Fast & Accurate Instruction Fetch and Branch Prediction

Brad Calder and Dirk Grunwald*
Department of Computer Science,
Campus Box 430, University of Colorado,
Boulder, CO 80309-0430
(Email:{cal der, grunwal d}@s. col or ado. edu)

Abstract are decoded. To keep the pipeline fully utilized, processors typ-

ically fetch the address following the most recent address. |If
Accurate branch prediction is critical to performance; mispre- the decoded instruction is a break in control flow, the previously
dicted branches mean that ten’s of cycles may be wasted in fetchedinstruction can not be used, and a new instruction must be
superscalar architectures. Architectures combining very effec- fetched, introducing a*pipeline bubble” or unused pipeline step.
tive branch prediction mechanisms coupled with modified branch Thisiscalled aninstruction misfetch penalty
target buffers (BTB'’s) have been proposed for wide-issue pro- The final destination for conditional branches, indirect func-
cessors. These mechanisms require considerable processor re-tion calls and returns are typically not available until the memory
sources. Concurrently, the larger address space of 64-bit ar- accessstage of the pipelineis completed. At thispoint the branch
chitectures introduce new obstacles and opportunities. A larger has been completely evaluated in the execution stage. The pro-
address space means branch target buffers become more expengram counter is updated after the memory accessstage. Aswith
sive. In this paper, we show how a combination of less expensive jnstruction fetch, the processor may elect to fetch and decodein-
mechanisms can achieve better performance than BTB's. This stryctions on the assumption that the eventual branchtarget canbe
combination relies on a number of design choices describedin the accurately predicted. If the processor mispredicts the branch des-
paper. We used trace-driven simulation to show that our proposed tination, those instructions fetched from the incorrect instruction
design, which uses fewer resoes, ofers better performance than stream must be discarded, leading to several “pipeline bubbles”
previously proposed alternatives for most programs, and indicate |n practice, pipeline bubbles due to mispredicted breaksin con-
how to further improve this design. trol flow degradeaprograms’ performancemorethan the misfetch
penalty. For example, the combined branch mispredict penalty for
both pipelines of the Digital AXP 21064 processor is 10 cycles.
By comparison, the AXP 21064 would lose only two instruction
issues from instruction misfetches. As processorsissue more in-
structions concurrently, these penalties increase, and the instruc-
tion fetch penalty becomes increasingly important. It is more
likely that abranch will occur asmoreinstructions are fetched per
cycle, decreasingthelikelyhood that the“fall through” instruction
will be executed. Historically, processor design has focused on
correctly predicting conditional control flow changes, because it
issimpleto implement and resultsin considerablesavings. There

1 Introduction

During arelated study onthearchitectural featuresused by object-
oriented languages, such as C++, we examined several branch
architectures to see how many optimizations a compiler would
haveto perform to efficiently execute object-oriented programs|[ 4,
5]. We assumed future processorswould be pipelined superscalar
architectures and would need to drastically reduce the occurence
of pipeline stalls for efficient execution.

Conventional processor architectures, particularly superscalar
designs, areextremely sensitiveto control flow changes. A simpli-
fied processor pipeline can be divided into fetch, decode, execu-
tion, memory accessand write stages. Changesin control flow,
be they conditional or unconditional branches, direct or indirect
function calls or returns, are not detected until those instructions

*This paper appearsin the 1994 Intl. Symp. on Computer Architecture, Chicago,
1. April, 1994

are anumber of mechanismsto ameliorate the effect of uncertain
control flow changes, including static and dynamic branch pre-
diction, branch target buffers, delayed branches, prefetching both
targets, early branch resolution, branch bypassing and prepare-to-
branch mechanisms[11].

Likewise, there are a variety of mechanismsto reducethein-
struction mispredict penalty, including delayed branches, where
the instruction following a branch is either always executed or
conditionally executed (“ squashed”) depending on the branch tar-
get or acondition code, and branchtarget buffers. A branchtarget
buffer (BTB) is a cache storing the branch address and likely tar-
get address. When an instruction is fetched, the same addressis
offered to the BTB; if there's a match in the BTB, the next in-



struction is fetched using the target address specifiedin the BTB.
Originally, BTB’s were used as a mechanism for branch predic-
tion, effectively predicting the prior behavior of abranch —even
small BTB’swere found to be very effective [10, 15, 17].

More recently, there has been considerable interest in using
BTB'sto reduceinstruction misfetch penalties, for example Yehet
al [21] propose using avery large BTB to improve prediction ac-
curacy and reduce misfetch penalties. In fact, their BTB recordsa
multitude of useful information to support wide-issue processors.
Wide-issue processorsfetch multipleinstructions, roughly thesize
of abasic block. If abasic block addressisin the BTB, then the
basic block contains abreak in control flow; Yeh & Patts’ design
includes additional information indicating whether the break is a
conditional branch, unconditional jump, indirect jump or areturn
instruction. Each BTB entry also contains a per-basic block pat-
tern history register, used to index into a 2-level branch history
table[20, 22].

Architecturesusing BTB's canissuealarge number of instruc-
tions per cycle because of accurate branch and fetch prediction.
However, BTB's lead to a complex architecture. In this paper,
we show how to achieve the same or better performance using
simpler techniques. We do this by:

¢ Decoupling branch prediction from the branch target buffer.
This alows usto accurately predict a conditional branch’'s
direction even when a BTB miss occurs on the branch’'s
address.

¢ Changing the BTB allocate policy. We measure the effect
of not storing “fall through” branchesinthe BTB. Architec-
tures usually have a ‘default’ rule for branches (e.g., back-
wards taken, forward not taken). By exploiting this default
behavior, we can make more effective use of the BTB. Fur-
thermore, various profile-guided code transformations can
make this modification very effective.

¢ Dispensingwith the BTB all together. We proposeabranch
architecturethat selectsthe branch destination addressfrom
theinstruction.

As aways, there are caveats to our paper architecture; we
discussthem at the end of the paper.

2 Background

In order to contrast our instruction fetch architecture to aproposed
aggressively designed architecture, we describe the instruction
fetch architecture proposed by Yeh et al, briefly describing their
branch prediction mechanism and the structure of their branch
target buffer (BTB). Their mechanismisalogical continuation of
currently proposed and implemented designs.

