IEEE International Parallel and Distributed Processing Symposium, April 2005

A Dependency Chain Clustered Microarchitecture

Satish Narayanasamy Hong Wang?

Perry Wang?

John Shen? Brad Calder'

fDepartment of Computer Science and Engineering, University of California, San Diego
fMicroarchitecture Research Lab, Intel Corporation
{satish,calder} @cs.ucsd.edu {hong.wang, perry.wang, john.shen} @intel.com

Abstract

In this paper we explore a new clustering approach for re-
ducing the complexity of wide issue in-order processors based
on EPIC architectures. Complexity effectiveness is achieved
by heavily clustering the pipeline from decode to commit stage
without the need for any direct bypass between clusters. This
is made possible by assuming support for executing compiler-
constructed traces. One trace is executed at a time by executing
its coarse-grained dependency chains (DCs) in different in-order
clusters. Since the DCs of a trace are mutually data independent
of each other they can be executed in different clusters without
any direct communication between them. To execute DCs in nar-
rower clusters without compromising ILP, a compiler algorithm
that splits large DCs by duplicating instructions is proposed.

Through cycle accurate simulations we show that a DC pro-
cessor with one 3-wide, one 2-wide and one 1-wide in-order
pipeline, could achieve performance equivalent to a 6-wide in-
order superscalar processor. Since a clustered DC microarchi-
tecture is complexity efficient, it is amenable to higher clock fre-
quencies and will also be easier to design and validate than a
6-wide monolithic design.

1 Introduction

In this research we investigate microarchitectural techniques to
design future complexity effective high performance proces-
sor implementations based on EPIC philosophy [20]. Current
processors implementing the Intel Itanium Processor Family
(IPF) [16] use a monolithic 6-wide in-order pipeline. Instruc-
tion level parallelism (ILP) is exploited through aggressive op-
timizations in the compiler. In order to further improve the per-
formance of IPF designs, one obvious choice is to exploit more
ILP by designing out-of-order implementations for IPF, but this
has serious complexity issues. Another option is to get higher
frequency by designing deeper pipelines for the monolithic in-
order pipeline, but this can increase both branch penalty and
cache/memory latency that can hurt IPC. This paper explores
a third alternative to achieve higher IPC and frequency than cur-
rent IPF implementations, by using an aggressively clustered
Dependency Chain Processor (DCP) microarchitecture that as-
sumes compiler support for generating optimized software traces
and their dependency chains.

Clustering the processor resources to design complexity ef-
ficient microarchitectures has been an important topic of re-
search [9, 11, 3, 18, 8]. Instead of a monolithic pipeline, mul-

tiple clusters are used where each cluster has less complexity.
Instructions are dispatched to different clusters with the objec-
tive of minimizing inter-cluster communication, which can incur
longer latencies. Recently, dependency chain based execution
has been proposed to alleviate the scheduler complexity by ex-
ploiting the inter-instruction dependency information [13]. We
explore novel ways to judiciously use the above two ideas to de-
sign aggressively clustered microarchitectures for in-order pro-
cessor implementations.

A DCP microarchitecture assumes support for executing
traces to improve ILP [10]. Traces are generated offline in
software, using instruction profiles and are much longer (even
100s of instructions) than the traces used in conventional trace
caches [10]. They can be generated by an EPIC compiler and
can be another means for the compiler to convey parallelism to
the architecture. Alternatively, these traces can be generated us-
ing binary instrumentation tools like Ispike [15] and appended to
the existing binary or can potentially even be generated on-line
using a dynamic optimizer [4]. Constructing long traces and do-
ing aggressive instruction scheduling over large regions of code,
could aid in exploiting parallelism even beyond traditional out-
of-order processor’s instruction window size. Our simulation
studies show an improvement of up to 15% in IPC by execut-
ing scheduled traces in a 6-wide in-order processor.

Each trace is partitioned into multiple mutually data indepen-
dent dependency chains (DCs) - a dependency chain in a trace is
a maximally connected component in the data dependency graph
of the trace. Note, this does not mean that all the instructions in
a dependency chain are linearly dependent on one another, since
some instructions can have independent ancestors.

The DCs that we construct are much larger than the ones
studied before [11] and the largest one in a trace may contain 10s
of instructions. DCs from the same trace are mapped to differ-
ent clusters and dispatched simultaneously to the corresponding
cluster queues. As these DCs execute independently in different
clusters, higher ILP can be achieved through out-of-order execu-
tion of instructions across the clusters. In addition, higher ILP is
exploited within a cluster as instructions within a DC are sched-
uled greedily. A key advantage of this microarchitectural model
is that since the DCs of a trace are mutually independent, no
inter-cluster communication is needed while executing a trace.
This allows aggressive clustering of processor resources from
decode to the commit stage in the pipeline, which will make it
possible to achieve higher clock frequencies.

This paper makes several contributions. For our experiments

we devise an approach to identify and form traces that is imple-
mentation independent. We present a characterization of DCs
based on these traces. We observe that in most traces, there is
one dominant DC that becomes the critical bottleneck to perfor-
mance as it accounts for 50-60% of instructions in the trace. We
then devise a DC splitting algorithm that facilitates the reduc-
tion of the dominant DC size by about 20% on average. This
optimized trace and DC construction aids in building a core with
one 3-wide, one 2-wide and one 1-wide clusters, with in-order
scheduling in each cluster and no inter-cluster bypass. This
achieves IPC equivalent to that of a monolithic 6-wide in-order
execution core that executes scheduled traces. Our DC-based
processor has the potential of achieving high overall IPC equiva-
lent to that of an optimized in-order design executing scheduled
traces, without having to pay the complexity, and power, of a
wide monolithic execution core.

The rest of the paper is organized as follows. Section 2 re-
views the related work and Section 3 presents our benchmark
and platform methodology. Section 4, describes the trace con-
struction algorithm. Section 5 analyses the properties of the
DCs. Instruction duplication algorithm to optimize DCs is dis-
cussed in Section 6. Our microarchitecture model is proposed in
Section 7 and its performance analysis is presented in Section 8.
Finally, Section 9 concludes.

