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Abstract is calculated, introducing a pipeline bubble or unused pipeline step.
This is called an instructiomisfetch penalty, and is caused by wait-
Accurate instruction fetch and branch prediction is increasingly ing to identify the instruction as a branch and to calculate the target
important on today’s wide-issue architectures. Fetch prediction is address.
the process of determining the next instruction to request from the ] o - o .
memory subsystem. Branch prediction is the process of predicting The final destlnatlon_for condmonal branches, indirect function
the likely out-come of branch instructions. Several researchers havecalls and returns are typically not available until a later stage of the
proposed very effective fetch and branch prediction mechanisms PiPeline. The processor may elect to fetch and decode instructions
including branch target buffers (BTB) that store the target addressesOn the assumption that the eventual branch target can be accurately

of taken branches. An alternative approach fetches the instruction Predicted. If the processor mispredicts the branch destination, in-
following a branch by using an index into the cache instead of a Structions fetched from the incorrect instruction stream must be dis-

branch target address. We call such an indee@cache line and carded, leading to several pipeline bubbles. This is called a branch
set (NLS) predictor. ANLS predictor is a pointer into the instruction  Mispredict penalty. In practice, pipeline stalls due to mispredicted
cache, indicating the target instruction of a branch. breaks in control flow degrade a programs performance more than

In this paper we examine the use of NLS predictors for effi- the misfetch penalty.
cient and accurate fetch and branch prediction. Previous studies : ; ; )
associated each NLS predictor with a cache line and provided only tiesAS processorsissue more instructions concurrently, these penal

one-bit conditional branch predictors. Our study examines the use increase, and it is more likely that a branch will occur as more
of NLS predictors with highly accurate two-level correlated con- instructions are fetched per cycle, decreasing the likely-hood that

ditional branch architectures. We examine the performance of de- the fall-through instruction will be executed. A branch target buffer

‘ - : ep . (BTB) is one mechanism for efficiently predicting the next instruc-
coupling the NLS predictors from the cache line and storing them tion fetch when a branch is encountered. In this paper we examine
in a separate tag-less memory buffer. Our results show that the , -0 native to the BTB called next cache line and set (NLS) pre-
decoupled architecture performs better than associating the N.LSdiction A NLS predictor is a pointer into the instruction cache
predictors with the cache line, that the NLS architecture benefits indicating the target instruction of a taken branch. Johnson [5]
fr?mr;er‘:]js((::%?] t(;?r(:i?we rrn';ﬁ rztrgiicﬁgg 'tv\'/sé gﬁgcﬂf\;!éeegﬁcia\_’gefot% proposed a similar design using cache indices to predict the nextin-
prograrm 9 Y : SO p N-CeP struction fetch. We propose an alternate organization that improves
comparison between the NLS and BTB architectures, showing that fetch prediction accuracy
the NLS architecture is a competitive alternative to the BTB design. ’

In this paper we examine two varieties of the NLS architec-
Keywords: Instruction fetch prediction, Branch prediction, ture. The NLS-cacheis similar to the branch architecture described
Branch target buffers by Johnson, where each NLS predictor is associated with a cache
line. The NLS-table uses NLS predictors stored in a separate di-
rect mapped tag-less memory buffer. We also examine the effects
1 Introduction of combining the NLS predictors with modern two-level correlated
branch prediction architectures. Our results show that the NLS ar-
Modern superscalar processor designs are extremely sensitive tochitecture’s performance improves as the instruction cache missrate
control flow changes. Changes in control flow, be they conditional is lowered, and that the NLS architecture is particularly effective
or unconditional branches, direct or indirect function calls, or returns for programs with many branches.
are not detected until those instructions are decoded. The target ad- ) ) o
dresses for conditional, unconditional branches, and procedure calls I §2, we describe prior branch prediction work. §8 we
are typically not calculated until the instruction is decoded. To keep describe an efficient BTB architecture and§ih we describe the
the pipeline fully utilized, processors typically fetch the address NLS architecture. We use trace:-dnven S|mulat[on to compare the
following the most recent address. If the decoded instruction is a Performance of these two architectures. Section 5 describes the
break in control flow, the previously fetched instruction can not be Programs we traced and how we analyzed then§6lwe describe

used, and a new instruction must be fetched after the target addreshe NLS and BTB results and compare our NLS architecture to the
cache index architecture proposed by Johnso§7|mve provide a

This paper appeared in the 22nd Annual International Symposium on Computer detailed perform_ance co_mp_arison of the NLS and BTB architectures
Architecture, Italy, June 1995. and we summarize our findings §8.