There are two sources of pipeline stalls we want to remove.
The first is the instruction misfetch penalty. This can be done a
number of ways, e.g, by using branch delay slots [13] or branch
target buffers[10, 11, 15,17]. A BTB caneliminate misfetch stalls
by storing the branch destination. For unconditional branches, in-
direct jumpsor functionscalls, thisdestination can beimmediately

fetched. For conditional branches, either the “fall-through” or the
destination stored in the BTB is selected; obviously, some form
of branch prediction is needed to select between the fall-through
and taken address. To differentiate between actions for the dif-
ferent branch types, we need to be able to identify the branch
type; thus, some BTB designs store the branch typein the BTB.
For function calls (either direct or indirect), the previous function
addressis stored in the ‘destination’ field of the BTB. This can
also be done for return instructions, but areturn stack [8] ismuch
more accurate. When using a return stack the BTB provides no
useful information for returns, but it does indicate the instruction
isareturn instruction so thereturn stack can be used, avoiding the
misfetch penalty.

The other component of most branch architectures is some
mechanism to predict whether conditional branches are ‘taken’
or ‘not taken’ (i.e., the fall-through addressis executed). Branch
prediction techniques are classified as static or dynamic Static
branch prediction information does not change during the execu-
tion of a program, while dynamic prediction may change, reflect-
ing thetime-varying activity of theprogram. Static methodsrange
from compile-time hueristics[1, 10, 13, 17] to profile-based meth-
ods [7, 13, 19]. In general, profile based prediction techniques
outperform compile-time prediction techniquesor techniquesthat
use hueristics based on the direction of the branch target (forward
or backward) or instruction opcode.

While static prediction mechanisms, particul arly profile-based
methods, accurately predict 80-90% of branches, modern com-
puter architectures increasingly depend on mechanisms that es-
timate future control flow decisionsto increase performance, re-
quiring more accurate branch prediction mechanisms. Some ar-
chitectures use dynamic prediction BTBs and branch history
tables, either alone or in combination, are two examples of dy-
namic prediction mechanisms.

A BTB can be used to predict conditional branchesby storing
a destination address and predicting that instruction is executed.
The destination address can either be updated on each branch or
two-bit saturating counters[10] can beusedto improve prediction
accuracy. By couplingthe branch prediction information with
the BTB, we avoid both misfetch and misprediction penalties;
however, we can only do this for branchesthat have been entered
intheBTB. Typically, aBTB containsfrom 32to 512 entrieswith
varying degrees of associativity. A BTB requiresalot of storage,
becauseit stores the address of the branch andthe address of the
probabledestination. Some BTB’salsoinclude additional storage
to encode the branch type and prediction information.

In the absence of a BTB, conditional branches can be pre-
dicted using much simpler mechanisms. A pattern history table
eliminates the site and target addressesfrom the table; hence the
table only predicts the direction for conditional branches. These
designs use the branch site address as an index into a table of
prediction bits Since different branch addresses can index into
the same table entry, several conditiona branches may share the
same prediction information. For example, in a 4096 entry table,
branches at addresses 0, 16384 and 32768 all map to the same
entry in the table. When a conditional branch at these addresses
is executed, the information for entry ‘0’ is used to predict the



branch direction, even if that information was recorded for one of
theother branches. The most common variantsof thisdesignare1-
bit techniquesthat indicate the direction of the most recent branch
mapping to a given prediction bit, and 2-bit techniquesthat yield
much better performance for programs with loops [10, 13, 17].
The advantage of the pattern history tablesis that they keep track
of very little information per conditional branch site and are very
effective in practice.

More recently Pan et al [14] and Yeh and Patt [20, 22] have
proposed branch-correlatioror two-levelbranch prediction mech-
anisms. Although there are a number of variants, these mecha-
nisms generally combine the history of several recent branches
to predict the outcome of an incipient branch. The simplest ex-
ample is the so-called degenerate methodf Pan et al. When
using a 4096 entry table, the processor maintains a 12-bit shift
register (the pattern history register) that records the outcome of
previous branches. If the previous 12 branches that executed
were a sequence of three taken branches, six non-taken branches
and three more taken branches(TTTNNNNNNTTT), the register
might store the value 111000000111, or 3591. Thisisused asan
index into the 4096-entry table, much as the program counter is
used in the previous method. This provides contextual informa-
tion about particular patternsof branches. Other methods combine
the pattern register with other information. McFarling [12] xor ’s
the program counter with the history register, scattering the table
references and dlightly improving performance.

Yeh and Patt [22] propose anumber of alternatives. We focus
on their ‘PAS method, since they found it to be most effective.
Each branch in the BTB has a unique history register. In the
PAs(6,16) method, history registers are six-bits, holding the his-
tory of the previous six branch decisionsfor that specific branch
thus, for a 512-entry BTB, 3072 bits are used for the pattern
history registers. When predicting the outcome of a particular
branch, bits <5: 2> of the program counter and bits <5: 0> of
the history register form aten-bit index into the 1024-entry history
table; the history table contains 2048 bits.

In this paper, we are primarily concerned with 2-level predic-
tion methods; see [14, 20, 22] for details on their design. The
problem with using only a 2-level prediction method is that one
cannot avoid the fetch penalty associated with identifying what
type of break hasoccurred and computing itstarget address. Also,
the BTB can store the history of each branch, making branch pre-
diction more accurate. Thisiswhy BTB's are useful for elimi-
nating instruction misfetch penalties, and why some architectures
combine both BTB’s and these accurate prediction mechanisms.

