
Fast & Accurate Instruction Fetch and Branch Prediction

Brad Calder and Dirk Grunwald�

Department of Computer Science,
Campus Box 430, University of Colorado,

Boulder, CO 80309-0430
(Email:fcalder,grunwaldg@cs.colorado.edu)

Abstract

Accurate branch prediction is critical to performance; mispre-
dicted branches mean that ten’s of cycles may be wasted in
superscalar architectures. Architectures combining very effec-
tive branch prediction mechanisms coupled with modified branch
target buffers (BTB’s) have been proposed for wide-issue pro-
cessors. These mechanisms require considerable processor re-
sources. Concurrently, the larger address space of 64-bit ar-
chitectures introduce new obstacles and opportunities. A larger
address space means branch target buffers become more expen-
sive. In this paper, we show how a combination of less expensive
mechanisms can achieve better performance than BTB’s. This
combination relies on a number of design choices describedin the
paper. We used trace-drivensimulation to show that our proposed
design, which uses fewer resources,offers better performance than
previously proposed alternatives for most programs, and indicate
how to further improve this design.

1 Introduction

During a related study on the architectural features used by object-
oriented languages, such as C++, we examined several branch
architectures to see how many optimizations a compiler would
have to perform to efficiently execute object-oriented programs [4,
5]. We assumed future processors would be pipelined superscalar
architectures and would need to drastically reduce the occurence
of pipeline stalls for efficient execution.

Conventional processor architectures, particularly superscalar
designs, are extremely sensitive to control flow changes. A simpli-
fied processor pipeline can be divided into fetch, decode, execu-
tion, memory access and write stages. Changes in control flow,
be they conditional or unconditional branches, direct or indirect
function calls or returns, are not detected until those instructions

�This paper appears in the 1994 Intl. Symp. on Computer Architecture, Chicago,
Il. April, 1994

are decoded. To keep the pipeline fully utilized, processors typ-
ically fetch the address following the most recent address. If
the decoded instruction is a break in control flow, the previously
fetched instruction can not be used, and a new instruction must be
fetched, introducing a “pipeline bubble” or unused pipeline step.
This is called an instruction misfetch penalty.

The final destination for conditional branches, indirect func-
tion calls and returns are typically not available until the memory
access stage of the pipeline is completed. At this point the branch
has been completely evaluated in the execution stage. The pro-
gram counter is updated after the memory access stage. As with
instruction fetch, the processor may elect to fetch and decode in-
structions on the assumption that the eventual branch target can be
accurately predicted. If the processor mispredicts the branch des-
tination, those instructions fetched from the incorrect instruction
stream must be discarded, leading to several “pipeline bubbles.”
In practice, pipeline bubbles due to mispredicted breaks in con-
trol flow degrade a programs’ performance more than the misfetch
penalty. For example, the combined branch mispredict penalty for
both pipelines of the Digital AXP 21064 processor is 10 cycles.
By comparison, the AXP 21064 would lose only two instruction
issues from instruction misfetches. As processors issue more in-
structions concurrently, these penalties increase, and the instruc-
tion fetch penalty becomes increasingly important. It is more
likely that a branch will occur as more instructions are fetched per
cycle, decreasing the likelyhood that the “fall through” instruction
will be executed. Historically, processor design has focused on
correctly predicting conditional control flow changes, because it
is simple to implement and results in considerable savings. There
are a number of mechanisms to ameliorate the effect of uncertain
control flow changes, including static and dynamic branch pre-
diction, branch target buffers, delayed branches, prefetching both
targets, early branch resolution, branch bypassing and prepare-to-
branch mechanisms [11].

Likewise, there are a variety of mechanisms to reduce the in-
struction mispredict penalty, including delayed branches, where
the instruction following a branch is either always executed or
conditionally executed (“squashed”) depending on the branch tar-
get or a condition code, and branch target buffers. A branch target
buffer (BTB) is a cache storing the branch address and likely tar-
get address. When an instruction is fetched, the same address is
offered to the BTB; if there’s a match in the BTB, the next in-

struction is fetched using the target address specified in the BTB.
Originally, BTB’s were used as a mechanism for branch predic-
tion, effectively predicting the prior behavior of a branch – even
small BTB’s were found to be very effective [10, 15, 17].

More recently, there has been considerable interest in using
BTB’s to reduce instruction misfetch penalties; for example Yeh et
al [21] propose using a very large BTB to improve prediction ac-
curacy and reduce misfetch penalties. In fact, their BTB records a
multitude of useful information to support wide-issue processors.
Wide-issue processors fetch multiple instructions, roughly the size
of a basic block. If a basic block address is in the BTB, then the
basic block contains a break in control flow; Yeh & Patts’ design
includes additional information indicating whether the break is a
conditional branch, unconditional jump, indirect jump or a return
instruction. Each BTB entry also contains a per-basic block pat-
tern history register, used to index into a 2-level branch history
table [20, 22].

Architectures using BTB’s can issue a large number of instruc-
tions per cycle because of accurate branch and fetch prediction.
However, BTB’s lead to a complex architecture. In this paper,
we show how to achieve the same or better performance using
simpler techniques. We do this by:

� Decoupling branch prediction from the branch target buffer.
This allows us to accurately predict a conditional branch’s
direction even when a BTB miss occurs on the branch’s
address.

� Changing the BTB allocate policy. We measure the effect
of not storing “fall through” branches in the BTB. Architec-
tures usually have a ‘default’ rule for branches (e.g., back-
wards taken, forward not taken). By exploiting this default
behavior, we can make more effective use of the BTB. Fur-
thermore, various profile-guided code transformations can
make this modification very effective.

� Dispensing with the BTB all together. We propose a branch
architecture that selects the branch destination address from
the instruction.

As always, there are caveats to our paper architecture; we
discuss them at the end of the paper.

2 Background

In order to contrast our instruction fetch architecture to a proposed
aggressively designed architecture, we describe the instruction
fetch architecture proposed by Yeh et al, briefly describing their
branch prediction mechanism and the structure of their branch
target buffer (BTB). Their mechanism is a logical continuation of
currently proposed and implemented designs.

