLS architecture
design, and they share many common structures. Figure 2 shows
one possible design. The intuition behind this architecture is that a
branch target address is actually a pointer into the instruction cache.
This pointer can be represented by an index pointing to the target
instruction of a taken branch.

We considered two possible designs: “NLS-caches” and “NLS-
tables” . In the NLS-cache, we associate the NLS predictors with
each cache line. Thus, the NLS entries share the instruction address
tag with the cache line. There may be multiple NLS predictors
per cache line and we studied various replacement policies and
methods of associating the NLS predictors with specific instructions
in a cache line. The second design, the NLS-table, is a simpler and
more effective design that uses a tag-less direct-mapped table of NLS
predictors. The table is indexed by the branch instruction’s address.
Both architectures use the NLS entries to predict the next line to fetch
for a branch instruction, both architectures use the same conditional
branch prediction and return-prediction mechanisms used in the
BTB, and both designs replace the BTB with the NLS information.

The NLS-table has three advantages over the NLS-cache design
and one disadvantage. These points arise because the NLS predic-
tors are coupled with the cache lines in the NLS-cache design and
they are decoupled from the cache in the NLS-table design. For the
NLS-cache architecture, we found that associating two NLS pre-
dictors with an eight instruction cache line to be the most effective
organization. This design restricts the use of the NLS predictors in
the NLS-cache, since some cache lines may not have any branches
while other cache lines may contain several branches. In contrast,
the NLS-table uses the lower order bits of the branch instructions ad-
dress to index into a tagless table. This allows a cache line to use as
many NLS predictors as needed. The second advantagecomes when
an instruction cache line is replaced. The NLS-cache prediction in-
formation associated with a replaced cache line is discarded while
the prediction information for the NLS-table is preserved across
cache misses. The final advantage appears when examining differ-
ent instruction cache sizes. As the instruction cache size doubles,
the number of NLS-cache predictors must also double to achieve the
same branch prediction performance. Therefore the NLS-cache size
increases linearly with an increase in instruction cache size while
the NLS-table size increases only logarithmically. This can greatly
increase the cost of the NLS-cache design for large caches. There
is a disadvantage for the NLS-table in making it a tagless table, be-
cause prediction information from one branch may be erroneously
used for another branch. Our results show that this effect is small

3

Insn’s Conditional Branches Percentage of Breaks During Tracing
Program Traced % Breaks Q-50 Q-90 Q-99 Q-100 Static %Taken %CBr %IJ %Br %Call %Ret

doduc 1,149,864,756 8.53 3 175 296 1,447 7,073 48.68 81.31 0.01 4.97 6.86 6.86
espresso 513,008,174 17.12 44 163 470 1,737 4,568 61.90 93.25 0.20 1.88 2.29 2.39
gcc 143,737,915 15.97 245 1,612 3,742 7,640 16,294 59.42 78.85 2.86 5.75 6.04 6.49
li 1,355,059,387 17.67 16 52 127 556 2,428 47.30 63.94 2.24 7.74 12.92 13.16
cfront 16,529,540 13.66 69 833 2,894 5,644 17,565 53.18 73.45 2.17 6.40 8.72 9.26
groff 56,840,596 16.38 107 408 976 2,889 7,434 54.17 66.12 4.80 7.80 8.77 12.51

Table 1: Measured attributes of the traced programs.

for the NLS-table design when compared to the benefits of the three
advantages mentioned above.

4.2 Using Next Line Addresses with the Instruction
Cache

Unlike the BTB architecture, the NLS architecture does not have a
full next target address to offer to the instruction cache. It only has
the lower order bits of the full target address (the cache line index).
This is not a problem for a direct mapped cache, since the tag check
against the target address can be performed in the decode stage of
the pipeline. When an associative cache is used, the cache needs to
be slightly modified in order to properly use the next line address.
The following two different approaches may be taken.

The traditional implementation of an associative cache selects
the appropriate line from a set by performing a full tag comparison
on the tags from the different sets. For all branch instructions, the
set field in the NLS predictor is used to predict the the instruction
cache set instead of performing the tag comparison. When the pre-
computed fall through line address is used, a full tag comparison is
performed. The full fall-through address can be calculated by the
time the cache needs to perform the tag comparison using the pre-
computed fall-through line address, the carry bit from the addition
of the fall-through line address calculated in the previous cycle, and
the previous instruction’s tag.

The second approach to using next line addresses with an as-
sociative cache is more elegant and can lead to improved cache
performance. In this approach we assume that each cache line has a
set field associated with it. This set field has the same use as the NLS
set field, and it predicts the set where the fall-through line is located
for each cache line. For each instruction cache lookup, either the
NLS predictor’s set field, for a branch instruction, or the previous
cache line’s set field, for a non-branch instruction, is used to predict
the set for the current cache access. Since the set field is used on
every cache access, only one cache set is driven at a time during
the lookup and the tag comparison can be performed in the decode
stage as if the cache where direct mapped. If the set prediction
was incorrect and the tag does not match the destination address
computed in the decode stage, the other sets in the cache need to be
checked in order to find the correct entry or to find if there is a cache
miss. This design is suitable for a two-way associative cache. If
the first set prediction is incorrect, the remaining set is checked for
the instruction. For higher degrees of associativity, other techniques
may be applied when the set prediction is incorrect, but these are
beyond the scope of this paper.