3 A BTB-based instruction Fetch Architecture

Figure 1isaschematic representation of the branch prediction and
instruction fetch architecture suggested by Yeh and Patt [21]. The
current instruction addressis concurrently offered to the instruc-
tion cache (not shown), providing theactual instruction, and tothe
BTB. A 32-entry return address stack handlesreturn instructions.
There are three important types of branches: direct or indirect
branches, conditional branches and function returns. Depending
on the branch type and the prefetched branch prediction informa-

Branch Target
Buffer

Index

Lr:;ghum\on Valid Bit,
Address

Return Address
Stack

Top Of Stack

Instruction
Fetch

Branch Type

Size

Two Level Prediction Table

SHL

BTB Hit

Next Instruction
Fetch Address

Figure 1: A Schematic Representation of the Branch Prediction
Using Two-Level Prediction and Branch Target Buffers, As Pro-
posed By Yeh and Patt

tion (all stored in the BTB) the destination, fall-through or return
stack addressis selected as the next instruction fetch. For exam-

ple, thefirst time aparticular ‘return’ is entered into the BTB, the
BTB entry records that the new entry contains a return instruc-

tion. When thereturn isencountered again, the BTB immediately
indicatesthisisa‘return’, and selects the next branch destination

using the return stack. In this case, the ‘destination’ field of the
BTB is not used, because the return stack is more accurate for

procedure returns. Similar activity occurs for adirect or indirect
branch, except the ‘destination’ field of the BTB is used to fetch

the next instruction.

Again, conditional brancheshave smilar actions; however, the
‘prediction’ field inthe BTB isused to predict thelikely outcome
of conditional branch. Depending on the predicted outcome, the
stored ‘destination’ (which is alwaysthe ‘taken’ address) or the
fall-through address is used to fetch the next instruction. Then,
the history table is updated; this can occur several cycles later
with little penalty — see [21] for more details.

Thecritical pathinthisarchitectureisfor conditional branches.
The processor must offer the PC to the BTB, extract the destina-
tion and prediction fields and use this to select the appropriate
destination address. Concurrently, the prediction tableisindexed,
and the resulting prediction bit (which will be used for the next
branch) is stored in the BTB.

The BTB in al of our simulations has 512 entries, organized
asa 128 by 4-way set-associative cache using LRU replacement.
Each BTB entry correspondsto asingle branch, and containsa 6-
bit branch prediction history register specificto that branch. This
branch history register is usedto index the 1024 2-Bit pattern his-
tory table (PHT), using the PAS(6,16)[22] mechanism described
at the end of §2.

4 Experimental Methodology

We will pose several questions concerning branch architectures
and answer those questions using information from trace-based



#lnsn's # Breaks Conditional Branches Percentage of Breaksduring Tracing
Program Traced Traced Traced | InProgram | %Fall | %Taken || %CBr | %1J [ %Br | %Call | %Ret
avinn 5,240,969,586 | 476,254,227 430 1622 | 223 97.77 || 9830 | 0.02 | 0.40 0.64 | 0.64
compress 92,629,658 | 12,882,149 230 1124 | 31.75 68.25 || 8851 | 0.00 | 7.59 195 | 195
egntott 1,810,540,418 | 208,877,319 466 1536 | 9.70 90.30 || 9347 | 170 | 1.90 070 | 224
espresso 513,008,174 | 87,798,840 | 1,737 4,568 | 38.10 61.90 || 9325 | 0.20 | 1.88 229 | 239
gcc 143,737,915 | 22,960,184 | 7,640 16,294 | 40.58 5942 || 7885 | 286 | 575 6.04 | 6.49
li 1,355,059,387 | 239,416,514 556 2,428 | 52.70 47.30 63.94 | 224 | 7.74 | 1292 | 13.16
sc 1,450,134,411 | 303,554,400 | 1,471 4,478 | 33.12 66.88 || 85.96 | 0.98 | 2.62 518 | 5.26
cfront 19,001,390 3,056,060 | 5,783 15,509 | 46.82 53.18 || 73.45 | 217 | 6.40 872 | 9.26
do++ 86,457,511 | 15,178,598 421 1,639 | 43.14 56.86 54.43 | 15.04 | 2.03 6.77 | 21.73
idl 21,138,201 4,145,007 | 1,001 3,839 | 53.30 46.70 || 50.00 | 12.31 | 7.55 9.07 | 21.07
groff 41,522,284 6,687,063 | 2,511 7,434 | 45.83 54.17 66.12 | 4.80 | 7.80 8.77 | 1251

Table 1: Measured attributes of the traced programs. Columns marked ‘ Traced’ are measured during execution of the program.

simulation.

We instrumented the programs from the SPECint92 bench-
mark suite and object-oriented programs written in C++. Other
studieshave noted that FORTRAN programshave very predictable
branches, and thereis little one can do to improve that prediction;
we simulated the SPECfp92 benchmarksand found that wastrue.
We omit the results due to space. We used ATOM [18] to in-
strument the programs; dueto the structure of ATOM, we did not
need to record traces and could trace very long-running programs.
The programs were compiled on a DEC 3000-400 using either
the DEC C compiler or DEC C++ compiler. All programs were
compiled with standard optimization (- O). We constructed several
simulators to analyze the program. Typically the simulator was
run once to collect information on call and branch targets, and
a second time if we needed to use profile information from the
prior run. For the SPECint92 programs, we used the largest input
distributed with the SPECint92 suite.

The dternate programs include: cfront, version 3.0.1 of
the AT&T C++ language preprocessor written in C++, gr of f,
aversion of thedi t r of f text formater written in C++, i dl , a
C++ parser for the CORBA interface description language, and
db++, a version of the ‘deltablue’ constraint solution system
written in C++. We selected these programs because we found
that the SPECint92 suite did not typify the behavior seenin C++
programs [5], and our original goa was to understand the impact
of branch architectures on C++ programs. For these aternate
programs, we used sizable inputs we hoped would exercise a
large part of the program.

Table 1 showsthe basic statistics for the programs we instru-
mented. The first columnslists the number of instructions traced
and the second column indicates the number of breaksin control
flow that were simulated. Thethird column indicates the number
of unique conditiona branches in the program that we actually
executed during the trace; the fourth column showsthe total num-
ber of conditional branchesin each program. The fifth and sixth
columnsshow the percentageof conditional branchesthat are‘fall
through’ (not taken) or ‘taken’, respectively. Thelast fivecolumns
break down the number of breaksin control flow encountered dur-

ing tracing into five classes: conditional branches (CBr), indirect
jumps (1J), unconditional branches (Br), procedure calls (Call)
and procedurereturns (Ret).

