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Abstract

Increases in instruction level parallelism are needed to exploit the potential parallelism available in future wide

issue architectures. Predicated execution is an architectural mechanism that increases instruction level parallelism

by removing branches and allowing simultaneous execution of multiple paths of control, only committing instructions

from the correct path. In order for the compiler to expose and use such parallelism, traditional compiler data-flow

and path analysis needs to be extended to predicated code.

In this paper, we motivate the need for renaming and for predicates that reflect path information. We present

Predicated Static Single Assignment(PSSA) which uses renaming and introduces Full-Path Predicatesto remove

false dependences and enable aggressive predicated optimization and instruction scheduling. We demonstrate the

usefulness of PSSA for Predicated Speculation and Control Height Reduction. These two predicated code optimiza-

tions used during instruction scheduling reduce the dependence length of the critical paths through a predicated

region. Our results show that using PSSA to enable speculation and control height reduction reduces execution time

from 12% to 68%.
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1 Introduction

The Explicitly Parallel Instruction Computing (EPIC) architecture has been put forth as a viable architecture for

achieving theinstruction level parallelism (ILP) needed to keep increasing future processor performance [8, 17].

Intel’s application of EPIC architecture technology can be found in their IA-64 architecture whose first instantiation

is the Itanium processor [1] An EPIC architecture issues wide instructions, similar to a VLIW architecture, where

each instruction contains many operations.

One of the new features of the EPIC architecture is its support forpredicated execution [24], where each opera-

tion is guarded by one of the predicate registers available in the architecture. An operation is committed only if the

value of its guarding predicate is true.

One advantage of predicated execution is that it can eliminate hard-to-predict branches by combining both paths

of a branch into a single path. Another advantage comes from using predication to combine several smaller basic

blocks into one larger hyperblock [22]. This provides a larger pool from which to draw ILP for EPIC architectures.

A significant limitation to ILP is the presence of control-flow and data-flow dependences. Static Single As-

signment (SSA) is an important compiler transformation used to remove false data dependences across basic block

boundaries in a control flow graph [12]. Removing these false dependences reveals more ILP, allowing better per-

formance of optimizations like instruction scheduling. Without performing SSA, the benefit of many optimizations

on traditional code is limited.

Eliminating false dependences is equally important and a more complex task for predicated code, since multiple

control paths are merged into a single predicated region. However, the control-flow and data-flow analysis needed to

support predicated compilation is different than traditional analysis used in compilers for superscalar architectures.

A sequential region of predicated code contains not only data dependences, but alsopredicate dependences. A

predicate dependence exists between every operation and the definition(s) of its guarding predicate. Our technique

introduces a chain of predicate dependences which represents a unique control path through the original code.

We describe a predicate-sensitive implementation of SSA calledPredicated Static Single Assignment (PSSA).

PSSA introducesFull-Path Predicates to extend SSA to handle predicate dependences and the multiple control

paths that are merged together in a single predicated region. We demonstrate that PSSA allows effective predicated

scheduling by (1) eliminating false dependences along paths via renaming, (2) creating full-path predicates, and (3)

providing path-sensitive data-flow analysis. We show the benefit of using PSSA to perform Predicated Speculation

and Control Height Reduction during instruction scheduling. Using PSSA allows these two optimizations, when

applied together, to schedule all operations at theirearliest schedulable cycle. In our implementation, the earliest

schedulable cycle takes into consideration true data dependences and load/store constraints. In this paper we expand
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b=rand()
b>a

b=q d=b+3

f=b*2

b=rand()                       if true  // b=random number

P2,P3 cmpp.un.uc b>a if true // if b>a then P2=true,P3=false

else P2=false, P3=true

b=q                               if P2   // if P2 is true, b=q else nullify

d=b+3                           if P3   // if P3 is true, d=b+3 else

nullify statement

f=b*2                            if true  // f=b*2

P2 P3

a) Original Control Flow Graph b) Predicated Hyperblock

Figure 1: Short code example showing the transformation from non-predicated code to predicated hyperblock.

upon work we presented in [11] by including additional benchmarks and by motivating the need for renaming and

for predicates that reflect path information above and beyond what is available from traditional If-converted code.

The paper is organized as follows. Section 2 describes predicated execution. Section 3 motivates the need

for predicate-sensitive analysis and full-path predicates. Section 4 presents Predicated Static Single Assignment.

Section 5 shows how PSSA can enable aggressive Predicated Speculation and Control Height Reduction. Section 6

reports the increased ILP and reduced execution times achieved by applying our algorithms to predicated code.

Section 7 summarizes related work. Section 8 discusses using PSSA within the IA-64 framework, and Section 9

describes our future work. Finally, Section 10 summarizes the contributions of this paper.

2 Predicated Execution

Predicated execution is a feature designed to increase ILP and remove hard-to-predict branches. It has also been used

to support software pipelining[14, 25]. Machines with hardware to support predicated code include an additional

set of registers called predicate registers. The process of predication replaces branches with compare operations that

set predicate registers to either true or false based on the comparison in the original branch. Each operation is then

associated with one of these predicate registers which will hold the value of the operation’s guarding predicate. The

operation will be committed only if its guarding predicate is true1. This process of replacing branches with compare

operations and associating operations with a predicate defined by that compare is called If-Conversion [5, 24].

Our work uses the notion of a hyperblock [22]. A hyperblock is a predicated region of code consisting of a

straight-line sequence of instructions with a single entry point and possibly multiple exit points. Branches with both

targets in the hyperblock are eliminated and converted to predicate definitions using If-conversion. All remaining

1One exception is the unconditional definition of a predicate. This is discussed later in the section.
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branches have targets outside the hyperblock. Consequently, there are no cyclic control-flow or data-flow depen-

dences within the hyperblock. The selection of instructions to be included in the hyperblock is based on program

profiling of the original basic blocks which includes information such as execution frequency, basic block size,

operation latencies, and other characteristics [22].