2 Related Work

2.1 Complexity Effective Designs

Palacharla et al., [18] identified rename, bypass network in the
execution stage, and issue-wakeup logic to be the most perfor-
mance critical structures in the pipeline that prohibit achiev-
ing higher clock frequencies. In addition to being amenable to
higher clock frequencies, complexity effective structures could
also be expected to consume less energy and will be easier to
design and validate. One solution to reduce the complexity is to
partition the resources into multiple smaller clusters [9].

A clustered microarchitecture however introduces overheads
in the form of imbalance distribution of instructions among clus-
ters and additional overhead due to increased latencies for inter-
cluster communication. Designing an efficient cluster architec-
ture that addresses these problems has been an important topic
of research [11, 9, 18, 8, 6] and there has also been prior work
on compiler optimizations to partition instructions between clus-
ters [3]. In this work we concentrate on designing clustered in-
order microarchitectures. Key advantage of our DCP architec-
ture over previously proposed solutions is that it is heavily clus-
tered from decode to commit stage and does not require any di-
rect bypass network for communication between clusters. Also,
since the DCs are constructed and mapped to different clusters
in a compiler, there is no need for a dynamic cluster scheduling
mechanism like in previous solutions [6].

2.2 Chain-Based Execution

We assume architecture support for constructing [15, 4] and ex-
ecuting [17] instruction traces. Nair et al. [17] discussed the ad-
vantages of executing scheduled instruction traces in an in-order
processor.

There have been proposals that dynamically construct and
execute small sequences of dependent instructions in order to
reduce the complexity of instruction scheduler [19, 13]. Kim
and Lipasti [13] aggregated a small number (about 5) of data de-
pendent instructions into a coarser-grained macro-op which can
be executed in a pipelined scheduler with a larger instruction
window that has lower hardware complexity than traditional in-
struction schedulers. Probably the closest work to ours is the
Instruction Level Distributed Processing (ILDP) microarchitec-
ture proposed by Kim and Smith [11]. In the ILDP [11] design, a
traditional dynamic instruction scheduler is substituted with a set
of FIFO queues and dependent instructions are steered into the
same queue, possibly with the support of dynamic binary transla-
tion [12]. All of the above prior work focuses on constructing de-
pendency units from a small trace or instruction window where
each dependency unit typically contain 3 to 5 instructions. DCP
uses very coarse-grained dependency chains (DCs) comprising
10s of dependent instructions. Such DCs are constructed from
long traces to facilitate efficient execution on heavily clustered
microarchitectures.

2.3

We optimize DCs to execute them on narrow wide clusters by
splitting them using instruction duplication algorithm. Aggar-
wal et al. [1] studied a technique to dynamically replicate in-
structions to reduce inter-cluster communication delays. Their
instruction replication is a hardware mechanism added to the
instruction dispatch stage in a dynamically scheduled proces-
sor. But in this work, we do an offline analysis at the gran-
ularity of coarser dependency chains in order to split the de-
pendency chains so that they can be efficiently executed on a
heavily clustered architecture. Aleta et al., [2] use instruction
replication on top of the traditional modulo scheduling algo-
rithm to effectively reduce inter-cluster communication. How-
ever, the workloads targeted by [2] are primarily computation-
intensive floating-point applications with high ILP. Complemen-
tary to [2], our study focuses on the scalar integer applications
that tend to have irregular data flow patterns. Hence, our objec-
tives and heuristics for instruction duplication are different from
previously proposed algorithms [2, 1].

Instruction Replication Algorithms

3 Benchmarks

Since the goal of this work is to explore future high performance
complexity effective in-order designs, we base this research on
Intel Itanium Processor Family (IPF) instruction set architec-
ture [16]. The benchmarks used for this study include eight in-
teger benchmarks chosen from the SPEC CINT2000 suite. The
programs were compiled using the Intel Electron compiler for
the IPF architecture. This compiler implements many state-of-
the-art compiler optimization techniques such as profile-driven
feedback directed optimizations, aggressive software prefetch-
ing, software pipelining, control speculation and data specula-
tion. Predication is not used in order to examine the DCs in a
more architecturally independent manner.

—— bzip —®— crafty — —gap —>¢—gcc —%— gzip —®— mcf ——twolf vpr

100
90

|

% Program Execution
)]
o

O = @ O W = Ik M D W0 = I
A »®» o F ¥ 1B © © KN K o0 o o

Number of traces

Figure 1: Cumulative Percentage of dynamic instructions cov-
ered by traces captured using modified WPP algorithm. Fewer
than 100 traces cover over 80% of program execution for most
programs.

4 DC-Trace Construction

A DCP microarchitecture assumes trace-based execution model.
Long traces are constructed offline from instruction profiles and
are used during performance simulation. Constructing longer
traces will enable us to generate aggressive trace schedules that
will help us to exploit more ILP while using in-order clusters.

4.1 Trace Formation Algorithm

We refer to the traces constructed for a DCP microarchitecture as
DC-Traces. The DC-Trace construction is based on the Whole
Program Path (WPP) approach proposed by Larus [14]. The
instruction profile of program execution is divided into atomic
blocks, where an atomic block is a sequence of instructions be-
tween the target of a taken branch and the following branch in-
struction. Each unique atomic block is assigned a unique iden-
tifier. As a result, the instruction trace is converted into a string
of identifiers. This string is then given as input to the Sequitur
algorithm [7].

Sequitur is a compression algorithm that produces a compact
representation for any given input string by representing it in the
form of a context free grammar. The algorithm replaces a se-
quence of identifiers and grammar rules that repeats more than
once with a single grammar rule. The advantage of this algo-
rithm is that the compression is done in linear time. The resul-
tant grammar representation is a directed acyclic graph (DAG)
with the grammar rules represented as intermediate nodes and
the identifiers represented as leaves. A consecutive sequence of
identifiers on the right hand side of a grammar rule constitutes a
trace, which can be obtained by parsing the DAG.

4.2 Trace Characteristics

Figure 1 shows the coverage of the top 100 most frequently ex-
ecuted traces. The x-axis shows the number of traces and the
y-axis depicts the cumulative percentage of program coverage
of those traces. We can see that fewer than 100 traces are nec-
essary to cover nearly 80% of dynamically executed instructions
for all programs except crafty, which has a larger program foot-
print. For bzip, just one trace accounts for 99.9% of program
execution in the simulation window that we studied. Figure 2
presents the number of instructions in a trace averaged over the
100 frequently executed traces. It can be noted that the traces
that we construct on an average contain around 30 instructions
but the longest trace contains about 258 instructions (for vpr).

