Representative Multiprogram Workloads for

Multithreaded Processor Simulation

Michael Van Biesbrouck!

Lieven Eeckhout?

Brad Caldert*

fCSE, University of California, San Diego, USA
'ELIS, Ghent University, Belgium
*Microsoft
Email: {mvanbies,calder}@cs.ucsd.edu, leeckhou@elis.UGent.be

Abstract

Almost all new consumer-grade processors are capa-
ble of executing multiple programs simultaneously. The
analysis of multiprogrammed workloads for multicore and
SMT processors is challenging and time-consuming be-
cause there are many possible combinations of bench-
marks to execute and each combination may exhibit sev-
eral different interesting behaviors. Missing particular
combinations of program behaviors could hide perfor-
mance problems with designs. It is thus of utmost impor-
tance to have a representative multiprogrammed work-
load when evaluating multithreaded processor designs.

This paper presents a methodology that uses phase
analysis, principal components analysis (PCA) and
cluster analysis (CA) applied to microarchitecture-
independent program characteristics in order to find im-
portant program interactions in multiprogrammed work-
loads. The end result is a small set of co-phases with
associated weights that are representative for a multipro-
grammed workload across multithreaded processor archi-
tectures. Applying our methodology to the SPEC CPU
2000 benchmark suite yields 50 distinct combinations for
two-context multithreaded processor simulation that re-
searchers and architects can use for simulation. Fach
combination is simulated for 50 million instructions, giv-
ing a total of 2.5 billion instructions to be simulated for
the SPEC CPU2000 benchmark suite. The performance
prediction error with these representative combinations
is under 2.5% of the real workload for absolute through-
put prediction and can be used to make relative through-
put comparisons across processor architectures.

1 Introduction

Most of today’s processors run multiple programs simul-
taneously through Simultaneous Multithreading (SMT)
or multicore processing. Some programs are designed to
run identical threads simultaneously for CPU-intensive
tasks, but most users will run a heterogeneous set of pro-

grams and individual programs may run many threads
that accomplish distinct tasks. For example, a web
browser and its helper applications may be simultane-
ously parsing HTML, decoding JPEG images, decom-
pressing gzip-encoded web pages, playing audio and
showing Flash animations while other programs run on
the same system. A thorough analysis of a new system
requires understanding the consequences of running all
combinations of these threads and programs.

Most computer architecture studies require cycle-
accurate simulation of real-life programs to help evaluate
new architectural features. Current industry-standard
benchmarks, such as SPEC CPU2000 execute hundreds
of billions of instructions; SPEC CPU2006 has programs
that run for trillions of instructions. Even on today’s
fastest architectural simulators, simulating some of the
SPEC CPU2000 benchmarks takes several weeks to com-
plete. Because the processors to be simulated are becom-
ing more complex and the length of the benchmarks to
be simulated is increasing, simulation time is increasing
even though the computers running the simulations are
becoming faster.

One common technique to reduce simulation time is
representative sampling [15, 11]. Phase analysis groups
instruction intervals from a program’s execution into
phases that have similar behavior, and simulate only one
sample from each phase. This technique is normally ap-
plied to single programs, so it does not capture the sim-
ilarities between different benchmarks, nor the effects of
running multiple programs at the same time.

On a multithreaded or multicore processor, the num-
ber of distinct behaviors that can occur from a set of pro-
grams is a combination of the number of unique phases
in each application. To try to capture all of those behav-
iors, Van Biesbrouck et al. [18] proposed the Co-Phase
Matriz to guide the simulation of an SMT processor for a
multiprogrammed workload. The co-phase matrix rep-
resents all of the potential phase combinations, called
a co-phase, of a multiprogrammed workload to be ex-

amined in an architecture study. The co-phase SMT
simulation approach populates the co-phase matrix with
samples during simulation. Once a co-phase has an ap-
propriate sample, they no longer need to simulate that
co-phase and can just fast-forward execution to the next
co-phase. The amount to fast-forward for each thread
is determined by the performance data stored in the co-
phase matrix for that particular co-phase. This allows
the performance of a pair of programs to be estimated
from any given pair of starting points.