A typical code section to include in a hyperblock is one that contains a hard-to-predict (unbiased) branch [21],

as shown in Figure 1. After If-conversion, the Control Flow Graph (CFG) in Figure 1(a), which is comprised of four

basic blocks, results in the predicated hyperblock shown in Figure 1(b). All operations in the hyperblock are now

guarded, either by a predicate register set to the constant value of true, or by a register that can be defined as either

true or false by a cmpp (compare and put (result) in predicate) operation. Operations guarded by the constant true,

such as the operation f=b*2 in Figure 1, will be executed and committed regardless of the path taken. Operations

guarded by a predicate register, such as the operation b=q, will be put into the pipeline, but only committed if the

value of the operation’s guarding predicate (P2 for this operation) is determined to be true.

In what follows, we describe three types of operations that can be included in a hyperblock – cmpp operations,

the predicate OR operation, and normal (non-predicate-defining) operations.

As defined in the Trimaran System [2] (which supports EPIC computing via the Playdoh ISA [19]), guarding

predicates are assigned their values via cmpp operations [8]. Consider an operation

B,C cmpp.un.ac a>c if A as an example. The cmpp operation can define one or two predicates. This

operation will define predicates B and C. The first tag (.un) applies to the definition of the first predicate B and the

second tag (.ac) to C. The first character of a tag defines how the predicate is to be defined. The character u means

that the predicate will unconditionally get a value, whether the guarding predicate (A in this case) is true or false. If

A is false, then B is set to false. Otherwise, A is true and the value of B depends upon the evaluation of a>c.

The character a in the second tag (.ac) indicates that the full definition of the related predicate C is contingent

on the value of A, the evaluation of a>c, AND the prior value of C. If A is false, the value of predicate C does not

change. If A is true and C has previously been set false then C remains false. Additionally, the second character of

a tag defines whether the normal (n) result of the condition (a>c) or the complement (c) of the condition must be

true to make the related predicate true. If A is true and C is true and !(a>c) is true then the new value of C will be

true2. For a complete definition of cmpp statements see the Playdoh architecture specification [19].

In our implementation of PSSA, we introduce a new OR operation currently not defined by Trimaran. The

predicate OR operation defines block predicates by taking the logical OR of multiple predicates. For example,

consider an operation G = OR(A, B, C) if true (where A, B and C are predicates, each defining a unique

path to G). If any one of them has the value of true, G will receive a value of true, otherwise G will be assigned false.

2Conversely, if A is true and C is true and !(a>c) is false, then the new value of C will be false.
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When scheduling, we make the reasonable assumption that the definition of a predicate is available for use as

a source for another operation, or as a guard to a subsequent cmpp operation in the cycle following its definition.

When used as a guard for all other operations, the predicate definition is available for use in the same cycle as it is

defined.

We refer to all other operations, which do not define predicates, as normal operations. Normal operations include

assignments, arithmetic operations, branches, and memory operations.

3 Motivation for Predicate-Sensitive Analysis

A major task for the scheduler of a multi-issue machine is to find independent instructions. Unfortunately, predi-

cation introduces additional dependences that traditional code doesn’ t have to consider. In Figure 1(b), there is a

dependence between the definition of the guarding predicate P2 and its use in the statement b=q if P2. Since

predication combines multiple basic blocks, it introduces false dependences between disjoint paths. For example,

in Figure 1(b), in the absence of predicate dependence information, we would infer a dependence between the def-

inition of b in b=q if P2 and the use of b in d=b+3 if P3. However, these two statements are guarded by

disjoint predicates. Therefore, only one of the predicates (P2 or P3) can possibly be true; only one of the statements

will actually be committed and no dependence does in fact exist.

Johnson et. al. [18] devised a scheme to determine the disjointness of predicates using the predicate partition

graph. This analysis allowed more effective register allocation as live ranges across predicated code could be more

accurately determined [15]. Their approach was limited to describing disjointness with restricted path information.

Path information that extended across join points was not collected. In Figure 2, the predicate partition graph would

determine that the following pairs of predicates are disjoint: G and H, B and C, D and !D. However, no information

regarding the relationship between D and G or D and H would be available.

This “cross-join” information is needed to provide the scheduler full flexibility in scheduling statements such as

y=t+r. If path information is not available, then y=t+r is guarded on true and the scheduler correctly assumes

this statement is dependent on t=rand(), t=t-s, r=5+x, and r=x+8. However, since there are two possible

definitions of each operand, there are 4 combinations of operands that could in fact cause the definition of y – each

executable via one (or more) paths of execution through the region. If 4 versions of this statement could be made

(one for each combination of the operands), then each could be scheduled at the minimum dependence length for

that version. While disjointness information can maintain information regarding paths since the most recent join, we

will need to combine path information across joins to remove unnecessarily conservative scheduling dependences.

Figure 2(b) shows the cross-join path information that would be needed to guard each assignment of y so that the
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t>7

t=rand()
t>r

y=t+r
v=y+5

(G) (H)

w>2

t=t-s

(B)

w=rand()
z=w+5
z>7

r=5+x r=x+8

(C)

(D)

w=rand() if true
z=w+5 if true
G,H    z>7 if true
r=5+x if G
r=x+8 if H
t=rand() if true
B,C t>r if G
B,C t>r if H
L, w>2 if B
__,D t>7 if C
t=t-s if D
br out if L
y=t+r if !D&G
y=t+r if !D&H
y=t+r if D&G
y=t+r if D&H
v=y+5 if true

(a) Original Control Flow Graph (b) Predicated Hyperblock with Paths

First join 
block

Second join 
block

Third join 
block

Br out

(L)

Figure 2: Code is duplicated when more than one definition reaches a use to maintain maximum flexibility for the
scheduler. In (b), the statement y=t+r is duplicated for each pair of definitions that may reach this statement. Each
copy is guarded by the predicates that defined the path along which those definitions would occur.

scheduler can know the precise dependences for each copy. This will allow the most flexibility in scheduling each

statement.