Note that the C++ programs execute fewer conditional
branches than C programs. In part, this is caused by the in-
creased number of procedure cals in the C++ programs. In the
compiler we used, indirect jumps are used both to implement
indirect function callsand some swi t ch statements.

5 Improvements to BTB Architectures

Our god is to understand the performance improvement of
various branch architectures; this requires a metric to compare
one architecture to another. In [2], Bray and Flynn state:

Past attentionin BTB design focused on hit rate to describe
the performance, but hit rateis not all that important. How
often the instruction fetch unit predicts the correct address
is the important performanceissue. A branch can missin
the BTB and still be predicted correctly, since the default is
to goinline. Because miss rate does not accurately show
the performanceof the BTB, we use predict incorrectly asa
measure of performance.

While thisis true, we believe more accurate metrics are still
needed. There are two forms of pipeline penaties we are con-
cerned with: misfetching and misprediction. Each branch type
can bemisfetched; but only conditional branches, indirect function
calls and returns can be mispredicted. The penalty for misfetch-
ing is lessthan the penalty for misprediction. We may be willing
to misfetch more branches if it means we can reduce the num-
ber of mispredicted branches. Thus, we record the percentage of
misfetched branches (%MfB) and the percentage of mispredicted
branches (%MpB). It is often difficult to understand how these
metrics influence processor performance. Yeh & Patt defined a
formula for the branch execution penalty

%MfB x misfetch penalty + %MpB x misprediction penalty
100 ’

BEP =



PAS(6,16) GAg(1L) GAg(12)
[Program | %MfB | %MpB | BEP || %MTB | %MpB | BEP || %MfB | %MpB | BEP
avinn 003] 019|001 006] 025|001 006 021]001
compress | 000 | 1013 | 051 | 000 | 1036|052 | 000 | 9.86 | 049
eqntott 000| 139|007| 000| 129|006| 000| 128|006
espresso | 011 | 570|029 | 013 | 569 [029 || 013 | 507|025
gec 324 | 1473|077 | 562 | 1396|075 | 575 | 1238 | 0.68
l 029| 462|023| 033| 479|024| 033 401|020
o 016 | 314|016 025| 337|017 026| 309|016
cfront 640 | 1622|087 || 1071 | 1406 | 081 || 1103 | 11.49 | 0.68
do-++ 026 102|005| 046| 098|005 047 | 077|004
idl 089| 209|011| 116| 186 |010| 116 161|009
groff 359| 789|043| 519| 739]|042| 535| 582|034

Table 2: Effects of Decoupling the Pattern History Table from the Branch Target Buffer

PAS(6,16) GAg(1L) GAg(12)
[Program | %MfB | %MpB | BEP || %MTB | %MpB | BEP || %MfB | %MpB | BEP
avinn 000 024|001 000] 025[001] 000 02L]001
compress | 000 | 1013|051 | 000 | 1036|052 | 000 | 986 | 0.49
eqntott 000| 140|007| 000| 129|006| 000| 128|006
espresso | 008 | 755|038 | 010| 569 029 | 010| 507|025
gec 224 | 1343|069 | 38L| 1393|073 || 390 | 1235 | 0.66
l 003| 459|023| 004| 479|024| 004 401|020
o 008| 310|016 013| 336|017 | 014 | 309|016
cfront 440 1348072 749 1399|077 | 7.74| 1142 | 065
do-++ 007| 106|005| 012 098|005 012| 077|004
idl 065| 181|010| 08| 178|010| 085 | 153|009
groff 229| 659|035| 345| 7.06|039| 359| 549|031

Table 3: Effects of Only Storing ‘ Taken’ Branchesin the BTB

which reflects the average penalty suffered by a branch due to
misfetch and misprediction. So, a BEP of 0.5 means that, on
average, each branch takes an extra half cycle to execute; values
close to zero are desirable. We use this metric to provide a
more intuitive understanding of how the two penalties interact.
However, this binds us to a specific misfetch and misprediction
penalty — we have assumed a one cycle misfetch penaty and a
five cycle misprediction penalty.

We simulated the BTB-based architecture as proposed by Yeh
& Patt [21]. We choosetheir model becauseit has been described
clearly andindepth, making it easier to duplicatetheir smulations.
Despite that we are simulating a different base architecture and
used different compilers than used in [21], our results for their
architecture reflect the performance noted in [21].

5.1 Decoupled Prediction and Fall Throughs

One of the disadvantages of a coupled pattern history register,
as used in the BTB-based architecture, is that a branch may not
be in the BTB. The branch may suffer a misfetch penaty and
the outcome of the branch must be predicted using less accurate
static prediction methods. However, the information in the PHT
could have been used to predict the branch with more accuracy,

avoiding some branch mispredict penaties. If we used asingle
pattern history register, asoriginally proposed by Pan[14], we can
usethe PHT to predict the branch whether it isin the BTB or not.
In a comparison of prediction methods [22],Yeh et al compared
this method (which they termed the ‘GAg’ method) and other
prediction methods. They found that storing prediction registers
in the BTB gave a higher prediction accuracy [22]; however,
they did not account for the differences between misfetch and
misprediction.

In Table 2 we show more detail ed metrics for the organization
found to have the best prediction accuracy in [22] (PAS(6,16))
and the simpler method that can use the pattern history regis-
ter even when the branch is not located in the BTB (GAgQ). In
the PAs method, if a branch is not in the BTB, we use a static
backward-taken/forward-not-taken prediction. We simulated the
GAg method using the same history table size (GAg(11), 2048
entries) asthe PAsmethod, and one with alarger table (GAg(12),
40096 entries). Although the sum of the misfetched and mispre-
dicted branchesis higher for the GAg methods, making them look
worse, the GAg methods mi sfetch more often than they mispredict
—and mispredicting is more expensive than simply misfetching.
Thus, the branch execution penalty for our reference architecture
isactually smaller for the GAg methods.



This is not true for all programs; for example, conpr ess
has slightly worse performance using the GAg methods. When
conpr ess is compiled on the Alpha, a handful of branches
account for most of the executed branches — predicting these
branchesis extremely important for good performance.