There are two sources of pipeline stalls we want to remove.
The first is the instruction misfetch penalty. This can be done a
number of ways; e.g, by using branch delay slots [13] or branch
target buffers [10, 11, 15, 17]. A BTB can eliminate misfetch stalls
by storing the branch destination. For unconditional branches, in-
direct jumps or functions calls, this destination can be immediately

fetched. For conditional branches, either the “fall-through” or the
destination stored in the BTB is selected; obviously, some form
of branch prediction is needed to select between the fall-through
and taken address. To differentiate between actions for the dif-
ferent branch types, we need to be able to identify the branch
type; thus, some BTB designs store the branch type in the BTB.
For function calls (either direct or indirect), the previous function
address is stored in the ‘destination’ field of the BTB. This can
also be done for return instructions, but a return stack [8] is much
more accurate. When using a return stack the BTB provides no
useful information for returns, but it does indicate the instruction
is a return instruction so the return stack can be used, avoiding the
misfetch penalty.

The other component of most branch architectures is some
mechanism to predict whether conditional branches are ‘taken’
or ‘not taken’ (i.e., the fall-through address is executed). Branch
prediction techniques are classified as static or dynamic. Static
branch prediction information does not change during the execu-
tion of a program, while dynamic prediction may change, reflect-
ing the time-varying activity of the program. Static methods range
from compile-time hueristics [1, 10, 13, 17] to profile-based meth-
ods [7, 13, 19]. In general, profile based prediction techniques
outperform compile-time prediction techniques or techniques that
use hueristics based on the direction of the branch target (forward
or backward) or instruction opcode.

While static prediction mechanisms, particularly profile-based
methods, accurately predict 80-90% of branches, modern com-
puter architectures increasingly depend on mechanisms that es-
timate future control flow decisions to increase performance, re-
quiring more accurate branch prediction mechanisms. Some ar-
chitectures use dynamic prediction. BTBs and branch history
tables, either alone or in combination, are two examples of dy-
namic prediction mechanisms.

A BTB can be used to predict conditional branches by storing
a destination address and predicting that instruction is executed.
The destination address can either be updated on each branch or
two-bit saturating counters [10] can be used to improve prediction
accuracy. By coupling the branch prediction information with
the BTB, we avoid both misfetch and misprediction penalties;
however, we can only do this for branches that have been entered
in the BTB. Typically, a BTB contains from 32 to 512 entries with
varying degrees of associativity. A BTB requires a lot of storage,
because it stores the address of the branch andthe address of the
probable destination. Some BTB’s also include additional storage
to encode the branch type and prediction information.

In the absence of a BTB, conditional branches can be pre-
dicted using much simpler mechanisms. A pattern history table
eliminates the site and target addresses from the table; hence the
table only predicts the direction for conditional branches. These
designs use the branch site address as an index into a table of
prediction bits. Since different branch addresses can index into
the same table entry, several conditional branches may share the
same prediction information. For example, in a 4096 entry table,
branches at addresses 0, 16384 and 32768 all map to the same
entry in the table. When a conditional branch at these addresses
is executed, the information for entry ‘0’ is used to predict the

branch direction, even if that information was recorded for one of
the other branches. The most common variants of this design are 1-
bit techniques that indicate the direction of the most recent branch
mapping to a given prediction bit, and 2-bit techniques that yield
much better performance for programs with loops [10, 13, 17].
The advantage of the pattern history tables is that they keep track
of very little information per conditional branch site and are very
effective in practice.

More recently Pan et al [14] and Yeh and Patt [20, 22] have
proposed branch-correlationor two-levelbranch prediction mech-
anisms. Although there are a number of variants, these mecha-
nisms generally combine the history of several recent branches
to predict the outcome of an incipient branch. The simplest ex-
ample is the so-called degenerate methodof Pan et al. When
using a 4096 entry table, the processor maintains a 12-bit shift
register (the pattern history register) that records the outcome of
previous branches. If the previous 12 branches that executed
were a sequence of three taken branches, six non-taken branches
and three more taken branches (TTTNNNNNNTTT), the register
might store the value 1110000001112, or 3591. This is used as an
index into the 4096-entry table, much as the program counter is
used in the previous method. This provides contextual informa-
tion about particular patterns of branches. Other methods combine
the pattern register with other information. McFarling [12] xor’s
the program counter with the history register, scattering the table
references and slightly improving performance.

Yeh and Patt [22] propose a number of alternatives. We focus
on their ‘PAs’ method, since they found it to be most effective.
Each branch in the BTB has a unique history register. In the
PAs(6,16) method, history registers are six-bits, holding the his-
tory of the previous six branch decisions for that specific branch;
thus, for a 512-entry BTB, 3072 bits are used for the pattern
history registers. When predicting the outcome of a particular
branch, bits <5:2> of the program counter and bits <5:0> of
the history register form a ten-bit index into the 1024-entry history
table; the history table contains 2048 bits.

In this paper, we are primarily concerned with 2-level predic-
tion methods; see [14, 20, 22] for details on their design. The
problem with using only a 2-level prediction method is that one
cannot avoid the fetch penalty associated with identifying what
type of break has occurred and computing its target address. Also,
the BTB can store the history of each branch, making branch pre-
diction more accurate. This is why BTB’s are useful for elimi-
nating instruction misfetch penalties, and why some architectures
combine both BTB’s and these accurate prediction mechanisms.