5 Experimental Methodology

We used trace driven simulation to quantify the performance for
many BTB and NLS architecture configurations. We instrumented
the programs from the SPEC92 benchmarksuite and object-oriented
programs written in C++. We simulated several programs but only
show information for six programs because we felt this would be
more useful than presenting less detailed results for more programs.
We picked three of the programs (gcc, cfront and groff) be-
cause they have high instruction cache miss rates, execute a lot of
branches, and the branches are hard to predict.

We used ATOM [17] to instrument the programs. Due to the
structure of ATOM, we did not need to record traces and could trace
very long-running programs. The programs were compiled on a
DEC 3000-400 using either the DEC FORTRAN, C, or C++ com-
piler. All programs were compiled with standard optimization (-O).
For the SPEC92 programs, we used the largest input distributed with
the SPEC92 suite. The alternate programs include: cfront, ver-
sion 3.0.1 of the AT&T C++ language preprocessor written in C++
and groff and a version of the ditroff text formatter written in
C++. For these alternate programs, we used inputs we hoped would
exercise a large part of the program.

Table 1 describes the branching activity of the programs we in-
strumented. The first columns list the number of instructions traced
and the second column indicates the percentage of simulated in-
structions that could cause a break in control flow. The columns
labeled ‘Q-50’ ,‘Q-90’ ,‘Q-99’ and ‘Q-100’ show the number of con-
ditional branch instructions that contribute to 50, 90, 99 and 100% of
all the executed conditional branches in the traced program. Thus,
in doduc, three branch instructions constitute 50% of all executed
conditional branches. The column labeled “static” represents the
number of conditional branch sites in the program. The eighth col-
umn shows the percentage of executed conditional branches that are
‘ taken’ . The last five columns describe the frequency of different
type of branches encountered during tracing: conditional branches
(CBr), indirect jumps (IJ), unconditional branches (Br), procedure
calls (Call) and procedure returns (Ret).

5.1 Architectures Simulated

For each program, we simulated 8KB, 16KB, and 32KB instruction
caches with 32 byte cache lines and 4 byte instructions. For each
cache size, we simulated direct mapped, 2-way and 4-way asso-
ciative LRU replacement caches. When simulating the NLS-cache
architecture we used one to four NLS predictors per cache line with
varying replacement policies. We found that two NLS predictors
per cache line gave performance comparable to the NLS-table and
BTB architectures. In this configuration, the first NLS predictor is
associated with the first four instructions in the cache line and the

4

0

5,000

10,000

15,000

20,000

25,000

30,000

Co
st

 in
 R

BE

8K 16K 32K 64K 1 2 4

1024 NLS Table 128 BTB 256 BTB

Register Bit Equivalent Costs for NLS and BTB Architectures

8K 16K 32K 64K 8K 16K 32K 64K 8K 16K 32K 64K

512 NLS TableNLS Cache 2048NLS Table

1 2 4

Figure 3: Register bit equivalent costs for the NLS-cache and a 512, 1024 and 2048-entry NLS-table for cache sizes of 8K, 16K, 32K and
64K, and for a 128-entry and 256-entry BTB with associativities of one, two and four.

second NLS predictor is associated with the last four instructions in
the cache line. We only show results for this configuration of the
NLS-cache architecture because of space limitations.

When simulating the NLS-table architecture, we simulated
NLS-table sizes with 512, 1024 and 2048 NLS predictors. For the
BTB architecture, we simulated 128-entry and 256-entry BTB or-
ganizations with direct mapped, 2-way and 4-way associativity with
LRU replacement. Both the BTB and NLS architectures used a 32-
entry return stack [6] to predict procedure returns and a two-level
correlated 4096-entry pattern history table for conditional branches.
The accuracy of the pattern history table is the same for both the
BTB and NLS architectures. This allows us to isolate the fetch
performance differences between the BTB and NLS architectures.