5.2 Only Taken Allocate

We can further increase the effectiveness of the BTB by only stor-

ing ‘taken’ branchesinthe BTB. If abranchisnot inthe BTB and
it is“not taken,” it is not entered in the BTB. If the ‘not taken’

branch is aready in the BTB, the prediction information is up-
dated, but the LRU referenceinformation is not —thus, ‘ not taken’

brancheswill be displaced more frequently than ‘ taken’ branches.

Taken branches are always entered in the BTB. By not entering

fall-through branches, we avoid displacing prediction information
for other branches, and ‘not taken’ branches don't really benefit
from the BTB, since they fetch the following instruction. If a
branch is not found in the BTB, the architecture usesa static pre-

diction mechanism (backwards taken, forward not taken) that is
fairly accurate.!

Table 3 shows the performance of this method — this im-
proves the PAs method more than the GAg method, in part be-
cause the PAs is more sensitive to capacity misses in the BTB;
however, the GAg methods still have a lower overal BEP. Us-
ing PAs, all programs except espr esso have improved perfor-
mance. espr esso has many branches and the static prediction
for branchesnot foundinthe BTB isnot very effective. Weseeless
improvement for the GAg methodsthan the PAs method when we
only store taken branches. However, note that espr esso ben-
efits from the improved branch prediction available in the GAg
method. With this type of BTB organization, it becomes very
useful to have programs with many ‘not taken’ branches. In a
related paper [3], we show how programs can be restructured to
accomplishthis and the impact it has on branch architectures. We
profile the program behavior, recording the most likely direction
for each branch and then modify the program binary to favor
‘not taken’ branches. Pettis [16] and Bray [2] have performed
similar transformations, but for different goals and with different
outcomes.

Before leaving the BTB based architecture, a final observa-
tion regarding the C++ programs we traced is in order. Programs
using the object-oriented paradigm, which are becoming increas-
ingly common, appear to substitute indirect procedure calls and
returns for conditional branches — programmers use subclasses
to specidize behavior rather than conditionals. With a BTB, an
indirect procedure call can be predicted about as accurately as a
conditional branch, and a return-stack [8] predicts returns very
accurately without using the BTB. Thus, programs such asdb++
andi dl , which perform a tremendous number of function calls
have the lowest BEP of our sample programs. We should note
that although cf ront is written in C++, it is structured more
like a conventional C program internally, using many conditional
expression, and hasalarger BEP dueto this.

We could have only stored branches that violate the static prediction rule into
the BTB — however, this introduces many more misfetchx penalties for programs
with alarge number of ‘taken’ branches, suchas al vi nn andeqntt ot .

6 An Alternative Architecture

In the previous section, we used a realistic performance metric
to show that it's better to remove some functionality from the
BTB. Thisleavesonly the branch tag and likely destinationin the
BTB — everything except the instruction type information can be
removed. This meansthe BTB is only saving us from misfetch
penalties and mispredictions due to indirect jumps. There are
three reasons for using a BTB: (1) By virtue of an instructions
addressbeingin the BTB, weknow theinstructionisabranch; (2)
Accurate prediction information can be associated with eachBTB
entry and (3) The BTB provides pre-computed destination and
fall-through addressesfor unconditional and conditional branches.
The destination of return instructions can be predicted using a
return stack. We have argued that item (2) is not really needed.
If we can determine the instruction type (1) and the destination
address via other means, we may be able to dispense with the
BTB.

6.1 Computing the Branch Target

Traditional branch architectures use a PC-relative displacement;
Figure 2(a), modeled after the diagrams in [9], schematicaly
illustrates the process. In the encodings, information in lightly
outlined boxes is provided or computed at execution time; for
example, in Figure 2(a), the PC is available during execution.
Heavily-outlined boxes show the information provided by the
branchinstruction —in Figure 2(a), the instruction providesn + 1
bits. On the right-hand side, the solid boxes show the range of
instructions that can be addressed. A displacement stored in the
branch instruction is sign-extended to the size of the program
counter and added to the program counter. Each branch can
directly addressinstructionsat addressPC —2"~1—1... PC +
21, For simplicity, we assume the program counter is always
aligned on instruction boundaries, since we are chiefly concerned
with architectures with fixed-width instructions.

Katevenis [9] proposed several branch encodings where the
branch displacement field contains the least significant bits of
the branch target address. Figure 2(b), shows one such encoding.
Here, thesignbit for the offset and the carry for the addition of the
lower bitsare computed by the compiler (or linker) and encodedin
theinstruction. The lower bits can be immediately used to index
a cache; concurrent with the cachefetch, the higher order bits are
computed and matched against the address tags when the cache
fetch returns. If the tags are mismatched with the actual PC, an
instruction-cache miss occurs and the pipeline is stalled. During
the stall, the program counter is corrected. Since the instruction
must include both the carry and the sign bit, an n-bit displacement
canonly addressPC — 272 —1...PC + 22,

Figure 2(c) diagrams our proposed branch encoding. We use
an explicit displacement instead of a PC-relative displacement
becausewe need to calculate target addressesin time to use them
for the next instruction fetch and, as Katevenis noted, an adder
is usually too complex for this purpose. The r-bit displacement
is used as the lower order part of the destination address. Each
branch can then jump within a span of 2™ instructions. Every
direct branch within that 2™ instruction span can only branch



Target Range

1bit ==
 _N-1 bits N-1

PC | \
H PC

H 2 -1

Target ‘ ‘

(a) Traditional Sign-Extended PC-Relative Branch

: Target Range
I N-2bits
-
e ]
H N-2
Offset Carry Bit . 2
Sign Extend H PC
N-2
Target 2 -1

(b) Compiler-Assisted Sign-Extended Branch

Target Range
I Nbits
H N .
- —— 2 Thit “
PC l:l S e fre.
boundary

Offset
PC

Target

(c) Latched Branches (Not Sign-Extended)

Figure 2: Alternate Branch Methods

within that span. To branch outside that span, a indirect jump
must be used. Thisideais not new —asimilar mechanismis used
inthe Crisp processor [6]. Inthat architecture abranchdestination
is included in every decoded instruction, resulting in very large
instructions — 192 bits. However, the decoded instruction cache
must updated on each cycle; this may limit the processor cycle
time.