3 A BTB-based instruction Fetch Architecture

Figure 1 is a schematic representation of the branch prediction and
instruction fetch architecture suggested by Yeh and Patt [21]. The
current instruction address is concurrently offered to the instruc-
tion cache (not shown), providing the actual instruction, and to the
BTB. A 32-entry return address stack handles return instructions.
There are three important types of branches: direct or indirect
branches, conditional branches and function returns. Depending
on the branch type and the prefetched branch prediction informa-

Instruction
Fetch
Address

Instruction
Fetch
Size

ADD

Return Address
 Stack

Top Of Stack

MUX

MUX

MUX BTB Hit

Valid Bit

Address Tag

Target Address

Fall Through

History Register

Prediction Bit

Branch Type

SHL

T
w

o
L

ev
el

 P
re

di
ct

io
n

T
ab

le

Index

Next Instruction
 Fetch Address

Branch Target
 Buffer

Figure 1: A Schematic Representation of the Branch Prediction
Using Two-Level Prediction and Branch Target Buffers, As Pro-
posed By Yeh and Patt

tion (all stored in the BTB) the destination, fall-through or return
stack address is selected as the next instruction fetch. For exam-
ple, the first time a particular ‘return’ is entered into the BTB, the
BTB entry records that the new entry contains a return instruc-
tion. When the return is encountered again, the BTB immediately
indicates this is a ‘return’, and selects the next branch destination
using the return stack. In this case, the ‘destination’ field of the
BTB is not used, because the return stack is more accurate for
procedure returns. Similar activity occurs for a direct or indirect
branch, except the ‘destination’ field of the BTB is used to fetch
the next instruction.

Again, conditional branches have similar actions; however, the
‘prediction’ field in the BTB is used to predict the likely outcome
of conditional branch. Depending on the predicted outcome, the
stored ‘destination’ (which is always the ‘taken’ address) or the
fall-through address is used to fetch the next instruction. Then,
the history table is updated; this can occur several cycles later
with little penalty – see [21] for more details.

The critical path in this architecture is for conditional branches.
The processor must offer the PC to the BTB, extract the destina-
tion and prediction fields and use this to select the appropriate
destination address. Concurrently, the prediction table is indexed,
and the resulting prediction bit (which will be used for the next
branch) is stored in the BTB.

The BTB in all of our simulations has 512 entries, organized
as a 128 by 4-way set-associative cache using LRU replacement.
Each BTB entry corresponds to a single branch, and contains a 6-
bit branch prediction history register specific to that branch. This
branch history register is used to index the 1024 2-Bit pattern his-
tory table (PHT), using the PAs(6,16)[22] mechanism described
at the end of x2.

4 Experimental Methodology

We will pose several questions concerning branch architectures
and answer those questions using information from trace-based

Insn’s # Breaks Conditional Branches Percentage of Breaks during Tracing
Program Traced Traced Traced In Program %Fall %Taken %CBr %IJ %Br %Call %Ret

alvinn 5,240,969,586 476,254,227 430 1,622 2.23 97.77 98.30 0.02 0.40 0.64 0.64
compress 92,629,658 12,882,149 230 1,124 31.75 68.25 88.51 0.00 7.59 1.95 1.95
eqntott 1,810,540,418 208,877,319 466 1,536 9.70 90.30 93.47 1.70 1.90 0.70 2.24
espresso 513,008,174 87,798,840 1,737 4,568 38.10 61.90 93.25 0.20 1.88 2.29 2.39
gcc 143,737,915 22,960,184 7,640 16,294 40.58 59.42 78.85 2.86 5.75 6.04 6.49
li 1,355,059,387 239,416,514 556 2,428 52.70 47.30 63.94 2.24 7.74 12.92 13.16
sc 1,450,134,411 303,554,400 1,471 4,478 33.12 66.88 85.96 0.98 2.62 5.18 5.26
cfront 19,001,390 3,056,060 5,783 15,509 46.82 53.18 73.45 2.17 6.40 8.72 9.26
db++ 86,457,511 15,178,598 421 1,639 43.14 56.86 54.43 15.04 2.03 6.77 21.73
idl 21,138,201 4,145,007 1,001 3,839 53.30 46.70 50.00 12.31 7.55 9.07 21.07
groff 41,522,284 6,687,063 2,511 7,434 45.83 54.17 66.12 4.80 7.80 8.77 12.51

Table 1: Measured attributes of the traced programs. Columns marked ‘Traced’ are measured during execution of the program.

simulation.

We instrumented the programs from the SPECint92 bench-
mark suite and object-oriented programs written in C++. Other
studies have noted that FORTRAN programs have very predictable
branches, and there is little one can do to improve that prediction;
we simulated the SPECfp92 benchmarks and found that was true.
We omit the results due to space. We used ATOM [18] to in-
strument the programs; due to the structure of ATOM, we did not
need to record traces and could trace very long-running programs.
The programs were compiled on a DEC 3000-400 using either
the DEC C compiler or DEC C++ compiler. All programs were
compiled with standard optimization (-O). We constructed several
simulators to analyze the program. Typically the simulator was
run once to collect information on call and branch targets, and
a second time if we needed to use profile information from the
prior run. For the SPECint92 programs, we used the largest input
distributed with the SPECint92 suite.

The alternate programs include: cfront, version 3.0.1 of
the AT&T C++ language preprocessor written in C++, groff,
a version of the ditroff text formater written in C++, idl, a
C++ parser for the CORBA interface description language, and
db++, a version of the ‘deltablue’ constraint solution system
written in C++. We selected these programs because we found
that the SPECint92 suite did not typify the behavior seen in C++
programs [5], and our original goal was to understand the impact
of branch architectures on C++ programs. For these alternate
programs, we used sizable inputs we hoped would exercise a
large part of the program.

Table 1 shows the basic statistics for the programs we instru-
mented. The first columns lists the number of instructions traced
and the second column indicates the number of breaks in control
flow that were simulated. The third column indicates the number
of unique conditional branches in the program that we actually
executed during the trace; the fourth column shows the total num-
ber of conditional branches in each program. The fifth and sixth
columns show the percentageof conditional branches that are ‘fall
through’ (not taken) or ‘taken’, respectively. The last five columns
break down the number of breaks in control flow encountered dur-

ing tracing into five classes: conditional branches (CBr), indirect
jumps (IJ), unconditional branches (Br), procedure calls (Call)
and procedure returns (Ret).

Note that the C++ programs execute fewer conditional
branches than C programs. In part, this is caused by the in-
creased number of procedure calls in the C++ programs. In the
compiler we used, indirect jumps are used both to implement
indirect function calls and some switch statements.