1000

(2]
S 100 A
°
2
@
£
S 10
3+

1 ; ; ; ;
bzip2 crafty gap gcc gzip mcf twolf vpr avg
Figure 2: Average number of instructions in each trace formed

using modified WPP approach. Vertical line on top of the each
bar shows the maximum and minimum trace length. Y-axis is in
lod%arithmic scale.
100, st8

[r6]=r3
101, adds r6=04h, ré6
102, adds r7=01h, r7
I03, cmp4 .1t .unc p9, p8 = 32h, r7
I04, (p8) br.cond.dpnt.few b0 = $+0x42b3a8
105, 1ds r5 = [r6]
106, adds r3 = 0, r0
107, cmp4 .1t .unc p9, p8 = r5, r4
I08, (p8) br.cond.dpnt.few b0 = $+0x42b3d0
109, st8 [r6]=r3
I10, adds r6=04h, ré6
I11, adds r7=01h, r7
I12, cmp4 .1t .unc p9, p8 = 32h, r7
I13, (p8) br.cond.dpnt.few b0 = $+0x42b3a8

Figure 3: A sample trace

These are much longer when compared to the traces used in con-
ventional trace processors (16 instructions) [10]. Hereafter, all
analysis is done using these top 100 most frequently executed
traces.

S Characteristics of Dependency Chains

In this section we will quantify and analyze the properties of
dependency chains which will aid us in designing an efficient
clustered microarchitecture.

A dependency chain (DC) is defined as a maximally con-
nected component in the data dependency graph of a trace. In
this section we examine the DCs found within the DC-Traces
created as described in the prior section. Our goal is to have nar-
row and independent DCs, so we first focus on two metrics to
analyze the number of instructions within a DC and the width of
the DC. Figure 3 shows a sample trace and Figure 4 shows the
three DCs corresponding to that trace. Among the three DCs,
DC2 is the most dominant since it contains more instructions
than all others. We refer to such a DC as the 1st dominant DC
(or simply as dominant DC) of a trace. The DC that has the
second largest number of instructions is referred to as the 2nd
dominant DC and so on. In the example shown in Figure 4, DC3
is the 2nd dominant DC of the trace.

Figure 5 shows the percentage of instructions in a trace ac-
counted by the top 7 dominant DCs, averaged over the top 100
frequently executed traces for each of the benchmarks studied.
The figure shows that 1st dominant DC in a trace contains a
large number of instructions when compared to the other DCs
in the trace. The Ist dominant DC in any trace accounts for
about 50%-60% of instructions in the trace while the 2nd dom-

@@
W

Figure 4: DC corresponding to the trace in Figure 3

)
o
ud

DC2
(o) (ms)
(1) () ()

inant DCs accounts for approximately 20%, and the rest of the
DCs account for fewer than 10%.

We are also interested in another metric for DCs, which we
call DC-Width. DC-Width of a DC is the number of instruc-
tions in the DC divided by the critical path length (the longest
length of serial data dependencies) in the data dependency graph
of that DC. Since all the instructions in a particular DC will be
executed within a single cluster, the DC-Width metric represents
the minimum issue width necessary in a cluster to exploit all of
the available ILP in the DC.

Figure 6 shows the DC-Width distribution for the top 7 DCs
averaged across all the top 100 frequently executed traces from
all the benchmarks. For some traces, the 2nd dominant DC and
other less dominant DCs may not exist at all and hence the bars
for those less dominant DCs do not add up to 100%.

In 55% of the traces executed, the DC-Widths of the 1st dom-
inant DCs are greater than 2 (in other words, in 45% of the traces
executed, the DC-Widths of the 1st dominant DCs are less than
2). Also, DC-Width tends to be greater than 3 only for the 1st
dominant DCs but for others it is rarely greater than two. This
implies that while designing a clustered microarchitecture, we
need not design clusters with uniform width. Instead, by having
just one wide cluster catering to the needs of the 1st dominant
DCs and multiple narrower clusters, each possibly 1 instruction
wide, one can exploit most of the available ILP. This property
motivates a case for designing a heterogeneous clustered mi-
croarchitecture which has several advantages, which will be dis-
cussed in Section 8.3.

Figure 7 shows the average critical path length of the top 7
dominant DCs averaged over all the traces. As expected, the crit-
ical path of the 1st dominant DCs is longer than that of the others
and also the combined path length of less dominant DCs usually
does not exceed that of the 1st dominant DC. Hence while the
Ist dominant DC is executing in a wide cluster, all other DCs
can be scheduled to execute sequentially on one or more narrow
width clusters. The policy that is used to map DCs to clusters is
discussed more in detail in Section 7.2.

6 Instruction Duplication

Since the DC-Widths of the 1st dominant DCs are greater than
two during 55% of program execution we would need at least
one wider cluster to exploit maximum ILP. To address this issue,
we propose an instruction duplication algorithm that splits the
dominant DCs by duplicating instructions and thereby reducing
the DC-Widths of the dominant DCs. This aids us in designing

° 70 —O—bziPZ —=— craft gap gcc —*—Qgzip
o —o—mc —+—twol —=—Vpr
£607
©
£ 50+ \
c
[}
S 40 .\
s \\
:_":' 30
2
@ 20
o
o
2 10
<
0 T T T T T — “# 1

1st Dom 2nd Dom 3rd Dom 4th Dom 5th Dom 6th Dom 7th Dom
Figure 5: Percentage of instruction distribution in a trace among

the top 7 dominant DCs.

100

90 ~ =1 a>5 |
80 - W4to5
O3to4

70 7 O2to 3

60

mito2[
50
40
30
20 A
10 -
0 T T T T T T

1st Dom 2nd Dom 3rd Dom 4th Dom 5th Dom 6th Dom 7th Dom

Figure 6: DC-Width of 7 most dominant DCs averaged over all
the traces.

% of Traces Executed

100 4 =

90 L O>=5|
m4

80 +— —
g a3
s oL - o2 -
3 60 +— m1 —
X — —— —
w 50 —
8 | |
g 401
[
=

20 1

10 —

0 - T T T T T T

1st Dom 2nd Dom 3rd Dom 4th Dom 5th Dom 6th Dom 7th Dom
Figure 7: Critical path length of the 7 most dominant DCs aver-

aged over all the traces.