We rely on the program linker to compensate for the limited
branching — after a fashion, we are applying the “RISC design
philosophy” to branch architectures - we let the software (linker)
share the burden of making the hardware efficient and inexpen-
sive. The chief complication with an explicit displacement en-
coding is that PC-relative code relocation, important for shared
program libraries, is no longer possible without dynamic relink-
ing. However, consider using an architecture such as the DEC
Alpha AXP, which uses a 21-bit branch displacement for word-
aligned instructions in a 64-bit instruction address space. The
instruction space is broken into 2%=2=2, or = 2 trillion ‘seg-
ments' of 8BMB each. Branches within each 8MB segment use a
single explicit displacement. Each segment can be relocated to
=~ 2 trillion different locations without modification. Such large
segments would address almost al programs we have encoun-
tered. We can use simple profile-based optimizations to reduce
the frequency of inter-segment branches if a single program is
larger than the branch displacement. For smaller programs, inter-
segment branches will occur most frequently when using shared
code libraries, where the runtime destination is not known until
executiontime. Thesefunction callstypically usedindirect jumps
in existing operating systems.

In the past, segment architectures have been greeted with less
than overwhelming enthusiasm, due to limited segment sizes.
However, do don’t have segments—wejust havelimited branches.
It seemsunlikely that thesize of programswill grow without limit,
in part becauseadditional softwareimpliesadditional complexity.
Beyond somepoint, monolithic programsaredifficult to maintain.
Programslarger than 64K B are common; whether thiswill betrue
with programslarger than 8MIB remains to be seen.

Figure 3 shows our proposed instruction fetch architecture.
We assumethat the instruction cacheor the instruction itself con-
tains two instruction type bits, encoded as shown. The displace-
ment indicates the branch target displacement within the same
8MB code segment. This completely eliminates the misfetch
penalty as long as the branch target is predicted correctly for
conditional branches, indirect branches and returns. For indi-
rect branches, profile-based information can used to predict the
next instruction. If the program has not been profiled, or this
is an inter-segment branch, the program will always mispredict
indirect branches. Profile-based prediction of indirect function
calls has been shown to be effective and important for the C++
programming language [4], where such branchs occur frequently.
We assumereturn instructions use a 32-entry return address stack
for predicting the branch address.

In the BTB approach, the addressis offered to the instruction
cacheand the BTB. Both the BTB and the instruction cache must
respond in a single cycle. The pattern history table must also
respond in a single cycle, but the results of the BTB lookup are



Program Counter

Instruction
Fetch Program Counter

Address

Instruction Cache

Return Address
Stack

Top Of Stack

Instruction
Fetch
Size

‘ Opcode

CONCAT

[c]a] ermaoe

Two Level Prediction Table

Next Instruction
Fetch Address

Instruction Type
Non-branchinstruction

Return instruction

Conditional branch

Unconditional branch or indirect branch

Rlr|o|o|Q
Rlo|r|o|w

Figure 3: A Schematic Representation of the Proposed Branch
Prediction Using Two-Level Prediction And Explicit Displace-
ment Encoding

needed to predict the branch destination; thus, additional infor-
mationisstoredinthe BTB to ‘ cache' the prediction result for the
next branch (see Figure 1).

By comparison, in the proposed architecture, the instruction
addressisconcurrently offered to theinstruction cache, the pattern
history tableand an adder that computesthe ' fall-through’ address
(PC+4). All of these must respond by the end of the cycle, but no
additional updating or forwarding of the BTB or PHT is needed.
In most processors, instruction fetch limits the processor cycle
time. However, we interpose a single gate layer (OR) and a
multiplexor between theinstruction cacheand the next instruction
fetch address. We also eliminate the need for the BTB; this may
provide enough space for a two-level on-chip cache, which may
improve overall performance. Wearenot familiar enoughwith the
trade-off’s between the BTB and instruction cache accesstime to
affirm that the proposed architecture wouldn’t have alonger cycle
time. More detailed design and experimentation is needed.

6.2 Figuring out it’s a Branch

Recall that we need to know that an instruction is a branch with
an explicit displacement (e.g., call/branch/conditional branch) in
order to fetch using the explicit displacement. We assumed there
issufficient flexibility in theinstruction set architecture to encode
information directly into theinstruction. If thisisnot possible, the
additional information may berecorded with theinstruction cache;
i.e., whenabranchinstructionisdecoded, bits associatedwith that
instruction are set in the cacheline. Thiswould let the processor

use information about the decoded instruction the next time the
instruction is executed. Similar mechanisms are used in extant
architectures; e.g., the Alpha AX P 21064 stores branch prediction
information with words in the on-chip instruction cache. Dueto
lack of space, we do not explore this option further in this paper.

We did simulate an instruction type prediction table (ITPT) to
see if we could reduce the number of instruction bits needed to
predict branches. If two bits are available in the instruction, we
say theinstruction typeisknown for branchprediction. If asingle
uniquebit is availablein the instruction, we usethe bit to indicate
that the instruction is a branch, and use a table to determine the
branch type. We usethistable only when we encounter abranch,
asindicated by the unique bit in the instruction. If no unique bits
are available we use a table to predict the instruction type. We
usethistableto predict thetype of eachinstruction, sincewe have
no way of knowing whether it is a branch or not.

TheITPT issimilar to the branch pattern history table (PHT).
We used a direct-mapped table indexed by the program counter.
Each entry contains two bits, encoding the instruction type as
shown in Figure 3. In the branch type method, the table is
only updated after branches are decoded; in the instruction type
method, the table is updated after each instruction is decoded.
As expected, the more information encoded in theinstruction, the
more accurately theinstruction type can be determined, decreasing
the misfetch penalty. If the instruction type method can accu-
rately predict branches, it may be more useful than associating
information with the instruction cache, because the information
can befetched for future instructions. Theinstruction typetable
only relies on the program address.