5 Improvements to BTB Architectures

Our goal is to understand the performance improvement of
various branch architectures; this requires a metric to compare
one architecture to another. In [2], Bray and Flynn state:

Past attention in BTB design focused on hit rate to describe
the performance, but hit rate is not all that important. How
often the instruction fetch unit predicts the correct address
is the important performance issue. A branch can miss in
the BTB and still be predicted correctly, since the default is
to go inline. Because miss rate does not accurately show
the performance of the BTB, we use predict incorrectly as a
measure of performance.

While this is true, we believe more accurate metrics are still
needed. There are two forms of pipeline penalties we are con-
cerned with: misfetching and misprediction. Each branch type
can be misfetched;but only conditional branches, indirect function
calls and returns can be mispredicted. The penalty for misfetch-
ing is less than the penalty for misprediction. We may be willing
to misfetch more branches if it means we can reduce the num-
ber of mispredicted branches. Thus, we record the percentage of
misfetched branches (%MfB) and the percentage of mispredicted
branches (%MpB). It is often difficult to understand how these
metrics influence processor performance. Yeh & Patt defined a
formula for the branch execution penalty

BEP =
%MfB � misfetch penalty+ %MpB� misprediction penalty

100
;

PAs(6,16) GAg(11) GAg(12)
Program %MfB %MpB BEP %MfB %MpB BEP %MfB %MpB BEP

alvinn 0.03 0.19 0.01 0.06 0.25 0.01 0.06 0.21 0.01
compress 0.00 10.13 0.51 0.00 10.36 0.52 0.00 9.86 0.49
eqntott 0.00 1.39 0.07 0.00 1.29 0.06 0.00 1.28 0.06
espresso 0.11 5.70 0.29 0.13 5.69 0.29 0.13 5.07 0.25
gcc 3.24 14.73 0.77 5.62 13.96 0.75 5.75 12.38 0.68
li 0.29 4.62 0.23 0.33 4.79 0.24 0.33 4.01 0.20
sc 0.16 3.14 0.16 0.25 3.37 0.17 0.26 3.09 0.16
cfront 6.40 16.22 0.87 10.71 14.06 0.81 11.03 11.49 0.68
db++ 0.26 1.02 0.05 0.46 0.98 0.05 0.47 0.77 0.04
idl 0.89 2.09 0.11 1.16 1.86 0.10 1.16 1.61 0.09
groff 3.59 7.89 0.43 5.19 7.39 0.42 5.35 5.82 0.34

Table 2: Effects of Decoupling the Pattern History Table from the Branch Target Buffer

PAs(6,16) GAg(11) GAg(12)
Program %MfB %MpB BEP %MfB %MpB BEP %MfB %MpB BEP

alvinn 0.00 0.24 0.01 0.00 0.25 0.01 0.00 0.21 0.01
compress 0.00 10.13 0.51 0.00 10.36 0.52 0.00 9.86 0.49
eqntott 0.00 1.40 0.07 0.00 1.29 0.06 0.00 1.28 0.06
espresso 0.08 7.55 0.38 0.10 5.69 0.29 0.10 5.07 0.25
gcc 2.24 13.43 0.69 3.81 13.93 0.73 3.90 12.35 0.66
li 0.03 4.59 0.23 0.04 4.79 0.24 0.04 4.01 0.20
sc 0.08 3.10 0.16 0.13 3.36 0.17 0.14 3.09 0.16
cfront 4.40 13.48 0.72 7.49 13.99 0.77 7.74 11.42 0.65
db++ 0.07 1.06 0.05 0.12 0.98 0.05 0.12 0.77 0.04
idl 0.65 1.81 0.10 0.85 1.78 0.10 0.85 1.53 0.09
groff 2.29 6.59 0.35 3.45 7.06 0.39 3.59 5.49 0.31

Table 3: Effects of Only Storing ‘Taken’ Branches in the BTB

which reflects the average penalty suffered by a branch due to
misfetch and misprediction. So, a BEP of 0:5 means that, on
average, each branch takes an extra half cycle to execute; values
close to zero are desirable. We use this metric to provide a
more intuitive understanding of how the two penalties interact.
However, this binds us to a specific misfetch and misprediction
penalty – we have assumed a one cycle misfetch penalty and a
five cycle misprediction penalty.

We simulated the BTB-based architecture as proposed by Yeh
& Patt [21]. We choose their model because it has been described
clearly and in depth,making it easier to duplicate their simulations.
Despite that we are simulating a different base architecture and
used different compilers than used in [21], our results for their
architecture reflect the performance noted in [21].

5.1 Decoupled Prediction and Fall Throughs

One of the disadvantages of a coupled pattern history register,
as used in the BTB-based architecture, is that a branch may not
be in the BTB. The branch may suffer a misfetch penalty and
the outcome of the branch must be predicted using less accurate
static prediction methods. However, the information in the PHT
could have been used to predict the branch with more accuracy,

avoiding some branch mispredict penalties. If we used a single
pattern history register, as originally proposed by Pan [14], we can
use the PHT to predict the branch whether it is in the BTB or not.
In a comparison of prediction methods [22],Yeh et al compared
this method (which they termed the ‘GAg’ method) and other
prediction methods. They found that storing prediction registers
in the BTB gave a higher prediction accuracy [22]; however,
they did not account for the differences between misfetch and
misprediction.

In Table 2 we show more detailed metrics for the organization
found to have the best prediction accuracy in [22] (PAs(6,16))
and the simpler method that can use the pattern history regis-
ter even when the branch is not located in the BTB (GAg). In
the PAs method, if a branch is not in the BTB, we use a static
backward-taken/forward-not-taken prediction. We simulated the
GAg method using the same history table size (GAg(11), 2048
entries) as the PAs method, and one with a larger table (GAg(12),
4096 entries). Although the sum of the misfetched and mispre-
dicted branches is higher for the GAg methods, making them look
worse, the GAg methods misfetch more often than they mispredict
– and mispredicting is more expensive than simply misfetching.
Thus, the branch execution penalty for our reference architecture
is actually smaller for the GAg methods.