(abcde)

(abc) (de)

a e b d e

(abc)

%

e a

Figure 82 The Instruction duplication algorithm is applied for a doma;'nant DC found in crafty. This DC containing 26 instructions
is split into four DCs by duplicating just 4 instructions and the resultant 1st dominant DC has only 10 instructions. ”A” stands for
the advantage number. Light grey node in the resulting dominant DC (ab) is a potential split point for another split. We do not do
this split as the advantage number for doing this split would be negative (6 instructions need to be duplicated to get a reduction of

Jjust 2 instructions in the dominant DC).

—e—bzip —=— crafty gap gcc
10 +— —*—gzip —e—mcf —— twolf ——vpr
8
=
2
= 6
o
[=]
4 4
2 e —
s S e = S, -
[o] T T T

1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 ‘ 8 ‘ 9 ‘10‘11‘12‘13‘14‘15‘16‘17 18 19 20‘

Top 20 traces
Figure 9: DC-Width before applying instruction duplication op-
timization. Results are shown only for the 1st most dominant
DCs in the top 20 traces. Traces are sorted according to their

DC-Width for better readability.

narrow width clusters without degrading performance.

Our instruction duplication algorithm works as follows. For
each leaf in the data dependency graph of the DC that needs to
be split, we construct a Leaf-DAG (LDAG). LDAG of a leaf is
a subset of instructions in the DC that are necessary to produce
input values to execute that leaf instruction. The set of LDAGs,
each corresponding to a leaf in the DC, is the maximum possible
split for the given DC. For example, let us consider the DC in
Figure 8. Let (abcde) represent the original DC where a, b, c,
d and e represent the LDAGs of the five leaves. Splitting it into
5 different DCs, (a)(b)(c)(d)(e) is the maximum possible split.
This split would result in a large number of duplicated instruc-
tions.

If two LDAGs share a large number of instructions, then to
reduce the overhead of duplicated instructions, the two should be
combined into one DAG. Thus, we need to find the set of LDAGs
that needs to be combined into one DAG. The goal is to ensure
that the resulting largest DAG among these set of DAGs is as
small as possible while at the same time ensuring that the num-
ber of duplicated instructions is kept to minimum. In essence,
we have converted the problem of splitting DCs into a problem
of grouping LDAGs into sets. To find the sets of LDAGs we
first start by having all the LDAGS in one set. In the next step,
we divide this one set of LDAGs into two sets. To identify the
members in each set we make use of a greedy heuristic based
algorithm. We compute, what we call, the advantage number for
all possible groupings.

The advantage number is the number of real instructions in
the resulting smaller set minus the number of duplicated instruc-
tions. We choose the division that has the highest advantage

—e—bzip —=— crafty gap gcc

—*—gzip —e— mcf —+— twolf ——vpr

DC-Width
o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Top 20 traces

Figure 10: DC-Width after applying instruction duplication op-
timization.

number. In our example, for the first split (abc)(de), the advan-
tage number, represented as A is 11. We then iteratively ap-
ply the same algorithm over the resulting most dominant DCs in
each iteration. We terminate the process when the dominant DC
could not be split further with a positive advantage number. One
optimization we add to this base greedy algorithm is to have a
look-ahead of 1. That is, while we calculate the advantage num-
ber for the current split, we also calculate the advantage number
for the best possible split for the resulting dominant DC and add
it up to the current advantage number.

Figure 9 presents the DC-Width of the dominant DC in the
top 20 most frequently executed traces sorted according to their
DC-Width number. We can see that the DC-Width of the dom-
inant DC goes up to a maximum of 12. After the application
of our instruction duplication algorithm, we are able to signif-
icantly reduce the DC-Width for such DCs, reducing it to only
2 or less in most cases as shown in Figure 10. Figure 11 sum-
marizes the effectiveness of our duplication algorithm in terms
of reducing the number of instructions in the 1st dominant DCs
averaged across all traces. The first bar is the average number
of total instructions in a trace. The 2nd bar shows the increase
in this number as result of additional duplicated instructions in-
troduced. We can see that this additional duplication is less than
10% of the instructions in the traces. The next two bars show
the number of instructions in the dominant DC before and after
our duplication optimization, respectively. On an average about
20% of the size of the dominant DC has been reduced. The last
two bars show the number of instructions in the 2nd dominant
DC before and after the application of our algorithm. The num-
ber of instructions in the 2nd dominant DC increases because a
DC resulting from the split of the original 1st dominant DC may
become the new second dominant DC.

60 O Avg total W Avg-Total after split
ODom ODom after Split
50 B Second Dom O Second Dom after split]

N
o
I

N
o

of instructions
[]
o

—
o
I

0 ,
bzip2 crafty gap gcc gzip mcf twolf vpr avg
Figure 11: Dominant DC size reduction in terms of absolute

number of instructions after the application of instruction dupli-
cation algorithm.

7 Dependency Chain Processor (DCP)

The Dependency Chain Processor (DCP) is a clustered microar-
chitecture design with a trace-based execution model. Each clus-
ter in DCP is a superscalar in-order pipeline. These clusters can
be heterogeneous, that is, each of them can be of different issue
width. In this section we’ll present a model for our DCP mi-
croarchitecture and then discuss the representation of the set of
DCs that make up a trace.

7.1 Microarchitecture
Figure 12 presents the DCP microarchitecture with 3-wide, 2-
wide and 1-wide pipeline clusters.

7.1.1 Fetch

The traces constructed as described in Section 4 may not cover
all the program paths as they represent only the hot paths. There-
fore, a DCP needs to operate in two modes of execution - DC-
Mode to execute hot paths and non-DCMode to execute cold
paths. In the non-DCMode, DCP fetches instructions sequen-
tially from the instruction cache and to keep the design com-
plexity efficient, all the instructions are issued in-order to the
widest available cluster while the other clusters are left unuti-
lized. When the trace predictor predicts that a trace could be
executed the processor switches to DCMode. In this mode, in-
structions are fetched from the DC-Cache instead of from the
I-cache and the DCs are mapped to appropriate clusters based
upon a predetermined cluster-ID which will be described in Sec-
tion 7.2.