2 Prior Branch and Fetch Prediction Research frscton |
% D Address
This section briefly surveys prior work on branch prediction tech- -
niques used in this paper. Branch target buffers (BTB) have been 5, :
used as a mechanism for branch and instruction fetch prediction, I \ 'anéﬁcggg Retrn
effectively predicting the behavior of abranch [1, 7, 10, 13, 15, 21]. 5 Branch Target Address Sack
The Intel Pentium is an example of a modern architecture using ¥ Buffer
BTBs — it has a 256-entry BTB organized as a four-way associative 2 Branch Type Top Of Stack
cache. Only branches that are ‘taken’ are entered into the BTB. If 3 ﬁ;“rﬁ;:?%
a branch address appears in the BTB and the branch is predictedas | 2 2 ] [ Add
taken, the stored address is used to fetch future instructions, oth- |
erwise the fall-through address is used. For each BTB entry, the Q _$ l
Pentium uses a two-bit saturating counter to predict the direction of g i i
a conditional branch [7]. In this BTB architecture, the branch pre- g gsﬁ‘ Next 7>|£Jﬂ
diction information (the two-bit counter), is associatectoupled
with the BTB entry. Thus, the dynamic prediction can only be used ] v
for branches in the BTB, and branches that miss in the BTB must Next Instruction
use less accurate static prediction. Fetch Address

An alternative BTB architecture is tliecoupled design, where
the branch prediction information is not associated with the BTB Figure 1: A schematic representation of a coupled BTB branch
andis usedfor all conditional branches, including those not recorded prediction architecture using two-level correlated branch prediction
in the BTB. In an earlier study [2], we found that decoupled designs for conditional branchesand areturn stack for return instructions.
performed better than coupled designs. This allows conditional
branches that do not hit in the BTB to use dynamic prediction. The

i hi i | .
PowerPC 604 is an example of an architecture using a decoup edscheme of Pan et al [12], where we XOR the global history reg-

i 16]. TheP P 4 h 4- full iative BTB - . ) .
design [16] e PowerPC 604 hasa 64-entry fully associative ister with the program counter and use this to index into a 4096

that holds the target address of the most recently taken branches;,

and uses a separate 512 entry pattern history table (PHT) to predictetrY (1KByte) PHT. In this model, we store only taken branchesin

the direction for conditional branches. the BTB, since previous studies have shown this to be more effec-
There are several different PHT variations. Raal. [12] and tive[2, 13]. If abranchisnot tekenwhileitisinthe BTB, weleave

Yeh and Patt [20, 22] investigatéanch-correlation or two-level Ene Egﬂm (tlarget adtdre?;s) in .trkl'e T—Bmlfnﬂ: Ate; :ﬁm?;/ked c:“egt’
branch prediction mechanisms. Although there are a number of e replacement policy, Snce we mig € taken targ

variants, these mechanisms generally combine the history of severa?3dresS again in the near future. In this architecture, the BTB's
recent branches to predict the outcome of a branch. The simplestmajn purpose is to provide the taken target address and the branch
example is thelegeneratemethod of Paret al.[12]. Whenusinga® type.

entry table, the processor maintaink-hit shift register (the global

history register) that records the outcome of previous branches (a

taken branch is encoded as a 1, and a not-taken branch as a 0). . L .

The shift register is used as an index into the PHT, much as the 4 Next CachelLineand Set Prediction Architecture
program counter is used for a direct-mapped PHT. This provides

contextual information and correlation about particular patterns of TheNL Sarchitectureissimilar to the BTB architectureandisillus-
branches. Recently, McFarling [9] showed that combining branch trated in Figure 2. The difference between these two architectures
history with the branch’s address was more effective. His method is the NLS architécture is a tagless table providing a pointer into
used the exclusive-or of the global history register and the branch the instruction cache to the next instruction to execute rather than
address as the index into the PHT. o the target address, as in the BTB. Like the BTB, the main purpose

The NLS and BTB architectures we study in this paper Use f the NLS architecture is to eliminate misfetch penalties by pro-
a decoupled design with a separate PHT to predict the direction viding a pointer to the cache line and instruction that is the target
of conditional branches. For both of the architectures, we use ot 4 pranch. Thisallowsthe next instruction to be correctly fetched
McFarling’s form of the two-level PHT [9]. In the next two sections from the instruction cache while the branch intruction is decoded
we first describe the BTB architecture and then our alternative NLS and the target addressis cal culated. TheNL S predictor also predicts

architecture. indirect jumps and provides the branch type.
Asshown in Figure 2 there are three predicted addresses avail-
3 A BTB-basad Instruction Fetch Architecture able for the next instruction fetch. These are the NLS predictor,

the fall-through line (previous predicted line + fetch size), and the

Figure 1 is a schematic representation of the decoupled BTB and tOP Of thereturn stack. Each NLS predictor containsthe following
PHT branch prediction and instruction fetch architecture we simu- 11€/0S

lated. In Figure 1 the next instruction fetch address is concurrently

offered to: the instruction cache, the BTB, and the PHT. The ad-

dress is also used to compute the fall-through instruction’s address.TypeField: The following table shows the possible prediction

A 32-entry return address stack [6] predicts return instructions, and sources represented by the NLS typefield. Thetypefieldis
conditional branches are predicted using the pattern history table used to determine the proper prediction mechanism, shown
organization described by McFarling [9]. This is the degenerate in Figure 2, to use when fetching the next instruction. Un-
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Figure2: A schematic representation of the NL S-table architecture.

used NLSentrieshave“00” stored inthetypefield indicating
theentry isinvalid.