This is not true for all programs; for example, compress
has slightly worse performance using the GAg methods. When
compress is compiled on the Alpha, a handful of branches
account for most of the executed branches – predicting these
branches is extremely important for good performance.

5.2 Only Taken Allocate

We can further increase the effectiveness of the BTB by only stor-
ing ‘taken’ branches in the BTB. If a branch is not in the BTB and
it is “not taken,” it is not entered in the BTB. If the ‘not taken’
branch is already in the BTB, the prediction information is up-
dated, but the LRU reference information is not – thus, ‘not taken’
branches will be displaced more frequently than ‘taken’ branches.
Taken branches are always entered in the BTB. By not entering
fall-through branches, we avoid displacing prediction information
for other branches, and ‘not taken’ branches don’t really benefit
from the BTB, since they fetch the following instruction. If a
branch is not found in the BTB, the architecture uses a static pre-
diction mechanism (backwards taken, forward not taken) that is
fairly accurate.1

Table 3 shows the performance of this method – this im-
proves the PAs method more than the GAg method, in part be-
cause the PAs is more sensitive to capacity misses in the BTB;
however, the GAg methods still have a lower overall BEP. Us-
ing PAs, all programs except espresso have improved perfor-
mance. espresso has many branches and the static prediction
for branches not found in the BTB is not very effective. We see less
improvement for the GAg methods than the PAs method when we
only store taken branches. However, note that espresso ben-
efits from the improved branch prediction available in the GAg
method. With this type of BTB organization, it becomes very
useful to have programs with many ‘not taken’ branches. In a
related paper [3], we show how programs can be restructured to
accomplish this and the impact it has on branch architectures. We
profile the program behavior, recording the most likely direction
for each branch and then modify the program binary to favor
‘not taken’ branches. Pettis [16] and Bray [2] have performed
similar transformations, but for different goals and with different
outcomes.

Before leaving the BTB based architecture, a final observa-
tion regarding the C++ programs we traced is in order. Programs
using the object-oriented paradigm, which are becoming increas-
ingly common, appear to substitute indirect procedure calls and
returns for conditional branches – programmers use subclasses
to specialize behavior rather than conditionals. With a BTB, an
indirect procedure call can be predicted about as accurately as a
conditional branch, and a return-stack [8] predicts returns very
accurately without using the BTB. Thus, programs such as db++
and idl, which perform a tremendous number of function calls
have the lowest BEP of our sample programs. We should note
that although cfront is written in C++, it is structured more
like a conventional C program internally, using many conditional
expression, and has a larger BEP due to this.

1We could have only stored branches that violate the static prediction rule into
the BTB – however, this introduces many more misfetchx penalties for programs
with a large number of ‘taken’ branches, such as alvinn and eqnttot.

6 An Alternative Architecture

In the previous section, we used a realistic performance metric
to show that it’s better to remove some functionality from the
BTB. This leaves only the branch tag and likely destination in the
BTB – everything except the instruction type information can be
removed. This means the BTB is only saving us from misfetch
penalties and mispredictions due to indirect jumps. There are
three reasons for using a BTB: (1) By virtue of an instructions
address being in the BTB, we know the instruction is a branch; (2)
Accurate prediction information can be associated with each BTB
entry and (3) The BTB provides pre-computed destination and
fall-through addresses for unconditional and conditional branches.
The destination of return instructions can be predicted using a
return stack. We have argued that item (2) is not really needed.
If we can determine the instruction type (1) and the destination
address via other means, we may be able to dispense with the
BTB.

6.1 Computing the Branch Target

Traditional branch architectures use a PC-relative displacement;
Figure 2(a), modeled after the diagrams in [9], schematically
illustrates the process. In the encodings, information in lightly
outlined boxes is provided or computed at execution time; for
example, in Figure 2(a), the PC is available during execution.
Heavily-outlined boxes show the information provided by the
branch instruction – in Figure 2(a), the instruction provides n+ 1
bits. On the right-hand side, the solid boxes show the range of
instructions that can be addressed. A displacement stored in the
branch instruction is sign-extended to the size of the program
counter and added to the program counter. Each branch can
directly address instructions at addressPC� 2n�1

� 1 : : : PC+
2n�1. For simplicity, we assume the program counter is always
aligned on instruction boundaries, since we are chiefly concerned
with architectures with fixed-width instructions.

Katevenis [9] proposed several branch encodings where the
branch displacement field contains the least significant bits of
the branch target address. Figure 2(b), shows one such encoding.
Here, the sign bit for the offset and the carry for the addition of the
lower bits are computed by the compiler (or linker) and encodedin
the instruction. The lower bits can be immediately used to index
a cache; concurrent with the cache fetch, the higher order bits are
computed and matched against the address tags when the cache
fetch returns. If the tags are mismatched with the actual PC, an
instruction-cache miss occurs and the pipeline is stalled. During
the stall, the program counter is corrected. Since the instruction
must include both the carry and the sign bit, an n-bit displacement
can only addressPC � 2n�2

� 1 : : : PC + 2n�2.

Figure 2(c) diagrams our proposed branch encoding. We use
an explicit displacement instead of a PC-relative displacement
because we need to calculate target addresses in time to use them
for the next instruction fetch and, as Katevenis noted, an adder
is usually too complex for this purpose. The n-bit displacement
is used as the lower order part of the destination address. Each
branch can then jump within a span of 2n instructions. Every
direct branch within that 2n instruction span can only branch

1 bit

s

PC

Offset

Target

Sign Extend

PC

Target Range

N−1 bits

+2

N−1

 2 − 1

N−1

(a) Traditional Sign-Extended PC-Relative Branch

PC

Offset

Target

Sign Extend
s

c
Carry Bit

N−2 bits

PC

Target Range

+2

N−2

 2 − 1

N−2

(b) Compiler-Assisted Sign-Extended Branch

PC

Offset

Target

PC

Target Range

N bits

N

2

2 −bit

boundary

N

(c) Latched Branches (Not Sign-Extended)

Figure 2: Alternate Branch Methods

within that span. To branch outside that span, a indirect jump
must be used. This idea is not new – a similar mechanism is used
in the Crisp processor [6]. In that architecture a branch destination
is included in every decoded instruction, resulting in very large
instructions – 192 bits. However, the decoded instruction cache
must updated on each cycle; this may limit the processor cycle
time.