A later paper by Van Biesbrouck et al. [17] extends
the co-phase technique to efficiently estimate average
performance over all starting points when running mul-
tiple programs on an SMT processor. They construct
the co-phase matrix as before, but use it to estimate the
average performance from many starting points. The
starting points are randomly picked and they analyti-
cally simulate from each starting point. The average of
the collected performance statistics converges after on
the order of 1000 runs. Since the analytical simulation
is done very efficiently, the whole SMT simulation for a
set of starting points completes in minutes. The draw-
back to this technique is that constructing co-phase ma-
trices for every pair of programs is time-consuming, and
the number of instructions to be simulated for a work-
load can be more than a researcher has time to analyze
when doing design space exploration. Analyzing all pairs
of reference inputs for the whole SPEC CPU2000 suite
would require 3.5 trillion instructions to be simulated.

In this paper we propose a technique to determine
the most significant co-phase behaviors in a benchmark
suite. To make this possible, we propose a technique
based on Principal Components Analysis (PCA) and
Cluster Analysis for reducing the required number of
co-simulation points. The proposed technique detects
similarities in phases from different benchmarks and dif-
ferent inputs to the same benchmark. Additional sav-
ings come from the elimination of rare behaviors that
do not contribute significantly to performance estimates
and by avoiding fine-grain simulation of co-phase behav-
ior. Despite small number of co-simulation points — 50
co-simulation points for two-thread workloads for SPEC
CPU2000, or 2.5 billion instructions in total — we are
able to accurately estimate the throughput of all bench-
mark combinations.

Our approach uses long enough samples to avoid most
warmup problems. In addition, we insure that the sam-
ples contain homogeneous behavior relative to the sam-
ple size. Homogeneous behavior within a sample allows
for faithful comparisons of simulation results across pro-
cessor architectures. The reason is that when compar-
ing performance numbers across multithreaded proces-
sor architectures, the various threads may have different
progress rates. Homogeneous behavior allows for stop-
ping the simulation at any point while yielding represen-

tative co-thread performance numbers.

Our technique is scalable to architectures with many
cores and contexts per core. Improvements to the clus-
tering methodology allow us to use many threads when
identifying thread combinations to simulate. Further-
more, due to our use of interpolation, the number of
combinations to simulate can be kept small; we examine
the use of just 50 co-simulation points.

2 Prior Work

2.1 Multithreaded Simulation Method-
ologies

Most of the research done on multithreaded processors
uses an ad-hoc simulation methodology. Researchers
typically pick a limited number of arbitrary samples (or
in many cases just a single sample) from a randomly
chosen set of benchmarks. Then they simulate these
randomly-picked samples together. An important pit-
fall with this methodology though is that it is unlikely
that this reduced workload gives a faithful image of the
real behavior that is observed on real multithreaded pro-
cessors. There are two reasons for this. For one, the
randomly-picked samples may not be representative for
the real program behavior. And second, when running
these randomly-picked samples together, there are no
weights available to combine the performance numbers
for each of these co-samples into a meaningful perfor-
mance number for the overall workload.

Raasch and Reinhardt [14] used an improved SMT
simulation methodology in their study on how parti-
tioned resources affect SMT performance. They selected
a set of diverse co-sample behaviors rather than ran-
domly chosen co-sample behaviors. First, they find sin-
gle simulation points using SimPoint [15]. They then
run all possible two-context co-phase combinations on
a given microprocessor configuration — in their setup
they ran 351 co-phases. For each of those co-phases,
they compute a number of microarchitecture-dependent
characteristics such as per-thread IPC, ROB occupancy,
issue rate, L1 miss rate, L2 miss rate, functional unit
occupancy, etc. Using the methodology from [6], they
then apply principal components analysis (PCA) and
cluster analysis (CA) to come to a limited number of 15
two-context co-phases. There are at least three pitfalls
with this methodology. First, a single simulation point is
chosen per benchmark. This could give a distorted view
for what is being seen in a real system where programs
go through multiple phases. Second, the single simula-
tion points selected by SimPoint may represent hetero-
geneous program behavior which makes comparing co-
phase behavior across processor architectures question-
able — different portions of the workload may be exe-
cuted under different processor architectures. To address