Branch Type Prediction Source
0 | O | InvalidEntry
0 | 1 | Returninstruction Return Stack
1 | 0 | Conditional Branch NLS Entry,
Conditional on PHT
1 | 1 | Other Typesof Branches | Alwaysuse NLS Entry

LineField: Thisfield containsthe line number to be fetched from
the instruction cache. The high-order bits indicate the line
in the instruction cache and the low-order bits are used to
indicatethe actual instructionin that line.

Set Field: In amulti-associative instruction cache, the destination
linemay bein any set. Theset fieldis used to indicate where
the predicted line is located if a multi-associative cache is
used. It is not needed for a direct mapped cache.

The NLS architecture assumesthat during the instruction fetch
stage of the pipeline, each instruction can easily be identified as a
branch or non-branch instruction. The BTB does not have to make
this assumptionsince aninstruction isknown to beabranchif it hits
in the BTB. If the instruction set encoding does not contain such a
distinguishing bit in the instruction, that information can be stored
in the instruction cache or an instruction type prediction table, as
described in [2]. Encoding this information in the instruction im-
provesthefetch accuracy for theNL Sarchitecture, sincenon-branch
instructionsfetch the fall-through addresswhile branch instructions
use NL S predictors.

If the instruction being fetched from the instruction cacheindi-
catesthat it is a branch instruction, the NLS predictor is used and
the type field is examined to choose among the possible next fetch
addresses. Return instructions use the return stack. Unconditional
branches and indirect branches use the cache line specified by the
NLSentry. If thetypefieldindicatesaconditional branch, thearchi-
tecture usesthe prediction given by the PHT, asis donein the BTB

Thetypefieldisnot needed for the NL Sor BTB architecturesif thetypeinformation
can be easily extracted from the fetched instruction before the fetch cycle completes,
or from the instruction cacheif the information has been pre-decoded.

architecture. If the branch is predicted as taken, the NLS line and
set fields are used to fetch the appropriate cacheline and instruction
from the instruction cache. If the conditional branchis predicted as
not-taken, the precomputed fall-through line addressis used on the
next instruction fetch.

The NLS entries are updated after instructions are decoded and
the branch type and destinations are resolved. The instruction type
determinesthe type field and the branch destination determinesthe
set and line field. Only taken branchesupdate the set and linefield,
but all branches update the type field. A conditiona branch which
executes the fall-through should not update the set and line field,
since that would erase the pointer to the target instruction. For
conditional branches, this allows the branch prediction hardwareto
use either the NLS predictor for taken conditional branches or to
use the precomputed fall-through line, depending on the outcome
of the PHT.

41 NLS-Tableversus NLS-Cache

There are several possible variations on the basic NL S architecture
design, and they share many common structures. Figure 2 shows
one possibledesign. Theintuition behind this architectureisthat a
branchtarget addressis actually a pointer into the instruction cache.
This pointer can be represented by an index pointing to the target
instruction of ataken branch.

We considered two possibledesigns: “NLS-caches’ and“NLS-
tables’. In the NLS-cache, we associate the NLS predictors with
each cacheline. Thus, the NLSentries sharetheinstruction address
tag with the cache line. There may be multiple NLS predictors
per cache line and we studied various replacement policies and
methodsof associatingthe NL S predictorswith specificinstructions
in acacheline. The second design, the NLS-table, isasimpler and
more effective design that usesatag-lessdirect-mappedtableof NLS
predictors. Thetableisindexed by the branch instruction’s address.
Both architecturesusethe NL Sentriesto predict thenext linetofetch
for abranchinstruction, both architectures use the same conditional
branch prediction and return-prediction mechanisms used in the
BTB, and both designsreplace the BTB with the NLS information.

TheNL S-table hasthree advantagesover the NL S-cachedesign
and one disadvantage. These points arise becausethe NLS predic-
tors are coupled with the cachelines in the NL S-cache design and
they are decoupled from the cachein the NL S-table design. For the
NL S-cache architecture, we found that associating two NLS pre-
dictors with an eight instruction cacheline to be the most effective
organization. This design restricts the use of the NLS predictorsin
the NL S-cache, since some cachelines may not have any branches
while other cache lines may contain several branches. In contrast,
theNL S-tableusesthelower order bits of thebranchinstructionsad-
dressto index into ataglesstable. Thisalowsacachelineto useas
many NL Spredictorsasneeded. Thesecond advantagecomeswhen
aninstruction cachelineis replaced. The NLS-cache prediction in-
formation associated with areplaced cache line is discarded while
the prediction information for the NLS-table is preserved across
cache misses. Thefinal advantage appears when examining differ-
ent instruction cache sizes. As the instruction cache size doubles,
thenumber of NL S-cachepredictorsmust also doubleto achievethe
samebranch prediction performance. ThereforetheNL S-cachesize
increases linearly with an increase in instruction cache size while
the NLS-table size increasesonly logarithmically. This can greatly
increase the cost of the NLS-cache design for large caches. There
isadisadvantagefor the NLS-table in making it ataglesstable, be-
cause prediction information from one branch may be erroneously
used for another branch. Our results show that this effect is small