We rely on the program linker to compensate for the limited
branching – after a fashion, we are applying the “RISC design
philosophy” to branch architectures - we let the software (linker)
share the burden of making the hardware efficient and inexpen-
sive. The chief complication with an explicit displacement en-
coding is that PC-relative code relocation, important for shared
program libraries, is no longer possible without dynamic relink-
ing. However, consider using an architecture such as the DEC
Alpha AXP, which uses a 21-bit branch displacement for word-
aligned instructions in a 64-bit instruction address space. The
instruction space is broken into 264�21�2, or � 2 trillion ‘seg-
ments’ of 8MB each. Branches within each 8MB segment use a
single explicit displacement. Each segment can be relocated to
� 2 trillion different locations without modification. Such large
segments would address almost all programs we have encoun-
tered. We can use simple profile-based optimizations to reduce
the frequency of inter-segment branches if a single program is
larger than the branch displacement. For smaller programs, inter-
segment branches will occur most frequently when using shared
code libraries, where the runtime destination is not known until
execution time. These function calls typically used indirect jumps
in existing operating systems.

In the past, segment architectures have been greeted with less
than overwhelming enthusiasm, due to limited segment sizes.
However, do don’t have segments – we just have limited branches.
It seems unlikely that the size of programs will grow without limit,
in part because additional software implies additional complexity.
Beyond some point, monolithic programs are difficult to maintain.
Programs larger than 64KB are common; whether this will be true
with programs larger than 8MB remains to be seen.

Figure 3 shows our proposed instruction fetch architecture.
We assume that the instruction cache or the instruction itself con-
tains two instruction type bits, encoded as shown. The displace-
ment indicates the branch target displacement within the same
8MB code segment. This completely eliminates the misfetch
penalty as long as the branch target is predicted correctly for
conditional branches, indirect branches and returns. For indi-
rect branches, profile-based information can used to predict the
next instruction. If the program has not been profiled, or this
is an inter-segment branch, the program will always mispredict
indirect branches. Profile-based prediction of indirect function
calls has been shown to be effective and important for the C++
programming language [4], where such branchs occur frequently.
We assume return instructions use a 32-entry return address stack
for predicting the branch address.

In the BTB approach, the address is offered to the instruction
cache and the BTB. Both the BTB and the instruction cache must
respond in a single cycle. The pattern history table must also
respond in a single cycle, but the results of the BTB lookup are

Instruction
Fetch
Address

Instruction
Fetch
Size

ADD

Return Address
 Stack

Top Of Stack

T
w

o
L

ev
el

 P
re

di
ct

io
n

T
ab

le

MUX

Next Instruction
 Fetch Address

Instruction Cache

Opcode Encoded Disp.C R

AND

OR
3 2 1 0

0

1

Program Counter

Program Counter

CONCAT

C R Instruction Type
0 0 Non-branch instruction
0 1 Return instruction
1 0 Conditional branch
1 1 Unconditional branch or indirect branch

Figure 3: A Schematic Representation of the Proposed Branch
Prediction Using Two-Level Prediction And Explicit Displace-
ment Encoding

needed to predict the branch destination; thus, additional infor-
mation is stored in the BTB to ‘cache’ the prediction result for the
next branch (see Figure 1).

By comparison, in the proposed architecture, the instruction
address is concurrently offered to the instruction cache, the pattern
history table and an adder that computes the ‘fall-through’ address
(PC+4). All of these must respond by the end of the cycle, but no
additional updating or forwarding of the BTB or PHT is needed.
In most processors, instruction fetch limits the processor cycle
time. However, we interpose a single gate layer (OR) and a
multiplexor between the instruction cache and the next instruction
fetch address. We also eliminate the need for the BTB; this may
provide enough space for a two-level on-chip cache, which may
improve overall performance. We are not familiar enough with the
trade-off’s between the BTB and instruction cache access time to
affirm that the proposed architecture wouldn’t have a longer cycle
time. More detailed design and experimentation is needed.

6.2 Figuring out it's a Branch

Recall that we need to know that an instruction is a branch with
an explicit displacement (e.g., call/branch/conditional branch) in
order to fetch using the explicit displacement. We assumed there
is sufficient flexibility in the instruction set architecture to encode
information directly into the instruction. If this is not possible, the
additional information may be recorded with the instruction cache;
i.e., when a branch instruction is decoded, bits associatedwith that
instruction are set in the cache line. This would let the processor

use information about the decoded instruction the next time the
instruction is executed. Similar mechanisms are used in extant
architectures; e.g., the Alpha AXP 21064 stores branch prediction
information with words in the on-chip instruction cache. Due to
lack of space, we do not explore this option further in this paper.

We did simulate an instruction type prediction table (ITPT) to
see if we could reduce the number of instruction bits needed to
predict branches. If two bits are available in the instruction, we
say the instruction type is known for branch prediction. If a single
unique bit is available in the instruction, we use the bit to indicate
that the instruction is a branch, and use a table to determine the
branch type. We use this table only when we encounter a branch,
as indicated by the unique bit in the instruction. If no unique bits
are available we use a table to predict the instruction type. We
use this table to predict the type of each instruction, since we have
no way of knowing whether it is a branch or not.

The ITPT is similar to the branch pattern history table (PHT).
We used a direct-mapped table indexed by the program counter.
Each entry contains two bits, encoding the instruction type as
shown in Figure 3. In the branch type method, the table is
only updated after branches are decoded; in the instruction type
method, the table is updated after each instruction is decoded.
As expected, the more information encoded in the instruction, the
more accurately the instruction type can be determined,decreasing
the misfetch penalty. If the instruction type method can accu-
rately predict branches, it may be more useful than associating
information with the instruction cache, because the information
can be fetched for future instructions. The instruction type table
only relies on the program address.