this issue, we consider multiple simulation points with
homogeneous phases. Third, this approach is driven by
microarchitecture-dependent characteristics. As a re-
sult, the distinct co-phase behaviors obtained through
PCA and CA will be representative for the processor ar-
chitecture for which the characteristics were measured.
However, it is questionable whether these co-phases will
be representative when applied to other processor archi-
tectures. In this paper, we address this pitfall by consid-
ering microarchitecture-independent characteristics for
determining representative co-phases.

Van Biesbrouck et al. [18] proposed the co-phase SMT
simulation approach for accurately predicting SMT per-
formance where each thread starts at a specific starting
point. They keep track of the performance data of previ-
ously executed co-phases in a co-phase matrix; whenever
a co-phase gets executed again, the performance data is
picked from the co-phase matrix without re-simulating
the co-phase. By doing this, each unique co-phase gets
simulated only once, which greatly reduces the overall
simulation time. In their follow-on work [17], Van Bies-
brouck et al. noted that in order to make an accurate
estimate of SMT performance it is important to consider
multiple starting points. As such, they extended the
co-phase matrix approach to consider all possible start-
ing points. They simulate all possible co-phases once,
store these performance numbers in the co-phase matrix
and then perform analytical simulations using the co-
phase matrix for multiple starting points. Note that this
prior work by Van Biesbrouck et al. focused on estimat-
ing SMT performance when running just single pairs of
threads; in other words, they are focusing on providing
an accurate performance estimate when running threads
simultaneously without considering the performance of
entire workloads. The focus of this paper is on finding
what threads to run simultaneously in a reduced simu-
lation workload that is representative for a much larger
workload consisting of multiple programs.

Alameldeen and Wood [1] showed that for multi-
threaded workloads running on real systems, perfor-
mance can be different for different runs from the same
initial state. This variability is not modeled in determin-
istic simulations. To account for this variability, they
argue to inject randomness into the simulation environ-
ment, and to apply statistics for making statistically rig-
orous conclusions.

Ekman and Stenstrom [7] use random sampling for
simulating multiprocessor systems and they use the well-
established matched pair statistical method to show that
the variability in the system’s throughput decreases with
an increasing number of processors when running mul-
tiprogrammed workloads. As a result, fewer samples
need to be taken in order to estimate overall system per-
formance on a multiprocessor system through sampled
simulation. However, they do not provide a method for

selecting what programs to run simultaneously in a rep-
resentative multiprogrammed workload.

2.2 Workload Analysis Through PCA

Eeckhout et al. [6] proposed a workload reduction ap-
proach that picks a number of program-input representa-
tives from a large set of program-input pairs. They first
measure a number of program characteristics of the com-
plete execution for each program-input pair. They sub-
sequently apply principal components analysis (PCA) in
order to get rid of the correlation in the data set. (In
section 3.4 we will discuss why this is important.) As
a final step, cluster analysis (CA) computes the simi-
larities between the various program-input pairs in the
rescaled PCA space. Program-input pairs that are close
to each other in the rescaled PCA space exhibit simi-
lar behavior; program-input pairs that are further away
from each other are dissimilar. As such, these similar-
ity metrics can be used for selecting a reduced work-
load. For example, there is little benefit in selecting two
program-input pairs for inclusion in the reduced work-
load if both exhibit similar behavior.

This initial work on workload reduction used
microarchitecture-dependent and microarchitecture-
independent characteristics as input to the work-
load analysis. The main disadvantage of using
microarchitecture-dependent characteristics is that
it is unclear whether the results are directly ap-
plicable for other microarchitectural configurations.
Phansalkar et al. [13] made a step forward by choosing
microarchitecture-independent characteristics only.
This makes the reduced workload more robust across
different microarchitectures. Eeckhout et al. [5]
further extended this workload analysis approach
by looking into similarities between program-input
pairs at the phase level. Instead of measuring aggre-
gate microarchitecture-independent metrics over the
complete benchmark execution, they measure those
metrics at the phase level. They subsequently used the
PCA/CA workload analysis methodology to identify
similarities across the benchmarks and inputs at the
phase level. The end result from their analysis is a set of
representative phases across the various program-input
pairs; these phases along with an appropriate weighting,
allow them to make accurate performance estimates of
the complete benchmark suite.