#Insn's Conditional Branches Percentage of Breaks During Tracing
Program Traced %Breaks | Q-50 | Q-90 | Q-99 [ Q-100 [ Static | %Taken || %CBr [ %IJ | %Br | %Call | %Ret
doduc 1,149,864,756 853 3 175 296 | 1,447 7,073 48.68 81.31 [ 0.01 | 4.97 6.86 6.86
espresso 513,008,174 17.12 44 163 470 1,737 4,568 61.90 93.25 | 0.20 1.88 2.29 2.39
gcc 143,737,915 15.97 245 | 1,612 | 3,742 7,640 | 16,294 59.42 7885 | 2.86 5.75 6.04 6.49
li 1,355,059,387 17.67 16 52 127 556 2,428 47.30 63.94 | 2.24 7.74 12.92 13.16
cfront 16,529,540 13.66 69 833 | 2,894 | 5644 | 17,565 53.18 7345 | 217 | 6.40 8.72 9.26
groff 56,840,596 16.38 107 408 976 | 2,889 7,434 54.17 66.12 | 480 | 7.80 8.77 | 1251

Table 1: Measured attributes of the traced programs.

for the NL S-table design when compared to the benefits of the three
advantages mentioned above.

4.2 UsingNext LineAddresseswiththelnstruction
Cache

Unlike the BTB architecture, the NL S architecture does not have a
full next target addressto offer to theinstruction cache. It only has
the lower order bits of the full target address (the cacheline index).
Thisisnot aproblem for adirect mapped cache, sincethe tag check
against the target address can be performed in the decode stage of
the pipeline. When an associative cacheis used, the cache needsto
be dightly modified in order to properly use the next line address.
Thefollowing two different approachesmay be taken.

The traditional implementation of an associative cache selects
the appropriate line from a set by performing afull tag comparison
on the tags from the different sets. For al branch instructions, the
set field in the NLS predictor is used to predict the the instruction
cache set instead of performing the tag comparison. When the pre-
computed fall through line addressis used, afull tag comparisonis
performed. The full fall-through address can be calculated by the
time the cache needsto perform the tag comparison using the pre-
computed fall-through line address, the carry bit from the addition
of thefall-through line addresscal culated in the previouscycle, and
the previousinstruction’s tag.

The second approach to using next line addresses with an as-
sociative cache is more elegant and can lead to improved cache
performance. In this approachwe assumethat each cacheline hasa
set field associatedwithit. Thisset field hasthesameuseasthe NLS
set field, and it predicts the set where the fall-through lineislocated
for each cacheline. For each instruction cache lookup, either the
NLS predictor’s set field, for a branch instruction, or the previous
cacheline's setfield, for anon-branch instruction, isused to predict
the set for the current cache access. Since the set field is used on
every cache access, only one cache set is driven at atime during
the lookup and the tag comparison can be performed in the decode
stage as if the cache where direct mapped. If the set prediction
was incorrect and the tag does not match the destination address
computed in the decode stage, the other setsin the cache need to be
checkedin order to find the correct entry or to findif thereisacache
miss. This design is suitable for a two-way associative cache. If
thefirst set prediction isincorrect, the remaining set is checked for
theinstruction. For higher degreesof associativity, other techniques
may be applied when the set prediction is incorrect, but these are
beyond the scope of this paper.

5 Experimental Methodology

We used trace driven simulation to quantify the performance for
many BTB and NLS architecture configurations. We instrumented
the programsfrom the SPEC92 benchmark suite and object-oriented
programswritten in C++. We simulated several programs but only
show information for six programs because we felt this would be
more useful than presenting less detailed resultsfor more programs.
We picked three of the programs (gcc, cf ront and gr of f) be-
cause they have high instruction cache miss rates, execute alot of
branches, and the branchesare hard to predict.

We used ATOM [17] to instrument the programs. Due to the
structure of ATOM, we did not need to record traces and could trace
very long-running programs. The programs were compiled on a
DEC 3000-400 using either the DEC FORTRAN, C, or C++ com-
piler. All programswerecompiled with standard optimization (- O).
For the SPEC92 programs, we used the largest input distributed with
the SPEC92 suite. The alternate programsinclude: cf ront, ver-
sion 3.0.1 of the AT& T C++ language preprocessor written in C++
andgr of f andaversionof thedi t r of f text formatter written in
C++. For thesealternate programs, we used inputswe hoped would
exercisealarge part of the program.