7 Performance of Alternative Architecture

We considered three mechanisms to predict the type of an
instruction, with corresponding performance shown in Table 4.
When using the instruction type method, some non-branch in-
structions will be erroneously predicted to be branches. Thus,
an address other than the next address will be fetched, causing a
pipeline bubble. To simplify comparison, we assign all of these
delays, shown by the column labeled %MfI, to the branches in
the program. For example, if a program executes 90 load and
ten branch instructions, and we erroneously predict four loads
to be branchs, the %MfI would be 40%. As before, the %MfB
column shows the number of misfetches due to branches, and the
%MpB columns shows the number of mispredicted branch desti-
nations. The BEP column gives the branch execution penalty for a
processor with 1-cycle misfetch and 5-cycle mispredict penalties.
We used the same 4096-entry two-bit table to predict the outcome
of conditional branches as was used in the GAg(12) method in x5.

Using the branch type, we know that a branch is a branch;
we just don’t know what kind of branch it is. Thus, non-branch
instructions are properly fetched, and the %MfI column would
always be zero. Using the known type, we can detect all branches
and properly determine the appropriate type. The only source of
penalties is mispredicting the outcome of conditional branches,
indirect jumps and returns. The return stack avoids most return
mispredictions.

16K-entry Instruction Type 4K-entry Branch Type Known
Program %MfI %MfB %MpB BEP %MfB %MpB BEP %MpB BEP

alvinn 0.00 0.00 0.23 0.01 0.14 0.23 0.01 0.23 0.01
compress 0.00 0.00 9.86 0.49 0.00 9.86 0.49 9.86 0.49
eqntott 0.00 0.00 2.97 0.15 0.00 2.97 0.15 2.97 0.15
espresso 0.36 0.36 5.25 0.27 0.06 5.25 0.26 5.25 0.26
gcc 3.24 2.95 13.42 0.73 1.63 13.42 0.69 13.42 0.67
li 0.00 0.00 5.08 0.25 0.25 5.08 0.26 5.08 0.25
sc 0.16 0.16 3.59 0.18 0.15 3.59 0.18 3.59 0.18
cfront 4.12 3.84 12.25 0.69 2.06 12.25 0.63 12.25 0.61
db++ 0.00 0.01 15.71 0.79 0.19 15.71 0.79 15.71 0.79
idl 1.09 0.95 13.35 0.69 0.21 13.35 0.67 13.35 0.67
groff 3.25 3.14 9.03 0.52 1.88 9.03 0.47 9.03 0.45

Table 4: Misprediction and Branch Execution Penalties for Different Instruction Encoddings (No static profiling)

16K-entry Instruction Type 4K-entry Branch Type Known
Program %MfI %MfB %MpB BEP %MfB %MpB BEP %MpB BEP

alvinn 0.00 0.00 0.21 0.01 0.14 0.21 0.01 0.21 0.01
compress 0.00 0.00 9.86 0.49 0.00 9.86 0.49 9.86 0.49
eqntott 0.00 0.00 1.41 0.07 0.00 1.41 0.07 1.41 0.07
espresso 0.36 0.36 5.09 0.26 0.06 5.09 0.26 5.09 0.25
gcc 3.24 3.00 11.91 0.66 1.68 11.91 0.61 11.91 0.60
li 0.00 0.00 3.68 0.18 0.25 3.68 0.19 3.68 0.18
sc 0.16 0.16 3.01 0.15 0.15 3.01 0.15 3.01 0.15
cfront 4.12 3.90 11.09 0.63 2.14 11.09 0.58 11.09 0.55
db++ 0.00 0.01 3.05 0.15 0.25 3.05 0.16 3.05 0.15
idl 1.09 1.13 1.26 0.09 0.26 1.26 0.07 1.26 0.06
groff 3.25 3.20 4.89 0.31 1.94 4.89 0.26 4.89 0.24

Table 5: Misprediction and Branch Execution Penalties for Different Instruction Encoddings (With static profiling)

If we have previously executed the program, we can use pro-
file based indirect jump prediction [4]. In Table 5, we use the
profile information from the same input to predict the indirect
jumps. The BTB-based architectures can predict indirect jumps
without profiling. Profiling mainly benefits the C++ programs
because they execute many indirect jumps, although eqntott
also benefits due to the structure of the quick sort routine used in
that program.

In Tables 4 and 5, we varied the size of the instruction type
prediction tables used in the different methods to have the perfor-
mance be roughly equivalent. Each entry in the table requires two
bit; thus, the 16K-entry table requires 32K bits (4K byte) and the
4K-entry table requires 8K bits (1K byte) of memory. Using the
BEP metric, the branch type method is almost as useful as the
known method using a fairly small table. We were very surprised
that the instruction type method performed as well as it did.
This encourages us to investigate the possibility of associating
this information with the entries in the instruction cache.

There are some penalties that we did not model, because we
don’t know how expensive they would be. If a branch is predicted
to be a return and we pop the return stack, we may need to
place the popped address back on the return stack. More im-
portantly, by mispredicting instructions to be branches, we may

issue instruction fetches from random parts of memory – these
should not cause faults until we actually determine if the instruc-
tion was a branch. However, all processors that speculativly fetch
instructions may encounter this problem to some degree due to
mispredicted conditional branches.

7.1 Performance Comparison

In general, the BTB-based architecture has slightly better per-
formance for most programs unless we use profiles to predict
indirect jumps. This is particularly true for the C++ programs and
eqntott since those programs have many indirect jumps. After
profiling, all programs except eqntott and db++ have better
performance; these programs have indirect function calls that are
very difficult to predict using static methods. For programs with
many conditional branches, (gcc, cfront andgroff), the pro-
posed architecture performs better than the BTB architecture – the
512-entry BTB suffers from many capacity misses and conflicts
for these programs. However, even for these programs, the small
number of indirect function calls degrades performance unless
profiling is performed.