7.1.2 Execution Model

The DCs in a trace are mapped to different clusters and they
execute independent of each other, as there is no data depen-
dency between them. Though each cluster is an in-order execu-
tion pipeline, the DCs can execute at different rates in different
clusters out-of-order and thereby achieving higher ILP.

For the baseline DCP microarchitecture we assume serial-
ized execution of traces. That is, we ensure that all the DCs in
the currently executing trace complete their executions before
DCs from the next trace could be issued. This would mean that
we incur a synchronization cost in the form of lost parallelism
but the longer traces that we constructed would help mitigating

DC-cache

A

3-wide 2-wide 1-wide
Decode Decode Decode

' . .

FIFO - - -
§ 3-wide W 2-wide 4l 1-wide
Bypass Bypass
Local Bypass P
Registers
Global Reg

L1-D-cache ¢——

Figure 12: A DCP Microarchitecture

this cost. Serializing the execution of traces ensures that there
is no dependency between concurrently executing DCs at any
instant of time.

This model of executing DCs in the clusters enables us to
aggressively cluster resources from the decode stage to the com-
mit stage unlike in traditional clustered architectures where typi-
cally only the functional units are clustered. A heavily clustered
architecture would ensure that the complexity of all the pipeline
stages are equally scaled down and hence can be clocked at a
higher frequency.

7.1.3 Register File Organization and Inter-Cluster Com-
munication

The DCP microarchitecture uses two level hierarchical register

files. Each cluster has one 8-entry local register file and there is

a global register file accessible by all the clusters.

The global register file is used for reading the live-in and
writing the live-out values of the DCs. We assume just 2 read and
2 write ports for the global register file shared by all the clusters
and very conservatively assume 3-cycle access latency. We find
that the DCP is insensitive to this latency because concurrently
executing DCs are totally data independent of each other and
would not need to communicate values between them. A live-
out value produced by a currently executing DC is going to be
read as a live-in only by a DC in the trace to be executed in the
future.

Intermediate values produced while executing a DC in a clus-
ter are written and read from the local registers of the cluster. For
a 3-wide cluster, the local register file is required to have 6 read
and 3 write ports to issue 3 instructions in one clock cycle. By
capturing the intermediate values in local registers, we reduce
the bandwidth to the global register file that is accessed by all
the clusters.

Since our machine model is not sensitive to the latency of
the global register file, one could possibly design clustered mi-
croarchitectures without a global register file by communicating
live-in and live-out values of DCs through memory using addi-
tional load/store instructions.

6-way In-order super-
scalar

DCP

ILDP

6-way OOO superscalar

Decode bandwidth 6-wide Maximum 3-wide 6-wide 6-wide

Rename bandwidth | NONE NONE 6 read/write ports to Map table 18 read/write port to map table

Steering Logic NONE NONE Accumulator based Complex ~dependence-based (it
clustered)

Issue Logic In-order In-order In-order 6-way out-of-order, Tssue Q: Inte-

ger: 32 FP: 32

128 entry with 6 write

128 entry global register file with
2 read/ 2 write ports. (For 3-wide

128 entry global register file with
1 read/ 2 write ports, and is repli-

128 entry with 6 write and 12 read

branch predictor

branch predictor

Register File and 12 read ports cluster: 3 write f{md 6 read ports) cated 6 times, one per cluster. One | ports
8-entry loc%ll register file per clus- accumulator per cluster
ter to hold intermediate values
Bypasses i%l;xil:m o 6-wide Equivalent to 3-wide machine Equivalent to 1-wide machine Equivalent to 6-wide machine
ROB NONE NONE 128 entries 128 entries
I-Cache, I-cache, DC-cache, Multiple
Fetch Trace Cache,Multiple ’ ? I-cache, Branch predictor I-cache,Branch predictor

Table 1: Complexity of In-order superscalar, DCP, ILDP and OOO-superscalar processors

7.1.4 Commit and Recovery from Mis-speculation

Unlike ILDP [11] and out-of-order processors, we do not require
a re-order buffer. We do not need it in the non-DCMode as in-
structions execute in program order. In DCMode, instructions
are committed only at the trace boundaries, which is possible
using a shadow copy for the global register file. If there is an
exception or a misprediction while executing a trace, we switch
to non-DCMode and start re-executing instructions from the be-
ginning of the last committed trace using register values in the
shadow register file. The dependency chain to which a load/store
should belong to is determined through profile analysis. A mem-
ory order checker is used to verify memory dependences and
recover at trace boundaries in case of assumed memory order
violation.

7.1.5 Complexity Effectiveness

Table 1 compares the complexity effectiveness of our mi-
croarchitecture versus previously proposed ILDP microarchitec-
ture [11] and traditional clustered out-of-order and in-order mi-
croarchitectures.

Palacharla et al., [18] noted that rename, issue and bypass
logic are the most performance critical structures in the pipeline.
The DCP does not have the complexity of renaming and steer-
ing/issue logic as these functions are performed during offline
construction of DCs.

Complexity of bypass logic increases quadratically with re-
spect to increase in issue widths [18]. Over our baseline 6-wide
in-order design, the DCP has less complex bypass logic as it uses
at most 3-wide clusters and there is no requirement for any di-
rect bypasses between clusters. Also, a re-order buffer is a not
required unlike ILDP and out-of-order processors for the reasons
explained in previous subsection.

Balasubramonian et al., [5] observed the need to reduce the
complexity of the register file in wide-issue processors. Current
IPF implementations with a 6-wide pipeline have a 128-entry
register file with 12 read and 6 write ports to issue 6-instructions
in a clock cycle. Whereas, in DCP each cluster has a small 8-
entry local register file with at most 6 read and 3 write ports
(for a 3-wide cluster). Additionally, DCP has a 128-entry global
register file with just 2 read and 2 write ports as local register

files handle most of the traffic. We analytically quantify the area
and energy advantages of such a register file organization.

We can calculate the relative area used by register files by
using the formula: entries x (WP + RP)?, where, entries
is the number of entries in the register, W P is the number of
write ports and RP is the number of read ports. This formula
concurs with published results in academia [22] that found the
register file size grows with the square of the number of ports
especially for register files with many ports. Using this formula,
we found the optimal design point for implementing a 128-entry
register file with 12 read and 6 write ports. This results in an
implementation with two replicated 128-entry register files each
with 6 read and 6 write ports that would together provide 12
read and 6 write ports. To implement an 8-entry local register file
with 6 read and 3 write ports in DCP, an efficient implementation
would have two replicated 8-entry register files each with 3 read
and 3 write ports. We find that register file in DCP architecture
with two 3-wide clusters, will occupy 11.5 times less area than
the register file in a 6-wide processor and about 2 times less area
than the one in the ILDP architecture.