Table 1 describesthe branching activity of the programswein-
strumented. Thefirst columnslist the number of instructionstraced
and the second column indicates the percentage of simulated in-
structions that could cause a break in control flow. The columns
labeled‘ Q-50",'Q-90",'Q-99" and‘Q-100" show the number of con-
ditional branchinstructionsthat contributeto 50, 90, 99 and 100% of
all the executed conditional branchesin the traced program. Thus,
in doduc, three branch instructions constitute 50% of all executed
conditional branches. The column labeled “static” represents the
number of conditional branch sitesin the program. The eighth col-
umn showsthe percentage of executed conditional branchesthat are
‘taken’. Thelast five columns describe the frequency of different
type of branches encountered during tracing: conditional branches
(CBrr), indirect jumps (1J), unconditional branches(Br), procedure
calls (Call) and procedurereturns (Ret).

5.1 Architectures Smulated

For each program, we simulated 8K B, 16K B, and 32K B instruction
cacheswith 32 byte cache lines and 4 byte instructions. For each
cache size, we simulated direct mapped, 2-way and 4-way asso-
ciative LRU replacement caches. When simulating the NLS-cache
architecturewe used oneto four NL S predictors per cacheline with
varying replacement policies. We found that two NLS predictors
per cache line gave performance comparable to the NL S-table and
BTB architectures. In this configuration, the first NLS predictor is
associated with the first four instructions in the cache line and the
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64K, and for a 128-entry and 256-entry BTB with associativities of one, two and four.

second NL S predictor is associated with the last four instructionsin
the cacheline. We only show results for this configuration of the
NL S-cache architecture because of space limitations.

When simulating the NLS-table architecture, we simulated
NLS-table sizeswith 512, 1024 and 2048 NL S predictors. For the
BTB architecture, we ssimulated 128-entry and 256-entry BTB or-
ganizationswith direct mapped, 2-way and 4-way associativity with
LRU replacement. Both the BTB and NLS architectures used a 32-
entry return stack [6] to predict procedure returns and a two-level
correlated 4096-entry pattern history tablefor conditional branches.
The accuracy of the pattern history table is the same for both the
BTB and NLS architectures. This alows us to isolate the fetch
performance differences between the BTB and NL S architectures.

5.2 Performance Metrics

We comparethe branch architecturesusing anumber of performance
metrics. Werecord theinstruction cachemissratesincetheNL Sand
BTB architecturesmay fetch different instructions, even for thesame
cache organization. We also record the percentage of misfetched
branches (%MfB), and the percentage of mispredicted branches
(%MpB). Note that a mispredicted branch is never counted as a
misfetched branch and visa versa. It is often difficult to understand
how each of these metrics influence processor performance. Yeh &
Pett [21] defined the branch execution penalty to be:

_ %MfB x misfetch penalty 4+ %MpB x misprediction penalty
- 100 )

BEP

The BEP reflects the average penalty suffered by a branch due to
misfetch and mispredict penalties. With a BEP of 0.5, the average
branch incurs a half-cycle execution penalty. The BEP provides
a more intuitive understanding of how the two pendlties interact,
but requires us to use specific misfetch and mispredict penalties.
For our results, we assume a one cycle misfetch penalty and a
four cycle mispredict penalty, since these costs are reasonable for
current superscalar architectures. In all of our BEP graphswe break
the results into two parts. The top part shows the fraction of the

BEP caused by the misfetch penalties and the lower part showsthe
fraction due to the mispredict penalties.

We also provide the cycles per instruction in order to illustrate
overall program performance. We define CPI to be:

(# Instructions executed + BEP x # branches+
# |-cachemisses x miss penalty)

# Instructions executed

CPl =

We assumed afive cycleinstruction cachemiss penalty. With aCPI

of 1.25, the average instruction takes 1.25 cyclesto execute. Since
we are simulating a single-issue architecture, the CPI can not be
lessthan 1. The CPI does not include data cache misses or other

resource conflicts.

6 Results

In order to compare the NLS architecture to the BTB we must
first determine the resource costs for each architecture. In order
to evauate the area implementation costs of the NLS and BTB
architectures, we used the register bit equivalent (RBE) model for
on-chip memories proposed by Mulder et al [11], where one RBE
equalsthe areaof abit storage cell.

Figure 3 shows the RBE costs for implementing the NLS and
BTB architecturesusing Mulder et al’ son-chip memory areamodel .
The figure showsthe RBE costsfor the NL S-cache (with two NLS
predictorsper cacheline) and a512, 1024, and 2048 entry NL S-table
for cache sizes of 8K, 16K, 32K and 64K. It aso shows the RBE
cost for a 128 entry and 256 entry BTB with associativities of one,
two and four. The RBE cost of the NL Sarchitecture dependson the
size of the instruction cache. The NLS-table's RBE cost increases
logarithmically as the instruction cache size increases, since the
line field for each NLS predictor has to also increase. When the
number of lines in the instruction cache are doubled, another bit
must be added to each NL S predictor’slinefield. Inthe NLS-cache
architecture, the number of NLS entries per cache line is constant,
and as the cache size increases, the space devoted to NLS entries
increaseslinearly. The RBE cost of the BTB architecture depends
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on the associativity of the BTB and the size of the address space
not on the size of the instruction cache. In performing the BTB
calculations, we assumed a 32-bit address space is used. If the
addressspaceisincreased, the cost of the BTB would also increase.