Although precise dependence information can be determined from guarding predicate relations, we will also

show that renaming techniques can be of additional use to achieve greater scheduling flexibility. By renaming

variables that have more than one definition in a region, we will maintain path information even after optimizations

which change the guarding predicate of a statement have been applied.

4 Predicated Static Single Assignment (PSSA)

Techniques such as renaming [4] and Static Single Assignment (SSA) [13, 12] have proved useful in eliminating

false dependences in traditional code [31]. Removing false dependences allows more flexibility in scheduling since

data independent operations can move past each other during instruction scheduling.

In non-predicated code, SSA assigns each target of an assignment operation a unique variable. At join nodes a

�-function may need to be inserted if multiple definitions of a variable reach the join. The �-functions determine

which version of the variable to use and assign it to an additional renamed version. This new variable is used to

represent the merging of the different variable names. Figure 3 shows the simple example from Figure 1 in SSA

form. In the assignment b3->�(b1,b2), the variable b3 represents the reaching definition of b which is to be
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b=rand()
b>a

b=q d=b+3

f=b*2

P2 P3

(a) Control Flow Graph (b) Code in SSA form

b1=rand()
if b1>a

b2=q
else

d1=b1+3
b3->Ø(b1,b2)
f1=b3*2

Figure 3: Static Single Assignment

Br out

(L)

w=rand() if true
z=w+5 if true
G,H z>7 if true
r=5+x if G
r=x+8 if H
t=rand() if true
B,C t>r if true
L, w>2 if B
__,D t>7 if C
t=t-s if D
br out if L
y=t+r if true
v=y+5 if true

(a) Original Control Flow Graph (b) Predicated Hyperblock

t>7

t=rand()
t>r

y=t+r
v=y+5

(G) (H)

w>2

t=t-s

(B)

w=rand()
z=w+5
z>7

r=5+x r=x+8

(C)

(D)

Figure 4: Extended example of transformation from non-predicated CFG to predicated hyperblock

used after the join of definition b1 or b2.

As discussed in section 3, eliminating false dependences is equally important and a more complex task for

predicated code, since multiple control paths are merged. To address this problem we developed a predicate-sensitive

implementation of SSA called Predicated Static Single Assignment (PSSA).

PSSA seeks to accomplish the same objectives as SSA for a predicated hyperblock. First, it must assign each

target of an assignment operation in the hyperblock a unique variable. Second, at points in the hyperblock where

multiple paths come together it must summarize under what conditions each of the multiple definitions of a vari-

able reaches that join. The second objective is accomplished through the creation of full-path predicates and path-

sensitive analysis.

Consider the sample predicated code shown in Figure 4 using traditional hyperblock predication [22]. In this

predicated example, all branches have been replaced (except the one leaving the hyperblock) with predicate-defining

operations using If-conversion. The predicates that are defined in this example correspond to the two edges exiting
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t2=t1-s

F=true if true 1       
w1=rand() if F 1
z1=w1+5 if F 2
AGF,AHF cmpp.un.uc z1>7 if F 3
r1=5+x if AGF 3
r2=x+8 if AHF 3
A=OR(AGF,AHF) if true 4
t1=rand() if A 4
BAGF,CAGF cmpp.un.uc t1>r1 if AGF 5
BAHF,CAHF cmpp.un.uc t1>r2 if AHF 5
LBAGF,EBAGF cmpp.un.uc w1>2 if BAGF 6
LBAHF,EBAHF cmpp.un.uc w1>2 if BAHF 6
ECAGF, EDCAGF cmpp.un.uc t1>7 if CAGF 6
ECAHF, EDCAHF cmpp.un.uc t1>7 if CAHF 6
D=OR(EDCAGF,EDCAHF) if true 7
t2=t1-s if D 7
L=OR(LBAHF,LBAG F) if true 7
br out if L 7
y1=t1+r1 if EBAGF 6
y1=t1+r2 if EBAHF 6
y1=t1+r1 if ECAGF 6
y1=t1+r2 if ECAHF 6
y1=t2+r1 if EDCAGF 8
y1=t2+r2 if EDCAHF 8
E=OR( EBAGF,EBAHF,ECAGF,  

ECAHF,EDCAGF,EDCAHF) if true 7
v1=y1+5 if E 9

(AGF) (AHF)

w1=rand()
z1=w1+5
z1>7

(F)

t1= rand ()

(A)

w1>2 t1>7w1>2t1>7

Br out

(BAGF) (CAGF) (BAHF) (CAHF)

y1=t1+r1 y1=t1+r2 y1=t2+r1 y1=t2+r2

v1 =  y1  +  5

(LBAGF)

(EBAGF)
(EBAHF)

(LBAHF)
(L)

(ECAGF) (ECAHF)

(EDCAGF) (EDCAHF)

(E)

r1=5+x r2=x+8

(AGF)

t1>r1

(AHF)

t1>r2

(D)

(EDCAGF) (EDCAHF)

(a) PSSA dependence graph (b) PSSA-transformed code

Figure 5: The PSSA dependence graph shows the flow of data and control through the PSSA-transformed code.
Blocks labeled with full-path predicates (indicated by multiple letters) contain statements that are only executed
along that path. Blocks labeled with block predicates (single letters) contain statements that will be executed along
several paths.
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each conditional branch in the CFG in Figure 4. Figure 5 shows this example after PSSA has been applied and

displays a graph showing the post-PSSA dependence relationships.