All of this prior work focused on finding represen-
tative workloads for single-threaded processor simula-
tion. This paper uses and extends the PCA/CA work-
load analysis methodology based on microarchitecture-
independent metrics to select representative co-phases
to be simulated in an accurate multiprogrammed multi-
threaded processor simulation methodology.

3 Finding a Reduced and Repre-
sentative Workload

We now present our methodology for building a reduced
but representative multiprogrammed workload for driv-
ing the simulation of multithreaded processors. The
workload that we start with is a set of benchmarks that
the computer architect considers a viable set of bench-
marks. The set of benchmarks that we consider in this
paper is the SPEC CPU2000 benchmark suite. The over-
all goal of the methodology proposed in this paper is to
reduce this workload into a workload that is viable for
simulation purposes while being representative for the
multiprogrammed behavior that is to be expected with
the original workload. Our workload reduction method-
ology consists of four steps.

1. The first step determines the prominent phase be-
haviors for each of the benchmarks in the original
workload. The prominent phase behaviors are rep-
resented by simulation points — a simulation point
is represented by a position in the dynamic instruc-
tion stream where the phase behavior starts. In
practice, a simulation point is stored on disk using
checkpoints [16]. The number of simulation points
is limited to a few per benchmark. The goal is for
each simulation point to exhibit homogeneous pro-
gram behavior.

2. For each of these simulation points, we then mea-
sure a number of microarchitecture-independent
characteristics. This is done very efficiently through
profiling.

3. Next, principal components analysis (PCA) [10] is
applied to a data set that represents all of the sim-
ulation points. The goal of principal components
analysis is to identify similar phases based on their
microarchitecture-independent behavior.

4. In the final step, cluster analysis (CA) is applied
to the results of the PCA in order to find groups
or clusters of co-phases (combinations of simula-
tion points) that exhibit similar microarchitecture-
independent behavior. A representative co-phase is
then chosen for each cluster and each co-phase is
represented as a weighted sum of neighboring rep-
resentative co-phases. The set of representative co-
phases and sum of associated weights then consti-
tute the reduced workload.

We now discuss each of these four steps in greater
detail in the following subsections.

3.1 Finding Homogeneous Intervals

The first issue we need to address is how we end our mul-
tiprogram simulation samples, since during simulation

each program being simulated in a multiprogrammed
workload will have different rates of progress yet we do
not want the nature of the workload to change due to a
change in relative rates of progress when we use a dif-
ferent microarchitecture configuration. Inside the 50M-
instruction intervals there will be small-scale repetitive
behavior from loops. If the repetitive behavior is small
enough then it is fine to simulate only 10M instructions
from one program’s 50M interval while simulating 40M
instructions from the other interval, even though an-
other microarchitectural configuration might allow them
to progress at the same rate. On the other hand, a 15M-
instruction loop with different behavior in the last 5M
instructions would not provide a workload that is con-
sistent between these two configurations.

To create homogeneous intervals we perform SimPoint
phase analysis at a smaller interval size than the 50M-
instruction interval granularity to verify whether the
phase behavior within the 50M instructions is constant.
In most cases, especially for floating-point benchmarks,
all of the frequent phases contain instances that have
consistent behavior for at least 50M instructions.

3.2 Microarchitecture-Independent
Characteristics

In order to be able to identify similarity across
simulation points, we consider microarchitecture-
independent characteristics measured over these simula-
tion points. As mentioned before, the reason we consider
microarchitecture-independent characteristics is that the
workload analysis needs to be done only once so that
its results can be used multiple times for estimating
the performance of a collection of processor configura-
tions. This is important since we want to run our anal-
ysis once on a benchmark suite and use the co-phases
found across all the different architecture configurations
during design space explorations. Table 1 summarizes
the microarchitecture-independent characteristics that
we use in this paper, which we now describe.