7 Performance of Alternative Architecture

We considered three mechanisms to predict the type of an
instruction, with corresponding performance shown in Table 4.
When using the instruction type method, some non-branch in-
structions will be erroneously predicted to be branches. Thus,
an address other than the next addresswill be fetched, causing a
pipeline bubble. To simplify comparison, we assign al of these
delays, shown by the column labeled % Mfl, to the branchesin
the program. For example, if a program executes 90 | oad and
ten branch instructions, and we erroneously predict four | oads
to bebr anchs, the% Mfl would be 40%. Asbefore, the% MfB
column shows the number of misfetches due to branches, and the
% M pB columns showsthe number of mispredicted branch desti-
nations. The BEP column givesthebranch execution penalty for a
processor with 1-cycle misfetch and 5-cycle mispredict penalties.
We used the same 4096-entry two-bit tableto predict the outcome
of conditional branchesaswasusedin the GAg(12) methodin §5.

Using the branch type, we know that a branch is a branch;
we just don't know what kind of branch it is. Thus, non-branch
instructions are properly fetched, and the % Mfl column would
alwaysbe zero. Using theknown type, we candetect all branches
and properly determine the appropriate type. The only source of
penalties is mispredicting the outcome of conditional branches,
indirect jumps and returns. The return stack avoids most return
mispredictions.



16K-entry Instruction Type

4K -entry Branch Type Known

Program | %Mfl | %MfB | %MpB | BEP

%MfB | %MpB | BEP | %MpB | BEP

avinn 0.00 0.00 0.23 | 0.01 0.14 0.23 | 0.01 0.23 | 0.01
compress | 0.00 0.00 9.86 | 0.49 0.00 9.86 | 0.49 9.86 | 0.49
egntott 0.00 0.00 297 | 015 0.00 297 | 015 297 | 0.15
€spresso 0.36 0.36 525 | 0.27 0.06 525 | 0.26 525 | 0.26
gce 3.24 295 | 1342 | 0.73 163 | 1342 | 0.69 13.42 | 0.67
li 0.00 0.00 508 | 0.25 0.25 5.08 | 0.26 5.08 | 0.25
sC 0.16 0.16 359 | 0.18 0.15 359 | 0.18 359 | 0.18
cfront 412 384 | 1225 | 0.69 206 | 1225 | 0.63 12.25 | 0.61
db++ 0.00 001 | 1571 0.79 019 | 1571 | 0.79 1571 | 0.79
idl 1.09 095 | 1335 | 0.69 021 | 1335 0.67 13.35 | 0.67
groff 3.25 3.14 9.03 | 0.52 1.88 9.03 | 047 9.03 | 0.45

Table 4: Misprediction and Branch Execution Penalties for Different Instruction Encoddings (No static profiling)

16K-entry Instruction Type

4K -entry Branch Type Known

Program | %Mfl | %MfB | %MpB | BEP

%MfB | %MpB | BEP | %MpB | BEP

avinn 0.00 0.00 0.21 | 0.01 0.14 021 | 0.01 0.21 | 0.01
compress | 0.00 0.00 9.86 | 0.49 0.00 9.86 | 0.49 9.86 | 0.49
egntott 0.00 0.00 141 0.07 0.00 141 | 0.07 141 | 0.07
€spresso 0.36 0.36 5.09 | 0.26 0.06 5.09 | 0.26 5.09 | 0.25
gce 3.24 300 | 1191 | 0.66 168 | 1191 | 0.61 1191 | 0.60
li 0.00 0.00 3.68 | 0.18 0.25 3.68 | 0.19 3.68 | 0.18
sC 0.16 0.16 301 | 015 0.15 301 | 015 301 | 0.15
cfront 412 390 | 11.09 | 0.63 214 | 11.09 | 0.58 11.09 | 0.55
db++ 0.00 0.01 3.05| 015 0.25 3.05 | 0.16 3.05 | 0.15
idl 1.09 113 1.26 | 0.09 0.26 1.26 | 0.07 1.26 | 0.06
groff 3.25 3.20 489 | 0.31 194 4.89 | 0.26 489 | 0.24

Table 5: Misprediction and Branch Execution Penaltiesfor Different Instruction Encoddings(With static profiling)

If we have previously executed the program, we can use pro-
file based indirect jump prediction [4]. In Table 5, we use the
profile information from the same input to predict the indirect
jumps. The BTB-based architectures can predict indirect jJumps
without profiling. Profiling mainly benefits the C++ programs
because they execute many indirect jumps, although eqgnt ot t
also benefits due to the structure of the quick sort routine used in
that program.

In Tables 4 and 5, we varied the size of the instruction type
prediction tables used in the different methodsto have the perfor-
mance beroughly equivalent. Each entry in the tablerequirestwo
bit; thus, the 16K -entry table requires 32K bits (4K byte) and the
4K -entry table requires 8K bhits (1K byte) of memory. Using the
BEP metric, the branch type method is aimost as useful as the
known method using afairly small table. We were very surprised
that the instruction type method performed as well as it did.
This encourages us to investigate the possibility of associating
thisinformation with the entriesin the instruction cache.

There are some pendlties that we did not model, because we
don't know how expensivethey would be. If abranchispredicted
to be aret urn and we pop the return stack, we may need to
place the popped address back on the return stack. More im-
portantly, by mispredicting instructions to be branches, we may

issue instruction fetches from random parts of memory — these
should not causefaults until we actually determineif the instruc-
tion wasabranch. However, al processorsthat speculativly fetch
instructions may encounter this problem to some degree due to
mispredicted conditional branches.

7.1 Performance Comparison

In general, the BTB-based architecture has dlightly better per-
formance for most programs unless we use profiles to predict
indirect jumps. Thisis particularly truefor the C++ programsand
eqgnt ot t sincethose programs have many indirect jumps. After
profiling, all programs except eqnt ot t and db++ have better
performance; these programs have indirect function calls that are
very difficult to predict using static methods. For programs with
many conditional branches, (gcc, c¢f ront andgr of f ), thepro-
posed architecture performsbetter than the BTB architecture—the
512-entry BTB suffers from many capacity misses and conflicts
for these programs. However, even for these programs, the small
number of indirect function calls degrades performance unless
profiling is performed.