The PSSA transformation has 2 phases: pre- and post-optimization. Hyperblocks are converted to PSSA form

before optimization. After optimization, PSSA inserts clean-up code on edges leaving the hyperblock, copying

renamed variables back to their original names and then removes any unused predicate definitions.

4.1 Converting to PSSA Form

When converting to PSSA form, each operation is processed in turn beginning at the top of the hyperblock and

proceeding to the end. Control PSSA is applied to predicate-defining operations, and Normal PSSA is applied to all

other operations.

We first describe Normal PSSA. If the operation is an assignment, the variable defined is renamed. The third

operation in Figure 5(b), z1=w1+5, is an example. All operands are adjusted to reflect previously renamed variables

(e.g. w becomes w1). If the operation is part of a join block, multiple versions of the operands may be live. The

first operation (y=t+r) in the third join block of Figure 2(a) provides an example. Here, the operation will be

duplicated for each path leading to the join and the correct operand versions for each path will be used in the

duplicate statement as seen in Figure 5 (in the multiple definitions of y1). The duplicates are guarded by the full-

path predicate (described below) associated with the path along which the operands are defined. Though there are

6 definitions of y1 (only 4 are unique), there is only one definition of y1 on any given path. These definitions are

predicated on disjoint predicates; only one of them can possibly be true, and only one of them will be committed.

We next describe Control PSSA. The single cmpp operation that defined one or two block predicates (such as

the definitions of B and C in Figure 4) is replaced by one or more cmpp operations, each associated with a particular

path leading to that block. As can be seen in Figure 5(b) there are now two cmpp operations: one defining BAGF

and CAGF, and one defining BAHF and CAHF. These new predicates are called full-path predicates (FPPs). Each

FPP definition has the appropriate operand versions for its path and each is guarded by the FPP that defined the path

prior to reaching the new block. For example, the cmpp defining BAGF and CAGF is predicated on AGF. A FPP

specifies the unique path along which an operation is valid for execution, enabling PSSA to provide correct guarding

predicates for the duplicate statements previously described.

In the example in Figure 2 we pointed out that the definitions of y1 needed guarding predicates that captured

information about paths of execution. The first definition of y1 needed to be guarded by a predicate representing

a path of execution through block G but not block D. In addition, the predicate needs to reflect that the execution

actually reached the block of the statement in question (E in this case). Register y1would be incorrectly modified if,

for example, the branch out of the hyperblock is taken and block E is never reached. The new FPP EBAGF represents
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the precise conditions for correct execution.

In addition to the cmpp statements added to define FPPs, cmpp statements are included to rename join blocks

whose statements were originally predicated on true. A and E and their associated FPPs are examples. The operations

in Figure 4(b) predicated on true, are predicated on F, A and E in the PSSA version of the code shown in Figure 5.

This is necessary to maintain exact path information.

Clearly, this has the potential to cause an exponential amount of code duplication. It might seem more reasonable

to follow the example of SSA and insert �-functions at join points to resolve multiple definitions. For example, an

implementation of �-functions resolving r and t in the definition of y1 could be:

(1) r=r1 if G

(2) r=r2 if H

(3) t=t1 if true

(4) t=t2 if D

(5) y1=r+t if true

While this would have the advantage of decreasing duplication, it does not eliminate the need for predicate-

sensitive analysis. Predicate relationship information is still needed to determine the reaching definitions and asso-

ciated predicates, and to determine the order of the copy operations. For example, both of the statements (3) and (4)

defining t in the previous sequence could be committed. The literal predicate true is always true, and predicate D

could be true as well. For the use of t in (5) to get the correct definition, statement (4) cannot be executed before

statement (3). Moreover, other side effects that degrade performance are introduced. Most important is that the in-

sertion of �-functions adds data dependences. For example, a true dependence is introduced between the definition

of t1 and its use in (3). In addition, false dependences are re-introduced. An example is the output dependence

between the two definitions of t. Thus, SSA and the usual �-function implementation does not give the desired

scheduling flexibility.

Block predicates are also important to the PSSA transformation. PSSA uses predicate OR statements to redefine

the block predicates as the union of the FPPs associated with the paths that reach the block. PSSA does not simply

duplicate every path through the hyperblock. Duplication only occurs when necessary to remove false dependences.

When there is only one version of all operands reaching a statement, only one version of the statement is required.

This is the case with v1=y1+5 in Figure 5. The variable y1 is the only version live in node E. This statement is

guarded by E, a block predicate created by taking the logical OR of EBAGF, EBAHF, ECAGF, ECAHF, EDCAGF,

and EDCAHF. As long as control reaches node E, regardless of the path taken, we will execute and commit the

statement v1=y1+5.
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4.2 Post-Optimization Clean-up

After optimization is applied to code in PSSA form, a clean-up phase is run to remove unnecessary code and to

assure consistent code outside of the hyperblock.

The PSSA implementation described in this paper generates cmpp statements for every path and block. These

are entered into the PSSA data structure that maintains information about the relationships between the predicates

they define, which provides maximum flexibility during optimization. However, some of these FPP definitions may

not be used, and the corresponding cmpp operations will be discarded, reducing the code size significantly.

Finally, to assure correct execution following the hyperblock, PSSA inserts copy operations assigning the origi-

nal variable names to all renamed definitions that are live out of the hyperblock. These are placed on the appropriate

exit of the hyperblock. For example, the exit branch guarded by L in Figure 4 would include t = t1 if L if t

was live out of the hyperblock at this exit.

5 Hyperblock Scheduling Optimizations

In this section, we describe how PSSA enables Predicated Speculation (PSpec) and Control Height Reduction (CHR)

for aggressive instruction scheduling. PSpec allows operations to be executed before their guarding predicates are

determined and CHR allows the guarding predicates to be determined as soon as possible, reducing the number of

operations that need to be speculated. Used together with PSSA, we demonstrate that we can schedule the code at

its earliest schedulable cycle, assuming a machine with unlimited resources.