6.1 Performance of the NLS Architecture

Figure 4 shows the branch execution penalty results averaged over
the programs in Table 1. The figure shows results for the NLS-
cache, and for 512, 1024 and 2048 entry NLS-tables for varying
instruction cache sizes and associativities. Each branch execution
penaty (BEP) value is broken into two parts with the upper part
representing the fraction of the BEP due to the misfetch penalty,
and the lower part the mispredict penalty.

Figure 4 showsthat the NL S-table consistently outperformsthe
NL S-cache when architectures with equivalent costs are examined:
the NL S-cache and the 512 NL S-table have equivalent costs when
using an 8K instruction cache, the NLS-cache and the 1024 NLS-
table have equivalent costswhen using a 16K instruction cache, and
the NL S-cache and the 2048 NL S-table have equivalent costswhen
using a 32K instruction cache. In terms of the RBE cost, the NLS-
cacheispractical for only small caches(8K and 16K), but eventhen,
the NL S-table architecture has better performance when comparing
architectures with equivalent costs. The difference in performance
arisesfrom the NL S-cache discarding useful prediction information
for each instruction cache miss and because the predictors in the
NL S-cache can only be used for the cacheline they are associated
with. In contrast, the NL S-table preserves prediction information
acrosscachemissesand aNL S-table predictor’suseisnot restricted
to a given cache line. Figure 4 also shows that the difference in
performance between the 512 and 1024 NL S-tables is smdll, and
the difference between the 1024 and 2048 NLS-tables is smaller
gtill.  In the remainder of the paper we focus on the NLS-table
design and only give results for the 1024 entry NL S-table.

6.2 Reated Work

There are severa branch prediction strategies related to the NLS
design. Our NL S-tablearchitecturewasderived from theBTB: each
uses a table holding pointers to branch destinations. The primary
difference, besideseliminating the tag, isthat the BTB encodesthe
full address, while the NL S encodesonly the instruction cacheline
and set, allowing for larger NLS-tables.

Bray and Flynn [1] described adesignsimilar to theNLS-cache
that associated branch target addresseswith each cacheline. Asin
our study, they found approximately one entry per four instructions
provided the most cost effective design.

Johnson[5], suggestedtheideaof using cachesuccessorindices
as in the NLS-cache architecture for instruction fetch and branch
prediction. His architecture associated the cache indices with each
cacheline as the NLS-cache architecture does. The architecture he
studiedisslightly different than our NL S-cachedesign sinceheonly
considered usingtheindex for onebit conditional branch prediction.
With one bit prediction, the cache index stores either a pointer to
the fall-through line or the target line for the next instruction fetch.
In order to predict the fall-through line, the cacheindex is updated
evenwhen anon-takenbranchis executed. By comparison, weonly
update the NL'S predictor when taken branches are encountered to
obtainimproved branch prediction accuracy when using adecoupled
PHT.

Variations on the NLS-cache design can be found in recent
microprocessor architectures. The TFP microprocessor (MIPS
R8000) [3] has a 1024 entry NLS-cache architecture similar to
the design proposed by Johnson. It hasone NL S predictor for every
four instructions, and a one-bit branch predictor coupled with each
NLSpredictor. The UltraSPARC microprocessor also usesasimilar
1024 entry NL S-cache design, associating an NLS predictor with
every four instructions. Instead of using one-bit prediction as in
the TFR, the UltraSPARC uses a 2-bit dynamic conditional branch
predictor for every two instructionsin the instruction cache.

TheNL S-tabledesign usesan independent table of next lineand
set predictors. This basic design was recently patented by Steely
and Sager [18]. However, they have not published any perfor-
mance comparisons, and the patented design only addresses direct
mapped caches, while our design addressesboth direct mapped and
associative caches. Furthermore, the patented architecture uses a
single "computed goto" register to store the destination of indirect
jumps. By comparison, we use the NLS predictor to provide the
predicted cache index for all branch destinations other than fall-
through branches and return instructions. Although we devel oped
our NL S architectureindependently, there are several similarities as
well as other differences; see[18] for more details.

6.3 Performance of the BTB Architecture

Figure 5 showsthe average branch execution penalty (BEP) for the
programs simulated in this paper. The 1024 entry NLS-table has
better performance than the similar costing 128 entry BTB, even
when the BTB has a high degree of associativity. The 1024 entry
NL S-tableand 256 entry BTB exhibit comparabl e performanceeven
though the 1024 entry NL S-table has roughly half the RBE cost of
the 256 entry BTB.