These results suggest that using a small BTB in conjunction
with the other mechanisms would be fruitful. The BTB would



only store indirect jumps, and could be very small, particularly if
we could include only indirect jumps that are difficult to predict
statically. Thesmaller BTB will probably not increasethe overall
processor cycletime. In related work [4], we found that indirect
jumpsin many programs can be accurately predicted using profile
information. For example, we encountered 547 unique indirect
jumpswhentracing i dl , but all of these are easy to predict. By
comparison, egqnt ot t anddb++ eachhadlessthat thirty indirect
jumps, but they are very difficult to predict statically.

8 Conclusions

Using metrics that more accurately reflect pipeline delays, we
haveshownthat the GAg' branch architectureisaseffectiveasthe
‘PAS architecture, and the GAg method useslesson-chip memory.
When using slightly more on-chip memory, the GAg’ canbemore
effective than PAs, while still being simpler to implement.

We have also shown that dispensing with the BTB entirely
and using an explicit branch displacement can be as effective
as having a large BTB. We believe that combining a small BTB
devotedto indirect jumpswouldresult inabranch architecturethat
usesfew resourcesand hasexcellent performance, particularly for
programs with alarge number of branches.

We believe our results apply to the current wide issue pro-
cessors being developed, where severa instructions are fetched
concurrently; the information needed by the proposed architec-
ture can be directly extracted from the instructions, or can be
stored in the instruction cache for an entire basic block. The use
of explicit branch displacements pose no serious problems for
current software in 64-bit architectures. Lastly, there is another
advantageto the | TPT-based designs— the proposed combination
of the branch prediction mechanismsdo not depend on the size of
theaddressrange. By comparison, the size of anon-direct mapped
BTB would increase as the instruction address range increases.

Thiswork wasfundedin part by NSF grant No. ASC-9217394.
We would like to thank Andy Glew and John Feehrer for com-
ments on earlier versions of the paper, and Alan Eustace and
Amitabh Srivastava for providing ATOM, which greatly simpli-
fied our work.

References

[1] T.BadlandJ.R.Larus. Branchpredictionfor free. In 1993 SSGPLAN
Confernce on Programming Language Design and mplementation.
ACM, June 1993.

[2] BrianBray and M. J. Flynn. Strategies for branchtarget buffers. In

24th Workshop on Microprogrammingand Microarchitecture, pages

42-49. ACM, ACM, 1991.

Brad Calder and Dirk Grunwald. Branch alignment. Technical

report, Univ. of Colorado, 1994. (In Preperation).

Brad Calder and Dirk Grunwald. Reducing indirect function call

overhead in c++ programs. In Proceedings of the 21st Annual

ACM Symposium on Principles of Programming Languages, Jan-

uary 1994.

[5] Brad Cader, Dirk Grunwald, and Benjamin Zorn. Quantifying be-
havioral differencesbetween C and C++ programs. Technical Report
CU-CS-698, Univ. of Colorado-Boulder, January 1994.

[3

]

[4]

[l

[6] David R. Ditzel and Hubert R. McLellan. Branch folding in the
CRISP microprocessor: Reducing branch delay to zero. In 14th
Annual International Symposium of Computer Architecture, pages
2-9. ACM, ACM, June 1987.

[7] J. A. Fisher and S. M. Freudenberger. Predicting conditional branch
directions from previous runs of a program. In Fifth International
Conference on Architectural Support for Programming Languages
and Operating Systems, pages 85-95, Boston, Mass., October 1992.
ACM.

[8] David R. Kaeli and Philip G. Emma. Branch history table prediction
of moving target branchesdueto subroutinereturns. In 18th Annual
International Symposium of Computer Architecture, pages 34—42.
ACM, May 1991.

ManolisG. H. Katevenis. Reduced I nstruction Set Computer Archi-
tecture for VLS. ACM Doctoral Dissertation Award Series. MIT
Press, 1985.

[10] Johnny K. F. Lee and Alan Jay Smith. Branch prediction strate-
gies and branch target buffer design. |IEEE Computer, 21(7):6-22,
January 1984.

[11] DavidJ. Lilja. Reducing the branch penalty in pipelined processors.
|EEE Computer, pages 47-55, July 1988.

[12] Scott McFarling. Combining branch predictors. TN 36, DEC-WRL,
June 1993.

[13] Scott McFarling and John Hennessy. Reducing the cost of branches.
In 13th Annual International Symposium of Computer Architecture,
pages 396-403. ACM, 1986.

[14] S.-T. Pan, K. So, and J. T. Rahmeh. Improving the accuracy of
dynamic branch prediction using branch correlation. In Fifth In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems, pages 76-84, Boston, Mass.,
October 1992. ACM.

[15] Chris Perlebergand Alan Jay Smith. Branchtarget buffer designand
optimization. |EEE Transactions on Computers, 42(4):396-412,
April 1993.

[16] Karl Pettisand Robert C. Hansen. Profile guided codepositioning. In
Proceedingsof the ACM SIGPLAN " 90 Conferenceon Programming
Language Design and Implementation, pages 16-27. ACM, ACM,
June 1990.

[17] J. E. Smith. A study of branch prediction strategies. In 8th Annual
Inter national Symposiumof Computer Architecture. ACM, 1981.

[18] Amitabh Srivastava and Alan Eustace. Atom: A systemfor building
customized program analysis tools. TN 41, DEC-WRL, January
1994. (To appear in PLDI’ 94).

[19] D. W. Wall. Limits of instruction-level paralelism. In Fourth In-
ternational Conference on Architectural Support for Programming
Languagesand Operating Systems, pages 176-188, Boston, Mass.,
1991.

[20] Tse-Yu Yehand Yae N. Patt. Alternative implementations of two-
level adaptive branch predictions. In 19th Annual International
Symposium of Computer Architecture, pages 124-134, Gold Coast,
Australia, May 1992. ACM.

[21] Tse-Yu Yeh and Yale N. Patt. A comprehensive instruction fetch
mechanism for a processor supporting speculative execution. In
25th Workshop on Microprogrammingand Microarchitecture, pages
129-139, Portland, Or, December 1992. ACM.

[22] Tse-Yu Yeh and Yale N. Patt. A comparison of dynamic branch
predictors that use two levels of branch history. In 20th Annual
Inter national Symposiumof Computer Architecture, pages257-266,
San Diego, CA, May 1993. ACM.

[9

]