The range of microarchitecture-independent charac-
teristics is fairly broad in order to cover all major pro-
gram behaviors such as instruction mix, inherent ILP,
working set sizes, memory strides, branch predictabil-
ity, etc. The results given in the evaluation section of
this paper confirm that this set of characteristics is in-
deed broad enough for accurately characterizing cross-
program and cross-input similarity. We include the fol-
lowing characteristics:

Instruction mix. We include the percentage of
loads, stores, control transfers, arithmetic operations,
integer multiplies and floating-point operations.

ILP. In order to quantify the amount of instruction-
level parallelism (ILP), we consider an idealized out-of-
order processor model in which everything is idealized

Category N Characteristic

[}

Instruction Mix 1 | % loads
2 | % stores
3 | % control transfers
4 | % integer operations
5 | % floating-point operations
6 | % no-operations
7 % software prefetch operations
ILP 8 32-entry window
9 64-entry window
10 128-entry window
11 256-entry window
Register Traffic 12 avg. number of input operands
13 | avg. degree of use
14 prob. register dependence = 1
15 prob. register dependence < 2
16 prob. register dependence < 4
17 | prob. register dependence < 8
18 prob. register dependence < 16
19 prob. register dependence < 32
20 prob. register dependence < 64
Working Set Size 21 I-stream at the 32B block level
22 I-stream at the 4KB page level
23 D-stream at the 32B block level
24 D-stream at the 4KB-page level
Data Stream Strides 25 prob. local load stride = 0

26 prob. local load stride < 8

27 prob. local load stride < 64
28 prob. local load stride < 512
29 prob. local load stride < 4096
30 | prob. local store stride = 0

31 prob. local store stride < 8

32 prob. local store stride < 64
33 prob. local store stride < 512
34 | prob. local store stride < 4096
35 | prob. global load stride = 0
36 prob. global load stride < 8
37 prob. global load stride < 64
38 prob. global load stride < 512
39 prob. global load stride < 4096
40 | prob. global store stride = 0
41 prob. global store stride < 8
42 prob. global store stride < 64
43 prob. global store stride < 512
44 | prob. global store stride < 4096
Branch Predictability 45 GAg PPM predictor

46 | PAg PPM predictor

47 GAs PPM predictor

48 | PAs PPM predictor

Table 1: Microarchitecture-independent characteristics.

or unlimited except for the window size. We measure
for a given window size over a set of 32, 64, 128 and 256
in-flight instructions how many independent instructions
there are within the current window.

Register traffic characteristics. We collect a num-
ber of characteristics concerning registers [8]. Our first
characteristic is the average number of input operands to
an instruction. Our second characteristic is the average
degree of use, or the average number of times a register
instance is consumed (register read) since its production
(register write). The third set of characteristics con-
cerns the register dependency distance. The register de-
pendency distance is defined as the number of dynamic
instructions between writing a register and reading it.

Working set. We characterize the working set size
of the instruction and data stream. For each interval,
we count how many unique 32-byte blocks were touched
and how many unique 4KB pages were touched for both
instruction and data accesses.

Data stream strides. The data stream is charac-
terized with respect to local and global data strides [12].
A global stride is defined as the difference in the data
memory addresses between temporally adjacent memory
accesses. A local stride is defined identically except that
both memory accesses come from a single instruction—
this is done by tracking memory addresses for each mem-
ory operation. When computing the data stream strides
we make a distinction between loads and stores.

Branch predictability. The final characteristic we
want to capture is branch behavior. The most important
aspect would be how predictable the branches are for a
given interval of execution. In order to capture branch
predictability in a microarchitecture-independent man-
ner we used the Prediction by Partial Matching (PPM)
predictor proposed by Chen et al. [4], which is a univer-
sal compression/prediction technique.