5.2 Performance Metrics

We compare the branch architectures using a number of performance
metrics. We record the instruction cache miss rate since the NLS and
BTB architectures may fetch different instructions,even for the same
cache organization. We also record the percentage of misfetched
branches (%MfB), and the percentage of mispredicted branches
(%MpB). Note that a mispredicted branch is never counted as a
misfetched branch and visa versa. It is often difficult to understand
how each of these metrics influence processor performance. Yeh &
Patt [21] defined the branch execution penalty to be:

BEP =
%MfB� misfetch penalty+ %MpB� misprediction penalty

100
:

The BEP reflects the average penalty suffered by a branch due to
misfetch and mispredict penalties. With a BEP of 0:5, the average
branch incurs a half-cycle execution penalty. The BEP provides
a more intuitive understanding of how the two penalties interact,
but requires us to use specific misfetch and mispredict penalties.
For our results, we assume a one cycle misfetch penalty and a
four cycle mispredict penalty, since these costs are reasonable for
current superscalar architectures. In all of our BEP graphs we break
the results into two parts. The top part shows the fraction of the

BEP caused by the misfetch penalties and the lower part shows the
fraction due to the mispredict penalties.

We also provide the cycles per instruction in order to illustrate
overall program performance. We define CPI to be:

CPI =

(# Instructions executed+ BEP � # branches+
I-cache misses� miss penalty)

Instructions executed
:

We assumed a five cycle instruction cache miss penalty. With a CPI
of 1:25, the average instruction takes 1:25 cycles to execute. Since
we are simulating a single-issue architecture, the CPI can not be
less than 1. The CPI does not include data cache misses or other
resource conflicts.

6 Results

In order to compare the NLS architecture to the BTB we must
first determine the resource costs for each architecture. In order
to evaluate the area implementation costs of the NLS and BTB
architectures, we used the register bit equivalent (RBE) model for
on-chip memories proposed by Mulder et al [11], where one RBE
equals the area of a bit storage cell.

Figure 3 shows the RBE costs for implementing the NLS and
BTB architectures using Mulder et al’s on-chip memory area model.
The figure shows the RBE costs for the NLS-cache (with two NLS
predictors per cache line) and a 512,1024, and 2048 entry NLS-table
for cache sizes of 8K, 16K, 32K and 64K. It also shows the RBE
cost for a 128 entry and 256 entry BTB with associativities of one,
two and four. The RBE cost of the NLS architecture depends on the
size of the instruction cache. The NLS-table’s RBE cost increases
logarithmically as the instruction cache size increases, since the
line field for each NLS predictor has to also increase. When the
number of lines in the instruction cache are doubled, another bit
must be added to each NLS predictor’s line field. In the NLS-cache
architecture, the number of NLS entries per cache line is constant,
and as the cache size increases, the space devoted to NLS entries
increases linearly. The RBE cost of the BTB architecture depends

5

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

0

0.1

0.2

0.3

0.4

0.5

B
ra

nc
h

E
xe

cu
tio

n
P

en
al

ty

AAAA
AAAA
AAAA
AAAA

A
A
A
A

NLS Cache
512 NLS Table
1024 NLS Table
2048 NLS Table

8K Direct 8K 4-way 16K Direct 16K 4-way 32K Direct 32K 4-way

Overall Average for NLS Cache and NLS Table

Instruction Cache Size and Associativity

Figure 4: Branch execution penalty for the NLS-cache architecture
and the 512, 1024 and 2048 entry NLS-table architectures for direct
mapped and 4-way associative caches of size 8K, 16K and 32K. The
BEP value is broken into two parts with the upper part representing
the fraction of the BEP due to the misfetch penalty, and the lower
part the mispredict penalty.

on the associativity of the BTB and the size of the address space
not on the size of the instruction cache. In performing the BTB
calculations, we assumed a 32-bit address space is used. If the
address space is increased, the cost of the BTB would also increase.

6.1 Performance of the NLS Architecture

Figure 4 shows the branch execution penalty results averaged over
the programs in Table 1. The figure shows results for the NLS-
cache, and for 512, 1024 and 2048 entry NLS-tables for varying
instruction cache sizes and associativities. Each branch execution
penalty (BEP) value is broken into two parts with the upper part
representing the fraction of the BEP due to the misfetch penalty,
and the lower part the mispredict penalty.

Figure 4 shows that the NLS-table consistently outperforms the
NLS-cache when architectures with equivalent costs are examined:
the NLS-cache and the 512 NLS-table have equivalent costs when
using an 8K instruction cache, the NLS-cache and the 1024 NLS-
table have equivalent costs when using a 16K instruction cache, and
the NLS-cache and the 2048 NLS-table have equivalent costs when
using a 32K instruction cache. In terms of the RBE cost, the NLS-
cache is practical for only small caches (8K and 16K), but even then,
the NLS-table architecture has better performance when comparing
architectures with equivalent costs. The difference in performance
arises from the NLS-cache discarding useful prediction information
for each instruction cache miss and because the predictors in the
NLS-cache can only be used for the cache line they are associated
with. In contrast, the NLS-table preserves prediction information
across cache misses and a NLS-table predictor’s use is not restricted
to a given cache line. Figure 4 also shows that the difference in
performance between the 512 and 1024 NLS-tables is small, and
the difference between the 1024 and 2048 NLS-tables is smaller
still. In the remainder of the paper we focus on the NLS-table
design and only give results for the 1024 entry NLS-table.