Using a similar construction we can compute the relative en-
ergy requirements of each register file configuration. Register
file access energy is proportional to CV?2, where C is the ca-
pacitive load of the access logic and V is the supply voltage.
Given a fixed supply voltage and a wire-congested register file
design, relative energy per port per access will change in pro-
portion to wordline and bitline lengths, which are proportional
to sqrt(entries) * (W P+ RP). The maximum energy require-
ments of each register file, assuming all ports on all copies ac-
cessed, is proportional to sqrt(entries) * (WP + RP)?. Using
this formula we find that energy used in DCP due to register file
could be up to 5.5 times less when compared to the register file
in a 6-wide processor.

7.2 DC-Trace Representation

We assume that DC-Traces are constructed offline. Each DC-
Trace consists of a set of Dependency Chains (DCs), which need
to be represented in a format that can be efficiently consumed by
the DCP microarchitecture. Such a method to represent DCs
could be viewed as an additional means for the compiler to com-

municate parallelism to the in-order clustered microarchitecture.

Each DC in the trace needs to be mapped to a particular clus-
ter in the microarchitecture. If there are more DCs than available
clusters then more than one DC will be mapped to a single clus-
ter. Since DCP can have heterogeneous clusters we need a judi-
cious and a simple mapping policy. We use the following greedy
algorithm. Let W1, W2, W3, W4 represent the configuration
of the cluster microarchitecture where Wi represents the issue
width of the i-th cluster. DCs are sorted according to their domi-
nance and mapped one by one onto the clusters in that order. Let
us say, after mapping some DCs, N1, N2, N3, N4 represents the
total number of instructions mapped to corresponding clusters.
While mapping a DC to a cluster, we calculate cluster-load as
Ni/Wi and map the DC to that cluster that has the least cluster-
load value. If two clusters have the same cluster-load value, then
we choose the one with greater width. For example, while trying
to map the 1st dominant DC, all Ni will be zero. Hence we’ll
map the most dominant DC to the widest available cluster.

After mapping a DC to a cluster, the DC is appended with
a cluster-ID that uniquely identifies the cluster to which it is
mapped. While executing a trace, a particular DC in the trace
can be steered towards a particular cluster based on this cluster-
ID. This cluster scheduling policy in hardware is much simpler
when compared to other dynamic hardware-based scheduling
policies [6].

To schedule instructions within a DC, we do a simple level
scheduling based on its dependency graph. Load/store depen-
dences are resolved based on their first instances of execution
while collecting instruction profiles. We find this simple disam-
biguation to be effective for most of the cases. But if this as-
sumption is violated during program execution, recovery is done
at the trace boundary as explained in Section 7.1.4.

It is also necessary to map the instructions in the trace to the
corresponding register file (local or global). Intermediate values
produced by DCs are written and read from the local register
file which is shared between multiple DCs executing in the same
cluster. Live-in (values produced by DCs in previously executed
traces) and live-out are referred to the global register file. Values
produced by duplicated instructions are always renamed to the
local register file as their values are used only within a DC and
will not modify other architectural states.

8 Performance Evaluation

In this section we will analyze the performance potential of our
DCP microarchitecture.

8.1 Baseline Configuration

We model processor performance using cycle accurate SMT-
SIM/IPFSim, a modified version of the SMTSIM [21] simulator
that has been enhanced to work with Itanium binaries.

All the benchmarks are simulated for 100 million retired in-
structions after fast-forwarding for 1 billion instructions. All the
memory requests during fast-forwarding are tracked and simu-
lated in order to warm up the caches past initialization.

Table 2 presents our simulator configurations. The data
caches are multi-way banked and all the caches are non-blocking

Stages Misprediction] Mis-fetch
Penalty Penalty

Pipeline In-order 10 8 2
Structure 000 14 12 2

DCP 10 8 2
Fetch Width 6 inst
Memory 230 cycles; TLB Miss penalty 30 cycles
Branch 16K entry PHT, 12-bit ghr GSHARE
Prediction 1024 entry 4-way associative BTB

Register Files 128 Int; 128 FP
L1 D-cache: 16K 4-way, 8 way banked, 1 cycle

L1 I-Cache: Ideal

Cache L2 (unified): 256K 4-way, 8 way banked, 14 cycles
Hierarchy L3 (unified): 3072K 12-way, 1 way banked, 30 cycles
All caches have 64 byte lines.
Data caches are write-back and write-allocate.
Table 2: Simulator Configuration
35 Oio —
W Trace Sch
3 O Trace Sch w/ overlap —
O (3,3) DCP
2.5 M (3,3) DCP w/ overlap |
O ooo
> |
o
o
1.5 4 =
14 |
0.5 -
0 - L
bzip crafty gap gcc gzip mcf twolf vpr avg

Figure 13: Comparison of a DCP microarchitecture with {3,3}
clusters to the baseline configurations

with up to 16 misses in flight at once. For out-of-order proces-
sor models, we assume two issue queues one for floating point
instructions and the other for integer instructions each of size 32.

Trace based DCP microarchitecture requires a trace predictor
to predict the traces that can be executed in future. In our sim-
ulations, we make trace predictions by predicting the outcomes
of the required number of future branches by serially accessing
the branch predictor. If any one of these branches were mispre-
dicted, we discard all the useful instructions executed as part of
the trace and perform recovery at the trace boundaries. In the
DCMode of the DCP microarchitecture, instructions need to be
fetched from the DC-Cache. In order to factor out the advantages
of improved I-cache performance in the DCP microarchitecture
we assumed perfect I-cache in both baseline and DCP microar-
chitecture simulations. A similar approach was adopted by Kim
and Smith [11] in their studies.