A PPM predictor is built on the notion of a Markov
predictor. A Markov predictor of order k predicts the
next branch outcome based upon k preceding branch
outcomes. Each entry in the Markov predictor records
the number of next branch outcomes for the given his-
tory. To predict the next branch outcome, the Markov
predictor outputs the most likely branch direction for
the given k-bit history. An m-order PPM predictor con-
sists of (m 4 1) Markov predictors of orders 0 up to
m. The PPM predictor uses the m-bit history to index
the m*"-order Markov predictor. If the search succeeds,
i.e. the history of branch outcomes occurred previously,
the PPM predictor outputs the prediction by the mth
order Markov predictor. If the search does not suc-
ceed, the PPM predictor uses the (m — 1)-bit history
to index the (m — 1)*"-order Markov predictor. In case
the search misses again, the PPM predictor indexes the
(m — 2)*"-order Markov predictor, etc. Updating the
PPM predictor is done by updating the Markov predic-
tor that makes the prediction and all its higher order
Markov predictors. In this paper, we consider four vari-
ations of the PPM predictor: GAg, PAg, GAs and PAs.
‘G’ means global branch history whereas ‘P’ stands for
per-address or local branch history; ‘g’ means one global
predictor table shared by all branches and ‘s’ means sep-
arate tables per branch. We want to emphasize that
these metrics for computing the branch predictability
are microarchitecture-independent. The reason is that
the PPM predictor is to be viewed as a theoretical ba-
sis for branch prediction rather than an actual predictor
that is to be built in hardware.

3.3 Workload Characterization

The collected microarchitecture-independent data is
useful for research purposes with minimal further
analysis, as PCA reveals important quantitative,
microarchitecture-independent, properties of each inter-
val and simple statistical techniques reveal the nature of

our workload. For each characteristic we can compare
the collected data for all intervals, finding the highest
and lowest values as well as grouping the intervals into
quintiles: very low, low, medium, high and very high.
Determining mean values and standard deviation is also
possible but might not be useful for many characteris-
tics since probabilities are unlikely to be normally dis-
tributed. Once we have classified all intervals according
to their characteristics there are three important things
that we can do.

First, we can evaluate a processor using combinations
of the extreme behaviors. Researchers can pick intervals
with properties appropriate for their experiments, just
as entire benchmarks known to have particular execution
properties are used for single-threaded experiments. For
example, we can run only intervals with very low ILP or
very high probability of control transfer and low proba-
bilities for branch predictors. The working set size and
data stream predictors can be used to test cache con-
figurations. The highest and lowest values for a charac-
teristic indicate intervals suitable for studying the limits
of processors without resorting to a synthetic workload.
For example, our collection of 50M-instruction intervals
for SPEC CPU 20002000 includes one that is mostly
stores with no loads and another that is mostly loads
with no stores.

Second, we can identify the most average intervals,
those that are never categorized as very high nor very
low and have the most medium categorizations. Col-
lections of these intervals form a baseline performance
model when investigating the effects of changing work-
loads on a fixed machine configuration.

Third, after running a number of interval combina-
tions and finding that some of them do poorly, we can
correlate performance with quintiles for each character-
istic. It is easy to determine which characteristics are in-
dependent of problems and focus on the remaining ones.
In many cases the characteristics will suggest which re-
sources, such as functional units or prefetchers, need to
be improved to handle the problematic workloads.

3.4 Principal Components Analysis

Principal components analysis (PCA) [10] is a statistical
data analysis technique that presents a different view on
a given data set. The two most important features of
PCA are that (i) PCA is a data reduction technique that
reduces the dimensionality of a data set and (i) PCA
removes correlation from the data set. Both features
are important to increase the understandability of the
data set. For one, analyzing a ¢-dimensional space is
obviously easier than analyzing a p-dimensional space in
case ¢ < p. Second, analyzing correlated data might
give a distorted view; non-correlated data does not have
that problem. The reason is that a distance measure in
a correlated space gives too much weight to correlated

variables — these correlated variables result from the
same underlying program characteristic; the underlying
characteristic would thus have too much weight in the
overall distance measure.

The input to PCA is a matrix in which the rows are the
cases and the columns are the wariables. In this paper,
each row represents a single 50-million instruction inter-
val. The columns represent the 48 microarchitecture-
independent characteristics presented in the previous
subsection for each of the phases in a co-phase.