6.2 Related Work

There are several branch prediction strategies related to the NLS
design. Our NLS-table architecture was derived from the BTB: each
uses a table holding pointers to branch destinations. The primary
difference, besides eliminating the tag, is that the BTB encodes the
full address, while the NLS encodes only the instruction cache line
and set, allowing for larger NLS-tables.

Bray and Flynn [1] described a design similar to the NLS-cache
that associated branch target addresses with each cache line. As in
our study, they found approximately one entry per four instructions
provided the most cost effective design.

Johnson[5], suggested the idea of using cache successor indices
as in the NLS-cache architecture for instruction fetch and branch
prediction. His architecture associated the cache indices with each
cache line as the NLS-cache architecture does. The architecture he
studied is slightly different than our NLS-cache design since he only
considered using the index for one bit conditional branch prediction.
With one bit prediction, the cache index stores either a pointer to
the fall-through line or the target line for the next instruction fetch.
In order to predict the fall-through line, the cache index is updated
even when a non-taken branch is executed. By comparison, we only
update the NLS predictor when taken branches are encountered to
obtain improved branch prediction accuracy when using a decoupled
PHT.

Variations on the NLS-cache design can be found in recent
microprocessor architectures. The TFP microprocessor (MIPS
R8000) [3] has a 1024 entry NLS-cache architecture similar to
the design proposed by Johnson. It has one NLS predictor for every
four instructions, and a one-bit branch predictor coupled with each
NLS predictor. The UltraSPARC microprocessor also uses a similar
1024 entry NLS-cache design, associating an NLS predictor with
every four instructions. Instead of using one-bit prediction as in
the TFP, the UltraSPARC uses a 2-bit dynamic conditional branch
predictor for every two instructions in the instruction cache.

The NLS-table design uses an independent table of next line and
set predictors. This basic design was recently patented by Steely
and Sager [18]. However, they have not published any perfor-
mance comparisons, and the patented design only addresses direct
mapped caches, while our design addresses both direct mapped and
associative caches. Furthermore, the patented architecture uses a
single "computed goto" register to store the destination of indirect
jumps. By comparison, we use the NLS predictor to provide the
predicted cache index for all branch destinations other than fall-
through branches and return instructions. Although we developed
our NLS architecture independently, there are several similarities as
well as other differences; see [18] for more details.

6.3 Performance of the BTB Architecture

Figure 5 shows the average branch execution penalty (BEP) for the
programs simulated in this paper. The 1024 entry NLS-table has
better performance than the similar costing 128 entry BTB, even
when the BTB has a high degree of associativity. The 1024 entry
NLS-table and 256 entry BTB exhibit comparable performance even
though the 1024 entry NLS-table has roughly half the RBE cost of
the 256 entry BTB.

When comparing the NLS-table to the BTB, one must keep
in mind that a direct mapped BTB has a shorter access time than
an associative BTB. Figure 6 shows the estimated access time, in
nanoseconds, for a 128 entry BTB and 256 entry BTB with direct
mapped, two, and four way associativity. These estimates were
derived using the CACTI timing model of Wilton and Jouppi [19].

6

0

0.1

0.2

0.3

0.4

0.5

12
8

D
ire

ct
 B

T
B

12
8

4-
w

ay
 B

T
B

25
6

D
ire

ct
 B

T
B

25
6

4-
w

ay
 B

T
B

10
24

 N
LS

 T
ab

le
,

8K
 D

ire
ct

10
24

 N
LS

 T
ab

le
,

8K
 4

-w
ay

10
24

 N
LS

 T
ab

le
,

16
K

 D
ire

ct

10
24

 N
LS

 T
ab

le
,

16
K

 4
-w

ay

10
24

 N
LS

 T
ab

le
,

32
K

 D
ire

ct

10
24

 N
LS

 T
ab

le
,

32
K

 4
-w

ay

B
ra

nc
h

E
xe

cu
tio

n
P

en
al

ty

Misfetch
Mispredict

Overall Average for BTB and 1024 NLS Table

Figure 5: Branch execution penalty for the 1024 entry NLS-table
architecture for direct mapped and 4-way associativity instruction
caches of size 8K, 16K and 32K, and for a 128 entry and 256 entry
BTB.

0

1

2

3

4

5

6

7

8

128 Entry BTB 256 Entry BTB

B
T

B
 A

cc
es

s
T

im
e

in
 N

an
os

ec
on

ds Direct
2-way
4-way

Access Time for BTB Architecture

Figure 6: Access time for the BTB architecture with varying asso-
ciativities. The relative values between the BTB access times are
more important than the absolute values for a particular processor
technology.