5.1 Predicated Speculation

This section describes how to perform speculation on PSSA-transformed code. In general, speculation is used

to relieve constraints which control dependences place on scheduling. One can speculatively execute operations

from the likely-taken path of a highly-predictable branch, by scheduling those operations before their controlling

branch [20]. Similarly, Predicated Speculation (PSpec) will schedule a normal operation above the cmpp operation

it is dependent upon, optimizing a hyperblock’s execution time.

PSpec handles placement of the speculated predicated operation in a uniform manner. PSpec schedules a normal

operation at its earliest schedulable cycle. When speculating an operation, the operation is scheduled earlier than

the operation it is control dependent on, and is predicated on true. We assume that any exceptions raised by the

speculated operations will be taken care of using architecture features such as poison bits [7].
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F=true if true        1          
w1=rand() if F             1
z1=w1+5 if F            2
AGF, AHF cmpp.un.uc z1>7 if F            3
r1=5+x if true      1
r2=x+8 if true         1
A=OR(AGF, AHF)                if true         4
t1=rand() if true         1
BAGF,CAGF      cmpp.un.uc  t1>r1     if AGF       4
BAHF,CAHF cmpp.un.uc  t1>r2     if AHF       4
LBAGF,EB AGF    cmpp.un.uc w1>2    if BAGF     5
LBAHF,EB AHF   cmpp.un.uc w1>2    if BAHF    5
ECAGF, EDC AGF   cmpp.un.uc t1>7     if CAGF    5
ECAHF, EDCAHF   cmpp.un.uc   t1>7    if CAHF     5
D=OR(EDCAGF,E DCAHF)                      if true         6
t2=t1-s if true         2
L=OR(LBAHF,LB AGF)      if true         6
br out if LBAGF  5
br out                                     if LBAHF   5
y1=t1+r1 if true 2
y2=t1+r2 if true 2
y3=t1+r1 if true         2
y4=t1+r2 if true 2
y5=t2+r1 if true         3
y6=t2+r2 if true         3
E= OR(EBAGF,E BAHF,ECA GF,  

ECAHF,EDCAGF,EDC AHF)                if true   6
v1=y1+5 if true         3
v2=y2+5 if true         3
v3=y3+5 if true         3
v4=y4+5 if true        3
v5=y5+5 if true        4
v6=y6+5 if true         4

Figure 6: Extended code example after PSpec optimization has been applied. Statements (other than first statement)
predicated on true have been speculated.
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PSpec(normal op)
f

if (normal op.guarding predicate not defined by
normal op.earliest schedulable cycle)

f
if (multiple defs of normal op.target exist
f

rename(normal op.target);
update uses(normal op.target);

g
normal op.schedule(earliest schedulable cycle);
normal op.set predicate(true);

g
else
f

normal op.schedule(earliest schedulable cycle);
g

g

Figure 7: Basic PSpec Algorithm.

5.1.1 Instruction Scheduling with Speculation

To demonstrate the usefulness of PSSA in enabling PSpec, Figure 6 shows the code from Figure 5 after the PSpec

optimization has been applied. The assignments to r1 and r2 are examples of speculated operations. Notice

that based on dependences, they could both be scheduled at cycle one which would have been impossible without

renaming.

During predicated speculation, each operation is considered sequentially, beginning with the first instruction in

the hyperblock. If it is a normal, non-store operation, PSpec compares its earliest schedulable cycle with the cycle

in which its guarding predicate is currently defined. If the operation can be scheduled earlier than its guarding

predicate, the operation is predicated on true and scheduled at its earliest schedulable cycle.

Recall that PSSA has not performed full renaming, so further renaming may be required by PSpec. An example

is the definition of y1 in Figure 5. If we speculate any of the definitions of y1 by predicating them on true without

renaming, incorrect code can result. Consequently, we must rename the operations being speculated. The results

of applying this to the 6 definitions of y1 (now y1, y2, y3, y4, y5,and y6) appear in Figure 6. Speculation and

renaming may require the duplication of operations using the definition being speculated, since there may now be

multiple reaching definitions. When speculating y1, the operation v1=y1+5 had to be duplicated and guarded on

the appropriate FPP (though in Figure 6 these statements are shown after they, too, have been speculated). This is

possible because PSSA previously created all the necessary FPPs and path information.

If the guarding predicate has been defined by the operation’s earliest schedulable cycle, we do not apply PSpec.
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It is again scheduled at its earliest schedulable cycle, but guarded by the guarding predicate assigned by PSSA. The

instruction z1=w1+5 is an example. The algorithm for PSpec instruction scheduling is shown in Figure 7.

Using PSpec, the hyperblock can now be scheduled in 6 cycles as compared to 9 cycles in Figure 5. Since PSpec

is applied whenever the definition of the operation’s guarding predicate occurs later than the earliest schedulable

cycle of the operation, we could reduce the number of operations that need to be speculated by moving the definition

of the guarding predicates earlier. The goal of the next optimization, Control Height Reduction, is to allow predicates

to be defined as early as possible.

5.1.2 Branches and Speculation

We chose not to PSpec branches. Therefore, a branch statement’s earliest schedulable cycle is the one in which its

guarding predicate is known. However, if a branch has been predicated on its block predicate by PSSA (because it

does not have multiple operand versions reaching it) then it may be unnecessarily delayed in scheduling by waiting

for that block predicate to be computed. As shown in Figure 6, we may choose to duplicate this statement, much as

we do in normal PSpec, and guard the execution of these duplicates on their respective FPPs, instead of predicating

the single instruction on its block predicate.