PCA computes new variables, called principal com-
ponents, which are linear combinations of the original
variables, such that all principal components are uncor-
related. PCA transforms the p variables X, X»,..., X,
into p principal components 71, Zs, ..., Z, with Z; =
> 7_1aijX;. This transformation has the properties (i)
Var(Zi] > Var[Zs] > ... > Var[Z,] — this means Z;
contains the most information and Z, the least; and
(ii) Cov[Z;, Z;] = 0,Vi # j — this means there is no
information overlap between the principal components.
Note that the total variance in the data (variables) re-
mains the same before and after the transformation,
namely > ¢ Var[X;] = >°F_ Var[Z;]. In this paper,
X is the ith microarchitecture-independent characteris-
tic; Z; then is the ith principal component after PCA.
Var|X;] is the variance of the original microarchitecture-
independent characteristic X; computed over all inter-
vals. Likewise, Var[Z;] is the variance of the principal
component Z; over all intervals.

As stated in the first property in the previous para-
graph, some of the principal components will have a high
variance while others will have a small variance. By re-
moving the principal components with the lowest vari-
ance from the analysis, we can reduce the dimensionality
of the data while controlling the amount of information
that is thrown away.

We retain ¢ principal components which is a signifi-
cant information reduction since ¢ < p in most cases.
To measure the fraction of information retained in this
g-dimensional space, we use the amount of variance
(>t Var|Z))/(32E_, Var[X;]) accounted for by these
q principal components. For example, criteria such as
“70%, 80% or 90% of the total variance should be ex-
plained by the retained principal components’ could be
used for data reduction. An alternative criterion is to
retain all principal components for which the individual
retained principal component explains a fraction of the
total variance that is at least as large as the minimum
variance of the original variables.

By examining the most important ¢ principal compo-
nents, which are linear combinations of the original vari-
ables (Z; = Z?:l a;;X;,i=1,...,q), meaningful inter-
pretations can be given to these principal components
in terms of the original microarchitecture-independent
characteristics. A coefficient a;; that is close to +1 or -1

implies a strong impact of the original characteristic X
on the principal component Z;. A coefficient a;; that is
close to 0 on the other hand, implies no impact.

In principal components analysis, one can either work
with normalized or non-normalized data — the data is
normalized when the mean of each variable is zero and
its variance is one. In the case of non-normalized data,
a higher weight is given in the analysis to variables with
a higher variance. In our experiments, we have used
normalized data because of our heterogeneous data; e.g.,
the variance of the ILP is orders of magnitude larger than
the variance of the instruction mix.

The output obtained from PCA is a matrix in which
the rows are the 50M phases and the columns are the
retained principal components. Before we proceed to
the next step we make sure we normalize the principal
components, i.e., we rescale the principal components to
unit variance. The reason is that a non-unit variance of
a principal component is a consequence of the correla-
tion as observed in the original data set. And since our
next step in the data analysis uses a distance measure
to compute the similarity between cases, we make sure
correlation does not give a higher weight to correlated
variables.

3.5 Cluster Analysis

The next step in our workload reduction methodology
is to perform cluster analysis (CA) [10] on co-phases.
There exist two commonly used strategies for applying
cluster analysis, namely linkage clustering and K-means
clustering. Since K-means clustering is less compute-
intensive than linkage clustering, we use K-means in this
paper. The K-means algorithm is an iterative process
that works in two steps per iteration. The first step is
to compute the Euclidean distance of each point in the
multi-dimensional space to each cluster center. In the
second step, each point gets assigned to the closest clus-
ter. As such, new clusters are formed and new cluster
centers are to be computed. This algorithm is iterated
until convergence is observed, and cluster membership
ceases to change between iterations. For this paper, we
use the SimPoint 3.0 software release.