8.2 Performance Analysis of DCP microarchitecture
Figure 13 compares the performance of the DCP microarchitec-
ture with a {3,3} configuration ({3,3} represents two 3-wide in-
order superscalar pipelines) with in-order and out-of-order su-
perscalar processors. Trace-Sch in Figure 13 is the baseline con-
figuration, which is an in-order 6-wide processor that can exe-
cute optimized trace schedules. It should be noted that this base-
line configuration would also require fetch support as discussed
in Section 7.1.1. The duplicated instructions that get executed in
DCP microarchitecture are not counted (in terms of instructions)
when calculating IPC, but they are modeled correctly and effect
the number of cycles it takes to execute the program.

Executing scheduled traces results in up to 15% improve-
ment (for gap) in IPC for a 6-wide in-order processor. This could
be noted by comparing Trace-Sch with io as shown in Figure 13.
From the Figure 13, it is also clear that the DCP microarchitec-
ture with two 3-wide in-order clusters achieves an IPC equiva-
lent to that of a micro-architecture using one 6-wide cluster with
trace scheduling (represented as Trace-Sch). This is made pos-
sible by executing optimized DCs ensuring more uniform dis-
tribution of instructions among clusters. Further, unlike in a 6-
wide in-order cluster where one instruction could stall the entire
pipeline, DCs in two 3-wide in-order pipelines could execute in-
dependent of each other - that is, even if execution of a DC is
stalled in one cluster, the other clusters could continue executing
the DCs assigned to it. In addition, as was discussed earlier in
Section 7.1.5, the {3,3} DCP microarchitecture has several com-
plexity advantages over the 6-wide monolithic microarchitecture
optimized for trace scheduling.

All the experiments in Figure 13 assume 3-cycle latency for
accessing the global register file. As explained in Section 7.1.3,
our microarchitecture is insensitive to this latency since the DCs
of a trace executing simultaneously are data independent of each
other. A value produced by a DC in a cluster will not be re-
quired by other DCs executing in parallel in other clusters. It
will be required in other clusters only while executing the DCs
from the next DC-Trace. We found that assuming O-cycle la-
tency for communication provides negligible IPC improvements
(not reported here due to space constraints).

8.2.1 Overlapping DC-Traces

As described in Section 7.1.2 we had assumed serialized execu-
tion of traces for the baseline DCP model. We also study the per-
formance improvement that could be attained if the executions of
the traces are overlapped. That is, while executing DCs from the
current trace, DCs from the next trace can also be allowed to ex-
ecute. This would mean that there could be data dependences
between concurrently executing DCs in different clusters which
would complicate the hardware design. But in order to analyze
the performance potential of such an execution model, we exper-
imented by assuming 3-cycle communication delay between the
clusters. The result for this experiment is presented as DCP w/
overlap in Figure 13 which shows 10-15% improvement in IPC
over baseline DCP model. This improvement is possible only at
the cost of increased complexity in hardware. That is, if a DC
in one cluster is data dependent on a DC executing in another
cluster, then we would need a pipeline interlock mechanism to
detect the dependency and stall the execution of the dependent
DC. When the producer instruction finishes its execution the data
needs to be bypassed across the cluster and a wakeup logic will
also be required to restart the execution of the stalled DC.

8.3 Heterogeneous Clustered Microarchitectures

Figure 14 shows IPC results comparing {3,3} with {3,2,1} and
{2,2,2} configurations. Performance of a DCP microarchitec-
ture with {3,2,1} configuration is found to be almost equivalent
to that of a {3,3} configuration which is consistent with our char-
acterization of DCs. The DC analysis in Section 5, showed that
there is usually only one dominant DC in a trace that has its DC-

@ (2,2,2) w/o Dup
3 W (2,2,2) L
|— 0(2,2,2) 6-wide non-DCMode
25 0(3,2,1) —
H(3,3)
2 4
[
[
1.5
1 4
0.5
0 ,
bzip crafty gap gcc gzip mcf twolf vpr average

Figure 14: Comparison of heterogeneous {3,2,1} and very nar-
row width {2,2,2} configurations to {3,3} DCP configuration.

Width greater than 2. So, just one 3-wide cluster is sufficient to
exploit most of the available ILP.

There are several advantages in a heterogeneous cluster mi-
croarchitecture. A {3,2,1} configuration will require less area
than a {3,3} configuration as one can design {3,2,1} with a
smaller bypass network logic. As a result, {3,2,1} will also con-
sume less energy and also opens up more opportunities to re-
duce power through clock gating the unused clusters when there
is only limited ILP available.

Though heterogeneous clusters have the above advantages,
homogeneous configurations like {3,3} are still easier to design
than a heterogeneous {3,2,1} configuration because to imple-
ment the former one needs to just replicate the design for a 3-
wide cluster. But to implement the latter one might need to de-
sign essentially 3 different pipelines for three different widths.
Hence this presents an interesting tradeoff between the required
design effort versus saving area/energy.

8.4 Narrow Width Clusters and Efficiency of Instruction
Duplication Algorithm

Figure 14 also compares the {3,3} configuration with {2,2,2}.
We can see that there is significant reduction in performance in
the {2,2,2} configuration when compared to {3,3}. This is pri-
marily due to the fact that in the non-DCMode all the instruc-
tions are executed in the widest available cluster, which in the
case of {2,2,2} is 2-wide. A better trace formation algorithm
with a higher execution coverage would solve this problem. The
result labeled ”(2,2,2) 6-wide non-DCMode” presents the result
for {2,2,2} configuration but assumes 6-wide for non-DCMode.
This result is just to elucidate the fact that there is no signif-
icant performance degradation in DCMode for {2,2,2}, which
implies that DC construction is efficient for {2,2,2} configura-
tion as well. The instruction duplication algorithm discussed in
Section 6, resulted in DCs with DC-width mostly under 2.

We use Figure 14 to also bring out the performance advan-
tage resulting from using instruction duplication algorithm. The
first bar in the graph is for {2,2,2} configuration simulated with-
out applying instruction duplication optimization. It shows that
instruction duplication algorithm provides performance advan-
tage up to 13% (for gap) about 5% on an average.

Finally, Figure 15 shows the percentage of dynamic instruc-
tions that are executed in the DCMode, which is common for
all the configurations. It also shows the percentage of dynamic

100 -
90 |
80 -
70 -
60 ||
50 ||
40 1
30 1
20 -
10

0 ; ; ; ; ;
bzip crafty gap gcc gzip mcf twolf vpr

Figure 15: Percentage of dynamic number of duplicated instruc-

tions compared with the original number of instructions issued
in DCMode.

number of duplicated instructions, which is about 3% on aver-
age. This implies that the overhead incurred due to duplicated
instructions is very minimal.