5.2 Control Height Reduction

Control Height Reduction (CHR) eases control constraints between multiple control statements. CHR allows succes-

sive control operations on the control path to be scheduled in the same cycle, effectively reducing control dependence

height. For example, in the code in Figure 6, the control comparisons for z1>7 and t1>r1 are scheduled in cycles

3 and 4, respectively. However, the second comparison is only waiting for the definition of its guarding predicate

AGF.

To schedule it earlier, consider the PSSA dependence graph in Figure 5. The definition of BAGF (defined by the

condition t1>r1), is control dependent on the definition of AGF (defined by the condition z1>7). We could define

BAGF directly as the logical AND of the conditions z1>7 and t1>r1 removing the dependence on the definition

of AGF. This AND expression could be scheduled in cycle 3.

Control Height Reduction was proposed in [27]. It was successfully used to reduce the height of control recur-

rences found in loops when applied to superblocks. A superblock is a selected trace of basic blocks through the

control flow graph containing only one path of control [26]. The path-defining aspects of PSSA allow our algorithm

to effectively apply CHR to predicated hyperblocks, since the full-path predicates expose all of the original, separate

paths throughout the hyperblock.
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F=true if true     1          
w1=rand() if F         1
z1=w1+5 if F 2
AGF,A HF cmpp.un.uc z1>7   if F 3
r1=5+x if true 1
r2=x+8 if true 1
A=OR(AGF|AHF)                                    if true 4
t1=rand() if true 1
BAGF, CAGF         cmpp.an.an z1>7    if true 3
BAGF, CAGF        cmpp.an.ac t1>r1    if true 3
BAHF, CAHF     cmpp.ac.ac z1>7     if true 3
BAHF, CAHF cmpp.an.ac t1>r2    if true 3
LBAGF,EB AGF  cmpp.an.an z1>7    if true 3
LBAGF,EB AGF     cmpp.an.an t1>r1   if true 3
LBAGF,EB AGF     cmpp.an.ac w1>2  if true 3
LBAHF,EB AHF     cmpp.ac.ac z1>7    if true 3
LBAHF,EB AHF cmpp.an.an t1>r2    if true 3
LBAHF,EB AHF     cmpp.an.ac w1>2   if true 3
ECAGF,EDC AGF  cmpp.an.an z1>7 if true 3
ECAGF,EDC AGF  cmpp.ac.ac t1>r1     if true 3
ECAGF, EDC AGF cmpp.an.ac t1>7      if true 3
ECAHF,EDCAHF cmpp.ac.ac z1>7    if true 3
ECAHF,EDCAHF cmpp.ac.ac t1>r2 if true 3
ECAHF, EDCAHF cmpp.an.ac t1>7     if true 3
D=OR(EDCAGF,EDCAHF) if true 4
t2=t1-s if true 2
L=OR(LBAHF,LBAGF )       if true 4
br out if LBAGF 3
br out                                                           if LBAHF 3
y1=t1+r1 if true 2
y2=t1+r2 if true 2
y3=t1+r1 if true 2
y4=t1+r2 if true 2
y5=t2+r1 if true 3
y6=t2+r2 if true 3
E=OR(EBAGF,E BAHF,ECA GF,  

ECAHF,E DCAGF,E DCAHF)                if true 4
v1=y1+5 if EBAGF 3
v1=y2+5 if EBAHF 3
v1=y3+5 if ECAGF 3
v1=y4+5 if ECAHF 3
v1=y5+5 if EDCAGF 4
v1=y6+5 if EDCAHF 4

Figure 8: Extended example after PSpec and CHR optimizations have been applied. Cmpp instructions displayed in
italics define predicates that are not used after optimization. Therefore, the statements can be removed from the final
code.
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Schlansker et. al. [28] recently expanded on their previous research, applying speculation prior to attempting

height reduction. Speculation is needed to remove dependences between the branch conditions that need to be

combined to accomplish the reduction. However, in that work, speculation was limited to operations that would

not overwrite a live register or memory value if speculated, since they did not use renaming. In Figure 5, the cmpp

operation defining BAGF and CAGF is shown scheduled at cycle 5 due to dependences on t1 and r1. PSSA allows us

to apply PSpec and schedule these definitions in cycle 1, making the cmpp available for CHR as shown in Figure 8.

5.2.1 Instruction Scheduling with PSpec and CHR

During instruction scheduling, PSpec is performed as described in Section 5.1.1. During the same sequential pass

through instructions, for each control operation (cmpp), CHR is performed if possible.

Recall that the operations in Figure 5 are scheduled in the order given in the PSSA hyperblock. Like PSpec,

CHR compares an operation’s earliest schedulable cycle with when it must be scheduled if it waited for its guarding

predicate to be defined. If it does not need to wait on the definition of its guarding predicate, it is simply scheduled

at its earliest schedulable cycle. Without Pspec, the definition of BAGF was waiting on the definition of t1 and r1.

With Pspec, it is only waiting on the definition of its guarding predicate. Therefore, it is beneficial to control height

reduce.

By ANDing the condition of the current definition with the condition that defined its guarding predicate, we can

schedule this definition earlier. If the definition of the guarding predicate involved conditions that were ANDed as

well, all of the conditions must be included, so the number of cmpp statements needed to define the current operation

increases. The .a tag on each of these cmpp statements indicates that all of them are required for the final definition.

Consider the operations z1>7, t1>r1 and t1>7 in Figure 5. We control height reduce these operations in

Figure 8, since they are all schedulable in cycle 3 based on our scheduling constraints. The definition of ECAGF

now describes the combination of z1>7 being true AND t1>r1 having a value of false AND t1>7 having a value

of true. We implement this logical AND using the .ac and .an qualifiers. The definition of ECAGF requires that

the conditions z1>7 and t1>7 and the condition !(t1>r1) evaluate to true for the FPP to get a value of true. If

any one of the requirements are not met, the FPP will be set to false. The compares can be performed in the same

cycle [19], allowing multiple links in a control path to be defined simultaneously. The algorithm for CHR is found

in Figure 9.