These results suggest that using a small BTB in conjunction
with the other mechanisms would be fruitful. The BTB would

only store indirect jumps, and could be very small, particularly if
we could include only indirect jumps that are difficult to predict
statically. The smaller BTB will probably not increase the overall
processor cycle time. In related work [4], we found that indirect
jumps in many programs can be accurately predicted using profile
information. For example, we encountered 547 unique indirect
jumps when tracing idl, but all of these are easy to predict. By
comparison,eqntott anddb++ each had less that thirty indirect
jumps, but they are very difficult to predict statically.

8 Conclusions

Using metrics that more accurately reflect pipeline delays, we
have shown that the ‘GAg’ branch architecture is as effective as the
‘PAs’ architecture, and the GAg method uses less on-chip memory.
When using slightly more on-chip memory, the ‘GAg’ can be more
effective than PAs, while still being simpler to implement.

We have also shown that dispensing with the BTB entirely
and using an explicit branch displacement can be as effective
as having a large BTB. We believe that combining a small BTB
devoted to indirect jumps would result in a branch architecture that
uses few resources and has excellent performance, particularly for
programs with a large number of branches.

We believe our results apply to the current wide issue pro-
cessors being developed, where several instructions are fetched
concurrently; the information needed by the proposed architec-
ture can be directly extracted from the instructions, or can be
stored in the instruction cache for an entire basic block. The use
of explicit branch displacements pose no serious problems for
current software in 64-bit architectures. Lastly, there is another
advantage to the ITPT-based designs – the proposed combination
of the branch prediction mechanisms do not depend on the size of
the address range. By comparison, the size of a non-direct mapped
BTB would increase as the instruction address range increases.

This work was funded in part by NSF grant No. ASC-9217394.
We would like to thank Andy Glew and John Feehrer for com-
ments on earlier versions of the paper, and Alan Eustace and
Amitabh Srivastava for providing ATOM, which greatly simpli-
fied our work.

References

[1] T. Ball and J. R. Larus. Branch prediction for free. In 1993 SIGPLAN
Confernce on Programming Language Design and Implementation.
ACM, June 1993.

[2] Brian Bray and M. J. Flynn. Strategies for branch target buffers. In
24th Workshopon Microprogrammingand Microarchitecture, pages
42–49. ACM, ACM, 1991.

[3] Brad Calder and Dirk Grunwald. Branch alignment. Technical
report, Univ. of Colorado, 1994. (In Preperation).

[4] Brad Calder and Dirk Grunwald. Reducing indirect function call
overhead in c++ programs. In Proceedings of the 21st Annual
ACM Symposium on Principles of Programming Languages, Jan-
uary 1994.

[5] Brad Calder, Dirk Grunwald, and Benjamin Zorn. Quantifying be-
havioral differences betweenC and C++ programs. Technical Report
CU-CS-698, Univ. of Colorado-Boulder, January 1994.

[6] David R. Ditzel and Hubert R. McLellan. Branch folding in the
CRISP microprocessor: Reducing branch delay to zero. In 14th
Annual International Symposium of Computer Architecture, pages
2–9. ACM, ACM, June 1987.

[7] J. A. Fisher and S. M. Freudenberger. Predicting conditional branch
directions from previous runs of a program. In Fifth International
Conference on Architectural Support for Programming Languages
and Operating Systems, pages 85–95, Boston, Mass., October 1992.
ACM.

[8] David R. Kaeli and Philip G. Emma. Branch history table prediction
of moving target branches due to subroutine returns. In 18th Annual
International Symposium of Computer Architecture, pages 34–42.
ACM, May 1991.

[9] Manolis G. H. Katevenis. Reduced Instruction Set Computer Archi-
tecture for VLSI. ACM Doctoral Dissertation Award Series. MIT
Press, 1985.

[10] Johnny K. F. Lee and Alan Jay Smith. Branch prediction strate-
gies and branch target buffer design. IEEE Computer, 21(7):6–22,
January 1984.

[11] David J. Lilja. Reducing the branch penalty in pipelined processors.
IEEE Computer, pages 47–55, July 1988.

[12] Scott McFarling. Combining branch predictors. TN 36, DEC-WRL,
June 1993.

[13] Scott McFarling and John Hennessy. Reducing the cost of branches.
In 13th Annual International Symposium of Computer Architecture,
pages 396–403. ACM, 1986.

[14] S.-T. Pan, K. So, and J. T. Rahmeh. Improving the accuracy of
dynamic branch prediction using branch correlation. In Fifth In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems, pages 76–84, Boston, Mass.,
October 1992. ACM.

[15] Chris Perleberg and Alan Jay Smith. Branch target buffer design and
optimization. IEEE Transactions on Computers, 42(4):396–412,
April 1993.

[16] Karl Pettis and Robert C. Hansen. Profile guidedcodepositioning. In
Proceedingsof the ACM SIGPLAN ’90 Conferenceon Programming
Language Design and Implementation, pages 16–27. ACM, ACM,
June 1990.

[17] J. E. Smith. A study of branch prediction strategies. In 8th Annual
International Symposium of Computer Architecture. ACM, 1981.

[18] Amitabh Srivastava and Alan Eustace. Atom: A system for building
customized program analysis tools. TN 41, DEC-WRL, January
1994. (To appear in PLDI’94).

[19] D. W. Wall. Limits of instruction-level parallelism. In Fourth In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems, pages 176–188, Boston, Mass.,
1991.

[20] Tse-Yu Yeh and Yale N. Patt. Alternative implementations of two-
level adaptive branch predictions. In 19th Annual International
Symposium of Computer Architecture, pages 124–134, Gold Coast,
Australia, May 1992. ACM.

[21] Tse-Yu Yeh and Yale N. Patt. A comprehensive instruction fetch
mechanism for a processor supporting speculative execution. In
25th Workshopon Microprogrammingand Microarchitecture, pages
129–139, Portland, Or, December 1992. ACM.

[22] Tse-Yu Yeh and Yale N. Patt. A comparison of dynamic branch
predictors that use two levels of branch history. In 20th Annual
International Symposium of Computer Architecture, pages 257–266,
San Diego, CA, May 1993. ACM.