When comparing the NLS-table to the BTB, one must keep
in mind that a direct mapped BTB has a shorter access time than
an associative BTB. Figure 6 shows the estimated accesstime, in
nanoseconds, for a 128 entry BTB and 256 entry BTB with direct
mapped, two, and four way associativity. These estimates were
derived using the CACTI timing model of Wilton and Jouppi [19].
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Their model derives accesstimes for direct mapped and associative
caches such as BTBs, but not for tag-less direct mapped memory
buffers. Therefore we do not show the accesstimes for the NLS-
table, but we believe it would be similar to that of adirect mapped
BTB. Thisfigure shows the accesstime differences between direct
mapped and associative cache structures. The differences arise
from the extra time needed to perform the tag comparison. In a
direct mapped cache, the tag comparison can be done in parallel

while the data output is being driven to the next stage. The figure
shows that the 4-way associative BTB access time is 30 to 40%
longer than direct mapped BTBs of the same size. This should be
considered when comparing the performance of the direct mapped
BTB and NLS architecture to the associative BTB architectures
since the cycle limitation of the instruction fetch may effect the
entire machine. In [3], the designers of the TFP (MIPS R8000)
microprocessor stated:

We evaluated several well-known branch prediction
algorithms for layout size, speed, and prediction ac-
curacy. The most critical factor affecting area was
theinfrastructurerequiredto support a customblock:
power ring and power strapsto the ring, and global
routing between the branch prediction cache and its
control logic. Speed was a problem with tag com-
parisonsfor those schemesthat are associative. Ac-
cordingly we chose a simple direct-mapped, one-bit
prediction scheme which can beimplemented entirely
with a single-ported RAM.

7 Comparison of NLS Table and BTB Architec-
tures

Figure 7 compares the performance of the NLS and BTB architec-
tures using the branch execution penalty (BEP) for the programs
in Table 1. Each graph compares the direct mapped and 4-way set
associative 128 and 256 entry BTBsto the 1024 entry NLStable. It
was shown in §6 the 1024 entry NL S-table and the 128 entry BTB
have similar implementation costs using the RBE model, that the
256 entry BTB implementation cost is twice that of the 1024 entry
NLS-table, and that the accesstime of the associative BTB’sis 30
to 40% longer than similar sized direct mapped structures.

The differences in the BEP between the BTB and NLS archi-
tectures is attributable to differences in the number of misfetched
branches. Remember that the BTB and NLS architectures are not
used to predict the direction for conditional branches. Conditional
branch prediction information is stored in a separate pattern history
table (PHT) and the conditiona branches are predicted using the
PHT. TheNLSand BTB architecturesare usedto eliminate the mis-
fetch penalty associated with the extra cycle taken to determine the
branch type and to compute the target addressfor the next instruc-
tion fetch. Once the branch type and target line are predicted, the
next fetch line can be chosen from the return stack, precomputed
fall-through line, or the predicted target line. Both the NLS and
BTB architectures are used to predict the destination for indirect
jumps. Table 1 shows that indirect jumps constitute 0-5% of the
breaks in the programs we instrumented. In Figure 7, any differ-
ence in the mispredict penalty for a given program is attributed to
the variation in the mispredict penalty for indirect jumps acrossthe
different architectures. The figure showsthat the differencein mis-
predict penalty acrossthe different architecturesis only noticesble
for gr of f, and even then the difference isinsignificant.

Figure 7 showsthat the BEP for the NL S architecture decreases
as the cache size increases or the cache associativity increases.
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since their results do not changefor the different instruction cache configurations. The 1024 entry NL S table and the 128 entry

parts. Thetop representsthe fraction of the BEP dueto the misfetch penalty and the lower part the fraction dueto the mispredict penalty. The
NLS results are given for an 8K, 16K and 32K instruction cache with direct mapped and four-way associativity. The BTB results are only

shown once,

Figure 7: Performance comparison between the NLS and BTB architectures using branch execution penalty. Each value is broken into two
BTB have equivalent implementation costs, and the cost for the 256 entry BTB is approximately twice that of the 1024 NL S-table.



Why? Recall that each NLS predictor indicates the cache line
that should be fetched. The information associated with an NLS
predictor is only useful if the actual destination of a branch isin
the predicted location in the instruction cache. In smaller caches,
the NLS predictors will often point to the proper cache line and
set, but the desired instruction may not be present or may have
been reloaded into a different set. With a NLS predictor, a branch
destinationthat hasbeen displaced from theinstruction cachecauses
a misfetch penalty. When the current instruction is fully decoded,
the misfetch is detected and the actual instruction is fetched. In
this case, the misfetch pendlty is associated with a cache miss. In
contrast, the BTB aways uses the full target address. This allows
the BTB architecture to possibly locate the proper instruction in
Set associative caches, or to initiate an instruction cache miss a
cycle earlier than the NLS architecture. If an associative cache
is used, the NLS architecture would have to look in the other set
on a misfetched branch, or do a full set lookup. When the cache
miss rate is lowered, there is an increased probability that a cache
line will till be resident when a NLS predictor is used. The BTB
architecture will not benefit from the lower cache miss rate, and
the there is no changein the BEP for varying cache configurations.
Whole-program restructuring [8, 4, 14] is one technique that can
be used to reduce the instruction cache miss rate at no additional
architectural cost.