Using PSpec and CHR on PSSA-transformed code results in the 4 cycle schedule shown in Figure 8. Note that

the operations shown in italics can be removed in a post-pass because these operations define predicates that are

never used. Using predicated speculation and control height reduction together on PSSA-transformed code allows

every operation to be scheduled at its earliest schedulable cycle.
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CHR(cmpp op)
f

if (cmpp op.guarding pred defined
by cmpp op.earliest schedulable cycle)

f
cmpp op.schedule(cmpp op.earliest schedulable cycle)

f
/* Apply Control Height Reduction */

else
f

while (more stmts defining(cmpp op.guarding pred))
f

next def=next defining stmt(cmpp op.guarding pred)
copy=duplicate(next def)
copy.schedule(next def.get scheduling time())
copy.predicate on(next def.get guarding pred())
copy.set define(cmpp op.get pred defined())
copy.set tag to(a)

g
cmpp op.schedule(next def.get scheduling time())
cmpp op.predicate on(next def.get guarding pred())
cmpp op.set tag to(a)

g
g

Figure 9: Basic Control Height Reduction Algorithm.

6 Results

We have implemented algorithms to perform PSSA, CHR and PSpec on hyperblocks in the Trimaran System (Ver-

sion 2.00). We collect profile-based execution weights for operations in the codes and schedule operations with an

assumed one-cycle latency in order to calculate execution time. Additionally, we conservatively assume that a load

is dependent on all prior stores along a given path, and that a store is dependent on prior stores as well. We also

ensure that all instructions along a path leading to a branch out of the hyperblock are executed prior to exiting the

hyperblock.

Figure 10 shows normalized execution time when applying our optimizations for several Trimaran bench-

marks: fib, mm, wc, fir, wave, nbradar (a Trimaran media benchmark), qsort, alvinn (from SPECFP92),

compress (from SPECINT95), and li (from SPECINT95). These codes are described in the Trimaran Bench-

mark Certification [2]. The original execution times are created from the default Trimaran settings, with the ex-

ception that the architecture issue rate is set to 16. Execution time is estimated by summing together the fre-

quency of execution of each hyperblock multiplied by the number of cycles it takes to execute the hyperblock

assuming a perfect memory system. Infinite results do not restrict the number of operations issued per cycle.
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Figure 10: Executed cycles normalized to the number of cycles to execute the original code produced by Trimaran
for a 16 issue machine.

16-way results are obtained by dividing each cycle which has been scheduled with more than 16 operations into

ceiling(total operations scheduled in cycle / 16) cycles. The results are normalized to the

original schedule generated by Trimaran for a 16-issue machine and scheduled 16-way. The optimized results show

the performance after applying PSSA, PSpec, and CHR. The results show that using PSSA with PSpec and CHR

results in a significant reduction in executed cycles.

Figure 11 shows the average number of operations executed per cycle for the configurations examined in Fig-

ure 10. In comparing the two graphs for the 16-way results, 3-4 times as many instructions are issued per cycle

after applying PSSA, PSpec, and CHR, and this resulted in a reduction in execution time ranging from 12% to 68%.

Since PSpec and CHR as applied to PSSA code have the effect of removing the restrictions of control dependence,

the optimized infinite results provide a picture of ”best case” instruction level parallelism. Inspection of the opti-

mized infinite results of alvinn, compress, and li show that, given current hyperblock formation, peak IPC is

somewhat limited.

The renaming required by PSSA and PSpec also significantly increases register pressure. Trimaran’s ISA (Play-

doh) supports 4 register files: general purpose, floating point, branch, and predicate [2, 19]. Figure 12 shows the

average number of live registers for the original code and the optimized code using PSSA, PSpec and CHR. The aver-

age live register results are weighted by the frequency of hyperblock execution. For example, matrix multiply

has on average 17 live general purpose registers in the original code, and 54 live general purpose registers after

optimization. Though the increase in utilization of all these register files is notable, the weighted average utilization

mostly still remains within the reported IA-64 register file sizes (128 general purpose, 128 floating point, 8 branch,
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Figure 11: Weighted average number of operations scheduled per cycle for hyperblocks when using PSSA with
Predicated Speculation and Control Height Reduction. Note that several of the ”Optimized infinite” results are
greater than 16 – the issue width simulated in these experiments.
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Figure 12: Weighted average register pressure in hyperblocks when using PSSA with Predicated Speculation and
Control Height Reduction. Shown from left to right for each benchmark is the general purpose file, predicate file,
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Figure 13: Static and Dynamic Code Expansion normalized to original code size. Dynamic code expansion indicates
an increase in the working set size to be supported by the instruction cache.

and 64 predicate) [3].

Additionally, PSSA combined with aggressive PSpec and CHR significantly increases code size – both static

and dynamic. Aggressive and resource insensitive application of CHR and PSpec aims to reduce cycles required to

schedule at the cost of duplicated code specialized for particular paths (in the case of PSpec) or duplicated code for

faster computation of predicates (in the case of CHR). Figure 13 shows both the static and dynamic code expansion of

the PSSA, PSpec, and CHR optimized code over the original code. We calculate static code expansion by comparing

the number of static operations in the optimized code with the number of static operations in the original code.

Dynamic code expansion is measured similarly, with the exception that each static operation is weighted by the

number of times that it is executed (as calculated by Trimaran’s profile-based region weights). This “dynamic code

expansion” is intended to capture the run-time effect that the introduced duplicated code will have on the memory

system. Dynamic code expansion indicates an increase in the working set size to be supported by the instruction

cache.

7 Related Work

Predicated execution presents challenges and prospects that researchers have addressed in a variety of ways. Mahlke

et. al. [21] showed that predicated execution can be used to remove an average of 27% of the executed branches

and 56% of the branch mispredictions. Tyson also found similar results and correlated the relationship between
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predication and branch prediction [29].