Their model derives access times for direct mapped and associative
caches such as BTBs, but not for tag-less direct mapped memory
buffers. Therefore we do not show the access times for the NLS-
table, but we believe it would be similar to that of a direct mapped
BTB. This figure shows the access time differences between direct
mapped and associative cache structures. The differences arise
from the extra time needed to perform the tag comparison. In a
direct mapped cache, the tag comparison can be done in parallel
while the data output is being driven to the next stage. The figure
shows that the 4-way associative BTB access time is 30 to 40%
longer than direct mapped BTBs of the same size. This should be
considered when comparing the performance of the direct mapped
BTB and NLS architecture to the associative BTB architectures
since the cycle limitation of the instruction fetch may effect the
entire machine. In [3], the designers of the TFP (MIPS R8000)
microprocessor stated:

We evaluated several well-known branch prediction
algorithms for layout size, speed, and prediction ac-
curacy. The most critical factor affecting area was
the infrastructure requiredto support a custom block:
power ring and power straps to the ring, and global
routing between the branch prediction cache and its
control logic. Speed was a problem with tag com-
parisons for those schemes that are associative. Ac-
cordingly we chose a simple direct-mapped, one-bit
prediction scheme which can be implemented entirely
with a single-ported RAM.

7 Comparison of NLS Table and BTB Architec-
tures

Figure 7 compares the performance of the NLS and BTB architec-
tures using the branch execution penalty (BEP) for the programs
in Table 1. Each graph compares the direct mapped and 4-way set
associative 128 and 256 entry BTBs to the 1024 entry NLS table. It
was shown in x6 the 1024 entry NLS-table and the 128 entry BTB
have similar implementation costs using the RBE model, that the
256 entry BTB implementation cost is twice that of the 1024 entry
NLS-table, and that the access time of the associative BTB’s is 30
to 40% longer than similar sized direct mapped structures.

The differences in the BEP between the BTB and NLS archi-
tectures is attributable to differences in the number of misfetched
branches. Remember that the BTB and NLS architectures are not
used to predict the direction for conditional branches. Conditional
branch prediction information is stored in a separate pattern history
table (PHT) and the conditional branches are predicted using the
PHT. The NLS and BTB architectures are used to eliminate the mis-
fetch penalty associated with the extra cycle taken to determine the
branch type and to compute the target address for the next instruc-
tion fetch. Once the branch type and target line are predicted, the
next fetch line can be chosen from the return stack, precomputed
fall-through line, or the predicted target line. Both the NLS and
BTB architectures are used to predict the destination for indirect
jumps. Table 1 shows that indirect jumps constitute 0-5% of the
breaks in the programs we instrumented. In Figure 7, any differ-
ence in the mispredict penalty for a given program is attributed to
the variation in the mispredict penalty for indirect jumps across the
different architectures. The figure shows that the difference in mis-
predict penalty across the different architectures is only noticeable
for groff, and even then the difference is insignificant.

Figure 7 shows that the BEP for the NLS architecture decreases
as the cache size increases or the cache associativity increases.