Why does the NLS architecture have significantly better BEP
performance than the BTB for some programs, such as gcc,
cfront andgr of f, but only slightly better or comparable perfor-
mance for other programs, such asdoduc and espresso? The
program characteristics in Table 1 shows the programs that bene-
fit most from the NLS architecture have more static branch sites
then the programsthat show little benefit. For example, in doduc,
three individual branches constitute 50% of the branches encoun-
tered during program execution. One need only store those three
branches to achieve 50% fetch accuracy. By comparison, gcc,
cfront and grof f have many more branches encountered dur-
ing execution. The larger number of branches leads to capacity
missesand conflictsin any prediction mechanism using afixed-size
resource. Because each NLS predictor in the NLS architecture is
smaller than the comparable BTB entry, the NLS architecture has
many more prediction entries using the same resources. Overall,
the larger number of less-precise NLS predictors benefits program
performance more than the fewer, more precise, BTB entries.

Figure 8 shows the average CPI for a single issue architec-
ture with the different BTB and NLS configurations using 8KB,
16KB and 32K B direct-mapped and 4-way associative instruction
caches. TheFigureshowsthat thedifferencein performanceissmall
among the configurationsexamined, with the 1024 entry NL S-table
performing slightly better than the similar costing 128 entry BTBs.
In examining the performance of individua programs, our results
show that thereis very little differencein performance between the
NLS and BTB architecture for programs, such asespr esso, that
have alow cachemissrate. If theinstruction cache missrateis|ow,
the probability of theinstruction lineindicated by the NL S predictor
being in the instruction cacheis very high. For programs that do
not execute many branches, such asdoduc (with 8.5% branches),
there is also very little difference in the performance of the NLS
and BTB architecture. If aprogram doesn’t execute many branches,
then neither the NLS nor the BTB architecture will suffer from ca-
pacity misses. For programs such as gcc, cfront and gr of f
with many branches, the NL S architecture performs better than the
BTB for most of the cache configurationsexamined, dueto thelarge
number of capacity missesin the BTB.

Overall Average for BTB and 1024 NLS Table
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Figure 8: Performance comparison between the NLS and BTB
architecture in cycles per instruction. The 1024 entry NLS-table
and the 128 entry BTB have equivalent RBE costs, and the cost for
the 256 entry BTB is approximately twice that of the 1024 NLS
table.

A larger program addressspaceposessevera problemsfor BTB
architectures, but is inconsequential for the NLS architecture. As
the program address space increases, the tag size used to identify
branchesin the BTB must either increase, or the information stored
in the BTB will become less precise. Likewise, the size of the
destination addressfield must alsoincrease, or the BTB architecture
would storeinaccuratetarget addresses. In our RBE calculationswe
assumed a 32-bit address space, so the target address stored in the
BTB is 30 bits. If the address space wasincreased, the area needed
by the BTB would aso increase. By comparison, the NLS-table
design does not use a tag nor does it store the full target address,
s0 an increased address space has no effect onthe size of the NLS-
table. The size of an NLS predictor depends only on the number
of lines in the cache and the number of instructions in the line.
Asthe instruction cache sizeis increased the size of the NLS-table
increaseslogarithmically. In contrast, an increasein cache size has
no effect on the size of the BTB.

8 Conclusions

In this paper we have presented two alternative NLS architectures,
the NLS-cache and NLS-table. Our results show that decoupling
theNL S predictorsfrom theinstruction cache (NL S-table) performs
better than Johnson's[5] approach of associatingthe NL S predictors
with the cache line (NLS-cache). We found the NLS-cache is not
ascalable design, becausethe number of NLS predictors increases
linearly with the cache size. Our results also show that there is
little benefit from increasing the NL S-table size from 1024 entries
to 2048 entries.

The NLS-table is a tag-less, direct mapped buffer with better
instruction fetch prediction than direct-mapped BTBs with similar
costs. When comparing the performance of the NLS architecture
to associative BTBs, one should keep in mind that the accesstime
for an associative BTB is 30 to 40% longer than similar sized direct
mapped structures. Our results show that the 1024 entry NLS-table
performsbetter thanthe 128 entry BTB, with similar RBE costs. For



a 256 entry BTB, the 1024 NL S-table had comparabl e performance
for approximately half the RBE cost. TheNL S-tablecan offer better
performancethanthe BTB becausethe cost of an NLS entry ismuch
lessthanaBTB entry, allowing the NL S-tableto contain many more
entries than BTB architectures with similar implementation costs.
This alows the NLS-table to perform better than the BTB design
especially for programs with many branches. For programs with
fewer branches, the architectures have comparable performance.

The performance of the NLS architecture improves as the in-
struction cache miss rate is lowered, and its performance can be
improved by using whole-program analysis, basic block reordering,
and intelligent procedurelayout. In contrast, improving the instruc-
tion cache missrate has no effect on the branch performance of the
BTB architecture. In this paper, we focused on the improvements
offered by single-issue architectures and are currently investigating
anumber of design extensionsfor multi-issue architectures. Noth-
ing in the design of the NLS architecture appears to be a problem
for wide-issue architectures.
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