@ Real Instr @ Dup Instr]

% of Program execution

9 Conclusions

In this paper, we propose a Dependency Chain Processor (DCP)
to explore clustered microarchitecture designs for future EPIC
architectures. A key feature of this design is that pipeline re-
sources are clustered from the decode to the commit stage with-
out requiring any direct bypasses between them. This is made
possible by assuming trace based execution model where coarse-
grained mutually data independent dependency chains are exe-
cuted in multiple clusters. We envision that optimized DCs could
be an additional means for the EPIC compiler to expose paral-
lelism to a clustered microarchitecture.

We show that DCP microarchitecture has the potential to im-
prove both IPC and frequency relative to the current monolithic
6-wide in-order designs. IPC is improved (up-to 15%) through
scheduling of instructions within a trace while frequency im-
provement is achieved by implementing fairly narrow (up to 3-
wide) in-order pipelines that do not require inter-cluster bypass
hardware.

Acknowledgments

We would like to thank the anonymous reviewers for providing
useful comments on this paper. This work was funded by Intel
and by NSF grant No. CCR-0311712.

References

[1] Aneesh Aggarwal and Manoj Franklin. Instruction replication: Reducing
delays due to inter-pe communication latency. In /EEE PACT, pages 4655,
2003.

[2] Alex Aleta, Josep M. Codina, Antonio Gonzalez, and David Kaeli. Instruc-
tion replication for clustered microarchitectures. In Proceedings of the 36th
Annual IEEE/ACM International Symposium on Microarchitecture, page
326. IEEE Computer Society, 2003.

[3] Alex Aleta, Josep M. Codina, Jesus Sanchez, and Antonio Gonzalez.
Graph-partitioning based instruction scheduling for clustered processors. In
Proceedings of the 34th annual ACM/IEEE international symposium on Mi-
croarchitecture, pages 150—159. IEEE Computer Society, 2001.

[4] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a trans-
parent dynamic optimization system. In Proceedings of the ACM SIGPLAN
2000 conference on Programming language design and implementation,
pages 1-12. ACM Press, 2000.

[5] Rajeev Balasubramonian, Sandhya Dwarkadas, and David H. Albonesi. Re-
ducing the complexity of the register file in dynamic superscalar processors.

10

In MICRO 34: Proceedings of the 34th annual ACM/IEEE international
symposium on Microarchitecture, pages 237-248. IEEE Computer Society,
2001.

[6] Rajeev Balasubramonian, Sandhya Dwarkadas, and David H. Albonesi. Dy-
namically managing the communication-parallelism trade-off in future clus-
tered processors. In ISCA, pages 275-286, 2003.

[7] Nevill-Manning C.G. Inferring sequential structure. Phd dissertation. Uni-
versity of Waikato, NZ, 1996.

[8] Jamison D. Collins and Dean M. Tullsen. Clustered multithreaded architec-
tures . pursuing both ipc and cycle time. In 18th International Parallel and
Distributed Processing Symposium (IPDPS), 2004.

[9] Keith I. Farkas, Paul Chow, Norman P. Jouppi, and Zvonko Vranesic. The
multicluster architecture: reducing cycle time through partitioning. In Pro-
ceedings of the 30th annual ACM/IEEE international symposium on Mi-
croarchitecture, pages 149-159. IEEE Computer Society, 1997.

[10] Daniel Holmes Friendly, Sanjay Jeram Patel, and Yale N. Patt. Putting the
fill unit to work: dynamic optimizations for trace cache microprocessors.
In Proceedings of the 31st annual ACM/IEEE international symposium on
Microarchitecture, pages 173—181. IEEE Computer Society Press, 1998.

[11] Ho-Seop Kim and James E. Smith. An instruction set and microarchitec-
ture for instruction level distributed processing. In Proceedings of the 29th
Annual International symposium on Computer architecture, pages 71-81.
IEEE Computer Society, 2002.

[12] Ho-Seop Kim and James E. Smith. Dynamic binary translation for
accumulator-oriented architectures. In Proceedings of the international
symposium on Code generation and optimization, pages 25-35. IEEE Com-
puter Society, 2003.

[13] IThyun Kim and Mikko H. Lipasti. Macro-op scheduling: Relaxing schedul-
ing loop constraints. In Proceedings of the 36th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, page 277. IEEE Computer Society,
2003.

[14] James R. Larus. Whole program paths. In Proceedings of the ACM SIG-
PLAN 1999 conference on Programming language design and implementa-
tion, pages 259-269. ACM Press, 1999.

[15] Chi-Keung Luk, Robert Muth, Harish Patil, Robert S. Cohn, and P. Geoffrey
Lowney. Ispike: A post-link optimizer for the intel itanium architecture. In
In the Proceedings of International Symposium on Code Generation and
Optimization, pages 15-26, 2004.

[16] Cameron McNairy and Don Soltis. Itanium 2 processor microarchitecture.
IEEE Micro, 23(02):44-55, 2003.

[17] R. Nair and M. Hopkins. Exploiting instruction level parallelism in proces-
sors by caching scheduled groups. In 24th Annual International Symposium
on Computer Architecture, pages 13-25, June 1997.

[18] Subbarao Palacharla, Norman P. Jouppi, and J. E. Smith. Complexity-
effective superscalar processors. In Proceedings of the 24th annual interna-
tional symposium on Computer architecture, pages 206-218. ACM Press,
1997.

[19] Steven E. Raasch, Nathan L. Binkert, and Steven K. Reinhardt. A scal-
able instruction queue design using dependence chains. In Proceedings of
the 29th Annual International symposium on Computer architecture, pages
318-329. IEEE Computer Society, 2002.

[20] Michael S. Schlansker and B. Ramakrishna Rau. Epic: Explicitly parallel
instruction computing. Computer, 33(2):37-45, 2000.

[21] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous mul-
tithreading: maximizing on-chip parallelism. In the Proceedings of the 22th
Annual International Symposium on Computer Architecture, 23(2):392—
403, 1995.

[22] Victor V. Zyuban and Peter M. Kogge. Inherently lower-power high-
performance superscalar architectures. IEEE Transactions on Computer,
50(3):268-285, 2001.