7

0

0.2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
12

8
D

ire
ct

 B
TB

12
8

4-
w

ay
 B

TB

25
6

D
ire

ct
 B

TB

25
6

4-
w

ay
 B

TB

10
24

 N
LS

 T
ab

le
,

8K
 D

ire
ct

10
24

 N
LS

 T
ab

le
,

8K
 4

-w
ay

10
24

 N
LS

 T
ab

le
,

16
K

 D
ire

ct

10
24

 N
LS

 T
ab

le
,

16
K

 4
-w

ay

10
24

 N
LS

 T
ab

le
,

32
K

 D
ire

ct

10
24

 N
LS

 T
ab

le
,

32
K

 4
-w

ay

B
ra

nc
h

E
xe

cu
tio

n
P

en
al

ty

Misfetch
Mispredict

Doduc

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

12
8

D
ire

ct
 B

TB

12
8

4-
w

ay
 B

TB

25
6

D
ire

ct
 B

TB

25
6

4-
w

ay
 B

TB

10
24

 N
LS

 T
ab

le
,

8K
 D

ire
ct

10
24

 N
LS

 T
ab

le
,

8K
 4

-w
ay

10
24

 N
LS

 T
ab

le
,

16
K

 D
ire

ct

10
24

 N
LS

 T
ab

le
,

16
K

 4
-w

ay

10
24

 N
LS

 T
ab

le
,

32
K

 D
ire

ct

10
24

 N
LS

 T
ab

le
,

32
K

 4
-w

ay

B
ra

nc
h

E
xe

cu
tio

n
P

en
al

ty

Misfetch
Mispredict

Cfront

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

12
8

D
ire

ct
 B

TB

12
8

4-
w

ay
 B

TB

25
6

D
ire

ct
 B

TB

25
6

4-
w

ay
 B

TB

10
24

 N
LS

 T
ab

le
,

8K
 D

ire
ct

10
24

 N
LS

 T
ab

le
,

8K
 4

-w
ay

10
24

 N
LS

 T
ab

le
,

16
K

 D
ire

ct

10
24

 N
LS

 T
ab

le
,

16
K

 4
-w

ay

10
24

 N
LS

 T
ab

le
,

32
K

 D
ire

ct

10
24

 N
LS

 T
ab

le
,

32
K

 4
-w

ay

B
ra

nc
h

E
xe

cu
tio

n
P

en
al

ty

Misfetch
Mispredict

Espresso

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

12
8

D
ire

ct
 B

TB

12
8

4-
w

ay
 B

TB

25
6

D
ire

ct
 B

TB

25
6

4-
w

ay
 B

TB

10
24

 N
LS

 T
ab

le
,

8K
 D

ire
ct

10
24

 N
LS

 T
ab

le
,

8K
 4

-w
ay

10
24

 N
LS

 T
ab

le
,

16
K

 D
ire

ct

10
24

 N
LS

 T
ab

le
,

16
K

 4
-w

ay

10
24

 N
LS

 T
ab

le
,

32
K

 D
ire

ct

10
24

 N
LS

 T
ab

le
,

32
K

 4
-w

ay

B
ra

nc
h

E
xe

cu
tio

n
P

en
al

ty

Misfetch
Mispredict

Gcc

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

12
8

D
ire

ct
 B

TB

12
8

4-
w

ay
 B

TB

25
6

D
ire

ct
 B

TB

25
6

4-
w

ay
 B

TB

10
24

 N
LS

 T
ab

le
,

8K
 D

ire
ct

10
24

 N
LS

 T
ab

le
,

8K
 4

-w
ay

10
24

 N
LS

 T
ab

le
,

16
K

 D
ire

ct

10
24

 N
LS

 T
ab

le
,

16
K

 4
-w

ay

10
24

 N
LS

 T
ab

le
,

32
K

 D
ire

ct

10
24

 N
LS

 T
ab

le
,

32
K

 4
-w

ay

B
ra

nc
h

E
xe

cu
tio

n
P

en
al

ty

Misfetch
Mispredict

Li

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

12
8

D
ire

ct
 B

TB

12
8

4-
w

ay
 B

TB

25
6

D
ire

ct
 B

TB

25
6

4-
w

ay
 B

TB

10
24

 N
LS

 T
ab

le
,

8K
 D

ire
ct

10
24

 N
LS

 T
ab

le
,

8K
 4

-w
ay

10
24

 N
LS

 T
ab

le
,

16
K

 D
ire

ct

10
24

 N
LS

 T
ab

le
,

16
K

 4
-w

ay

10
24

 N
LS

 T
ab

le
,

32
K

 D
ire

ct

10
24

 N
LS

 T
ab

le
,

32
K

 4
-w

ay

B
ra

nc
h

E
xe

cu
tio

n
P

en
al

ty

Misfetch
Mispredict

Groff

Figure 7: Performance comparison between the NLS and BTB architectures using branch execution penalty. Each value is broken into two
parts. The top represents the fraction of the BEP due to the misfetch penalty and the lower part the fraction due to the mispredict penalty. The
NLS results are given for an 8K, 16K and 32K instruction cache with direct mapped and four-way associativity. The BTB results are only
shown once, since their results do not change for the different instruction cache configurations. The 1024 entry NLS table and the 128 entry
BTB have equivalent implementation costs, and the cost for the 256 entry BTB is approximately twice that of the 1024 NLS-table.

8

Why? Recall that each NLS predictor indicates the cache line
that should be fetched. The information associated with an NLS
predictor is only useful if the actual destination of a branch is in
the predicted location in the instruction cache. In smaller caches,
the NLS predictors will often point to the proper cache line and
set, but the desired instruction may not be present or may have
been reloaded into a different set. With a NLS predictor, a branch
destination that has been displaced from the instruction cache causes
a misfetch penalty. When the current instruction is fully decoded,
the misfetch is detected and the actual instruction is fetched. In
this case, the misfetch penalty is associated with a cache miss. In
contrast, the BTB always uses the full target address. This allows
the BTB architecture to possibly locate the proper instruction in
set associative caches, or to initiate an instruction cache miss a
cycle earlier than the NLS architecture. If an associative cache
is used, the NLS architecture would have to look in the other set
on a misfetched branch, or do a full set lookup. When the cache
miss rate is lowered, there is an increased probability that a cache
line will still be resident when a NLS predictor is used. The BTB
architecture will not benefit from the lower cache miss rate, and
the there is no change in the BEP for varying cache configurations.
Whole-program restructuring [8, 4, 14] is one technique that can
be used to reduce the instruction cache miss rate at no additional
architectural cost.