In an effort to relieve some of the difficulties related to applying compiler techniques to predicated code, Mahlke

et. al. [22] defined the hyperblock as a single-entry, multiple-exit structure to help support effective predicated

compilation. These hyperblocks are formed via selective If-conversion [5, 24] – a technique that replaces branches

with predicate define instructions. The success of predicated execution can depend greatly on the region of the

code selected to be included in the predicated hyperblock. August et. al. [9] relates the pitfalls and potentials

of hyperblock formation heuristics that can be used to guide the inclusion or exclusion of paths in a hyperblock.

Warter et. al. [30] explore the use of Reverse If-conversion for exposing scheduling opportunities in architectures

lacking support for predicated execution as well as for re-forming hyperblocks to increase efficiency for predicated

code [9, 30].

The challenges of doing data-flow and control-flow analysis on hyperblocks have also been addressed. Since

hyperblocks include multiple paths of control in one block, traditional compiler techniques are often too conservative

or inefficient when applied to them. Methods of predicate-sensitive analysis have been devised to make traditional

optimization techniques more effective for predicated code [15, 18]. The work presented in [11] (and expanded

upon in this work) extended the localized predicate-sensitive analysis presented in [15, 18] to complete path analysis

through the hyperblock. Path-sensitive analysis has previously been found useful for traditional data-flow analysis [6,

10, 16]. We use this specialized path information to accomplish PSSA (a predicate-sensitive form of SSA [13, 12])

which enables Predicated Speculation and Control Height Reduction for hyperblocks that have previously been

examined only in the presence of the single path of control found in superblocks [26, 27, 28].

Moon and Ebcioglu [23] have implemented selective scheduling algorithms, which can schedule operations at

their earliest possible cycle for non-predicated code. Our work extends theirs for predicated code, by allowing

earliest possible cycle scheduling using predicated renaming with full-path predicates.

8 Implementing PSSA in IA-64

Implementing PSSA using the IA-64 ISA [3] would be straightforward with the exception of the predicate OR state-

ment we introduced. We found this OR statement to be very useful in efficiently combining path information in order

to eliminate unnecessary code expansion. If this instruction were not explicitly added to IA-64 then it could be im-

plemented by transferring the predicate register file into a general register using the move from predicate instruction

in IA-64. The general purpose masking instruction would then be used to mask all but the bits corresponding to the

sources of the predicate OR instruction. A result of zero evaluates to false, and anything else evaluates to true.

IA-64, unlike the Playdoh ISA, places limits on compare instructions. For example, conditions that are included
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in logical AND compare statements can only compare a variable to zero. Specifically, the statement LBAGF,EBAGF

cmpp.an.an t1>r1 if true in Figure 8 would not be permitted. In implementing CHR, we would have to

transform the prior expression into the following 2 statements (expressed in IA-64 notation) [3] :

(PR[0]) cmp.unc.gt PR[TEMP 1],PR[TEMP 2] = GR[t1],GR[r1]

(PR[TEMP 2]) cmp.and.gt PR[LBAGF],PR[EBAGF] = GR[0],GR[0]

9 Future Work

When constructing a hyperblock schedule for a specific processor implementation, resource limits will mandate how

many operations can be performed in each cycle. Architectural characteristics such as issue width, resource uti-

lization, number of available predicate registers, and number of available rename registers all need to be considered

when creating an architecture-specific schedule. The goal of a hyperblock scheduler is to reduce the execution-height

while taking these architectural features into consideration.

In this paper, our goal was to show that PSSA provided an efficient form of renaming and precise path informa-

tion to allow all operations to be scheduled at their earliest schedulable cycle. We are currently examining different

PSSA representations to reduce code duplication and the number of full-path predicates created. Since various con-

trol paths through a hyperblock may have different true data dependence heights, it may provide no advantage to

speculate operations that are not on the critical path through the hyperblock. PSSA could concentrate on only the

critical paths through the hyperblock, reducing code duplication. For non-critical paths, it may be advantageous in

PSSA to implement �-functions combining different variable names, instead of maintaining renamed variables for

each full-path in the hyperblock. At a point in the hyperblock where all paths join, copy operations could be used

to return renamed definitions to original names. Path definitions could then be restarted at this point. This would

reduce the amount of duplication required for a given operation to use correctly renamed variables. Our future

research concentrates on these issues and creating a more efficient implementation of PSSA.

10 Conclusions

This paper extended [11], where Predicated Static Single Assignment was first introduced. It motivated the need for

renaming and for predicate analysis that extends across all paths of the hyperblock. It demonstrated how Predicated

Static Single Assignment (PSSA), a predicate-sensitive implementation of SSA that implements renaming using

full-path predicates, can be used to eliminate false dependences for predicated code. We showed the benefit of using
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PSSA to enable Predicated Speculation (PSpec) and Control Height Reduction (CHR) during scheduling. Predicated

Speculation allows operations to be executed at their earliest schedulable cycle, even before their guarding predicates

are determined. Control Height Reduction allows guarding predicates to be defined as soon as possible, reducing the

amount of speculation needed.

By maintaining information about each of the original control paths in a hyperblock, PSSA can provide infor-

mation that allows precise placement of renamed and speculated code, and allows the correct, renamed values to be

propagated to subsequent operations. The renaming used by PSSA allows more aggressive speculation, as overwrit-

ing live values is no longer a concern. In addition, PSSA supports Control Height Reduction along every control

path using full-path predicates, reducing control dependence depth throughout the hyperblock.

Our experiments show that PSSA is an effective tool for optimizing predicated code. We gave extended exper-

iments that show using PSSA with PSpec and CHR results in a reduction in executed cycles ranging from 12% to

68% for a 16 issue machine.
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