Why does the NLS architecture have significantly better BEP
performance than the BTB for some programs, such as gcc,
cfront and groff, but only slightly better or comparable perfor-
mance for other programs, such as doduc and espresso? The
program characteristics in Table 1 shows the programs that bene-
fit most from the NLS architecture have more static branch sites
then the programs that show little benefit. For example, in doduc,
three individual branches constitute 50% of the branches encoun-
tered during program execution. One need only store those three
branches to achieve 50% fetch accuracy. By comparison, gcc,
cfront and groff have many more branches encountered dur-
ing execution. The larger number of branches leads to capacity
misses and conflicts in any prediction mechanism using a fixed-size
resource. Because each NLS predictor in the NLS architecture is
smaller than the comparable BTB entry, the NLS architecture has
many more prediction entries using the same resources. Overall,
the larger number of less-precise NLS predictors benefits program
performance more than the fewer, more precise, BTB entries.

Figure 8 shows the average CPI for a single issue architec-
ture with the different BTB and NLS configurations using 8KB,
16KB and 32KB direct-mapped and 4-way associative instruction
caches. The Figure shows that the difference in performance is small
among the configurations examined, with the 1024 entry NLS-table
performing slightly better than the similar costing 128 entry BTBs.
In examining the performance of individual programs, our results
show that there is very little difference in performance between the
NLS and BTB architecture for programs, such as espresso, that
have a low cache miss rate. If the instruction cache miss rate is low,
the probability of the instruction line indicated by the NLS predictor
being in the instruction cache is very high. For programs that do
not execute many branches, such as doduc (with 8.5% branches),
there is also very little difference in the performance of the NLS
and BTB architecture. If a program doesn’ t execute many branches,
then neither the NLS nor the BTB architecture will suffer from ca-
pacity misses. For programs such as gcc, cfront and groff
with many branches, the NLS architecture performs better than the
BTB for most of the cache configurationsexamined, due to the large
number of capacity misses in the BTB.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

1.00

1.05

1.10

1.15

1.20

1.25

1.30

C
yc

le
s

P
e
r

In
st

ru
ct

io
n

128 Direct BTB
128 4-way BTB
256 Direct BTB

AAA
AAA
AAA
AAA 256 4-way BTB

1024 NLS Table

 8K Direct 8K 4-way 16K Direct 16K 4-way 32K Direct 32K 4-way

Overall Average for BTB and 1024 NLS Table

Instruction Cache Size and Associativity

Figure 8: Performance comparison between the NLS and BTB
architecture in cycles per instruction. The 1024 entry NLS-table
and the 128 entry BTB have equivalent RBE costs, and the cost for
the 256 entry BTB is approximately twice that of the 1024 NLS
table.

A larger program address space posesseveral problems for BTB
architectures, but is inconsequential for the NLS architecture. As
the program address space increases, the tag size used to identify
branches in the BTB must either increase, or the information stored
in the BTB will become less precise. Likewise, the size of the
destination address field must also increase, or the BTB architecture
would store inaccurate target addresses. In our RBE calculations we
assumed a 32-bit address space, so the target address stored in the
BTB is 30 bits. If the address space was increased, the area needed
by the BTB would also increase. By comparison, the NLS-table
design does not use a tag nor does it store the full target address,
so an increased address space has no effect on the size of the NLS-
table. The size of an NLS predictor depends only on the number
of lines in the cache and the number of instructions in the line.
As the instruction cache size is increased the size of the NLS-table
increases logarithmically. In contrast, an increase in cache size has
no effect on the size of the BTB.

8 Conclusions

In this paper we have presented two alternative NLS architectures,
the NLS-cache and NLS-table. Our results show that decoupling
the NLS predictors from the instruction cache (NLS-table) performs
better than Johnson’s[5] approachof associating the NLS predictors
with the cache line (NLS-cache). We found the NLS-cache is not
a scalable design, because the number of NLS predictors increases
linearly with the cache size. Our results also show that there is
little benefit from increasing the NLS-table size from 1024 entries
to 2048 entries.

The NLS-table is a tag-less, direct mapped buffer with better
instruction fetch prediction than direct-mapped BTBs with similar
costs. When comparing the performance of the NLS architecture
to associative BTBs, one should keep in mind that the access time
for an associative BTB is 30 to 40% longer than similar sized direct
mapped structures. Our results show that the 1024 entry NLS-table
performs better than the 128 entry BTB, with similar RBE costs. For

9

a 256 entry BTB, the 1024 NLS-table had comparable performance
for approximately half the RBE cost. The NLS-table can offer better
performance than the BTB becausethe cost of an NLS entry is much
less than a BTB entry, allowing the NLS-table to contain many more
entries than BTB architectures with similar implementation costs.
This allows the NLS-table to perform better than the BTB design
especially for programs with many branches. For programs with
fewer branches, the architectures have comparable performance.

The performance of the NLS architecture improves as the in-
struction cache miss rate is lowered, and its performance can be
improved by using whole-program analysis, basic block reordering,
and intelligent procedure layout. In contrast, improving the instruc-
tion cache miss rate has no effect on the branch performance of the
BTB architecture. In this paper, we focused on the improvements
offered by single-issue architectures and are currently investigating
a number of design extensions for multi-issue architectures. Noth-
ing in the design of the NLS architecture appears to be a problem
for wide-issue architectures.

Acknowledgements

We’d like to thank Joel Emer, Alan Eustace, Keith Farkas, Dennis
Lee and the anonymous reviewers for providing helpful comments.
We’d also like to thank Amitabh Srivastava and Alan Eustace for de-
veloping ATOM, and Digital Equipment Corporation for an equip-
ment grant. This work was partially supported by an ARPA Fellow-
ship in High Performance Computing administered by the Institute
for Advanced Computer Studies at University of Maryland, a DEC-
WRL summer internship, in part by NSF grant No. ASC-9217394,
and in part by ARPA contract ARMY DABT63-94-C-0029.

References

[1] Brian Bray and M.J. Flynn. Strategies for branch target buffers.
In 24th Annual International Symposium and Workshop on
Microprogramming, pages 42–49. ACM, 1991.

[2] Brad Calder and Dirk Grunwald. Fast & accurate instruction
fetch and branch prediction. In 21st Annual International Sym-
posium of Computer Architecture, pages 2–11. ACM, April
1994.

[3] Peter Yan-Tek Hsu. Designing the TFP microprocessor. IEEE
Micro, 14(2):23–33, April 1994.

[4] Wen-mei W. Hwu and Pohua P. Chang. Achieving high in-
struction cache performance with an optimizing compiler. In
16th Annual International Symposium on Computer Architec-
ture, pages 242–251. ACM, 1989.

[5] Mike Johnson. Superscalar Microprocessor Design. Inno-
vative Technology. Prentice-Hall. Inc., Englewood Cliffs, NJ,
1991.

[6] David R. Kaeli and Philip G. Emma. Branch history table
prediction of moving target branches due to subroutine re-
turns. In 18th Annual International Symposium of Computer
Architecture, pages 34–42. ACM, May 1991.

[7] Johnny K. F. Lee and Alan Jay Smith. Branch prediction
strategies and branch target buffer design. IEEE Computer,
pages 6–22, January 1984.

[8] Scott McFarling. Program optimization for instruction caches.
In Proceedingsof the 3rd Symposium on Architectural Support
for Programming Languages and Operating Systems, pages
183–191. ACM, 1988.

[9] Scott McFarling. Combining branch predictors. TN 36, DEC-
WRL, June 1993.

[10] Scott McFarling and John Hennessy. Reducing the cost of
branches. In 13th Annual International Symposium of Com-
puter Architecture, pages 396–403. ACM, 1986.

[11] Johannes M. Mulder, Nhon T. Quach, and Michael J. Flynn.
An area model for on-chip memories and its application. IEEE
Journal of Solid-State Circuits, 26(2):98–105, February 1991.

[12] S.-T. Pan, K. So, and J. T. Rahmeh. Improving the accuracy
of dynamic branch prediction using branch correlation. In
Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 76–
84, Boston, Mass., October 1992. ACM.

[13] Chris Perleberg and Alan Jay Smith. Branch target buffer
design and optimization. IEEE Transactions on Computers,
42(4):396–412, April 1993.

[14] Karl Pettis and Robert C. Hansen. Profile guided code posi-
tioning. In Proceedings of the ACM SIGPLAN ’90 Confer-
ence on Programming Language Design and Implementation,
pages 16–27. ACM, June 1990.

[15] J. E. Smith. A study of branch prediction strategies. In 8th
Annual International Symposium of Computer Architecture,
pages 135–148. ACM, 1981.

[16] S. Peter Song, Marvin Denman, and Joe Chang. The PowerPC
604 RISC microprocessor. IEEE Micro, 14(5):8–17, October
1994.

[17] Amitabh Srivastava and Alan Eustace. ATOM: A system for
building customized program analysis tools. In 1994 Program-
ming Language Design and Implementation, pages 196–205.
ACM, June 1994.

[18] Simon C. Steely and David J. Sager. Next line prediction appa-
ratus for a pipelined computer system. US. Patent #5,283,873,
Feb. 1994.

[19] Steven J. E. Wilton and Norman P. Jouppi. An enhancedaccess
and cycle time model for on-chip caches. WRL Report 93/5,
DEC Western Research Lab, 1993.

[20] Tse-Yu Yeh and Yale N. Patt. Alternative implementations of
two-level adaptive branch predictions. In 19th Annual Interna-
tional Symposium of Computer Architecture, pages 124–134,
Gold Coast, Australia, May 1992. ACM.

[21] Tse-Yu Yeh and Yale N. Patt. A comprehensive instruction
fetch mechanismfor a processor supporting speculative execu-
tion. In 25th Annual International Symposium on Microarchi-
tecture, pages 129–139, Portland, Or, December 1992. ACM.

[22] Tse-Yu Yeh and Yale N. Patt. A comparison of dynamic
branch predictors that use two levels of branch history. In 20th
Annual International Symposium on Computer Architecture,
pages 257–266, San Diego, CA, May 1993. ACM.

10