The input to the cluster analysis is a matrix in which
the rows are all possible co-phases and the columns
are the retained principal components for each phase
in the co-phase. Cluster analysis thus finds a number
of groups or clusters of co-phases that exhibit similar
microarchitecture-independent behavior. We only in-
clude distinct co-phases in the matrix: if A and B are
phases, then co-phases AB and BA are considered iden-
tical. For dies with multiple multithreaded cores, each
group of threads on a core may be reordered and the
cores may be reordered without making a distinctly dif-
ferent co-phase, but intermixing the threads of two cores
will produce a distinct co-phase. It is easy to tell if two

co-phases are distinct. Sort the threads in each core and
the sort the cores in lexicographic order. The resulting
structures will be identical if the co-phases are equivalent
(not distinct). We can easily generate distinct co-phases
randomly or exhaustively using this canonical form.

This definition of distinct co-phases minimizes that
number of inputs to the clustering and results in the
best possible results for a given number of clusters. Un-
fortunately, it results in different simulation points for
different core and SMT context configurations even when
the total number of threads are the same. If this is unde-
sirable, then the clustering can be done using a chip lay-
out that requires a superset of the reordering restrictions
of all of the relevant chip configurations. For example,
1x8,8x1,4x2and 2 x4 chip layouts can be approxi-
mated by a 2 x 2 x 2 chip layout. This ensures that if two
threads are distinct in one of the original configurations
then they will be distinct in the new configuration.

Our definition of distinct co-phases causes a problem
for clustering. If A and D are phases with similar prop-
erties and so are B and C, then we would like the co-
phases AB and CD to be similar. The normal Euclidean
distance metric would consider the rows of statistics rep-
resenting these co-phases to be far apart unless all of the
phases were similar. The co-phases AB and DC would be
close together, however. We avoid this problem by using
a different distance metric. In this metric, the distance
between two co-phases is the minimum of the Euclidean
distances between the first co-phase and all equivalent
permutations of the second one.

Calculating this distance metric naively would be an
expensive operation because it requires n! distance com-
putations for n threads. For example, for 8 threads,
we would need to compute 8! = 40320 distances. Fortu-
nately, this number assumes a lot of repeated work. Each
time the distance between a pair of phases is calculated
there are 4 dimensions to consider (each a subtraction
followed by a multiplication). There are only 64 pairs of
phases, so the distances between the phases in each pair
need only be calculated once. Each of the 8! distances
between co-phases is reduced to the summation of 8 ta-
ble lookups, and an obvious stack-based algorithm will
average under 3 table lookups and additions per distance
calculated. These optimizations alone reduces the slow-
down to a factor of about 1700 on a machine with fast
multiplies (better on other machines). If each core has
two threads the normal distance metric will take twice
as long. The 64-entry table will take four times as long
to generate (twice as many columns and two orders),
but the 8! part of the algorithm will run at the same
speed, so the slowdown is nearly halved. Memoization
can reduce the slowdown to 30—40 times for both 8-core
configurations using a table with only 2% entries. Each
entry in the table represents the minimum cost of map-
ping a subset of the 8 cores in the permuted co-phase to

the initial cores of the other co-phase.

The number of co-phases for an 8-core SMT machine
would cause the clustering algorithm a much greater
slowdown than the distance metric — there are about
10%° distinct co-phases that can be formed from our 50-
million instruction intervals. When we use more than
two cores or threads we use a random sample of co-
phases. Weighting the probability of selection of a co-
phase according to the product of the weights of the
component phases ensures that the chosen centers will
be near to the co-phases with greatest weight.

Using these optimizations, a careful implementation of
our distance metric and random sampling of co-phases,
we can analyze multithreaded workloads consisting of
large numbers of threads. This analysis will allow us to
simulate just a few representative instances, vastly re-
ducing analysis time for modern computer architectures.

3.6 Interpolation of Cluster Centers

In standard SimPoint, the co-phase that is closest to
each cluster’s centroid is called the representative co-
phase. The weight assigned to this representative co-
phase, referred to as the co-simulation point is the sum
of the weights of the co-phases that are members of the
given cluster divided by the total weight of all co-phases.
Only the representative simulation points need to be
simulated when we estimate performance numbers.

To improve our accuracy without increasing simula-
tion time, we observe that points that are between other
points should have in-between performance. In a Eu-
clidean metric space we could choose cluster centers that
form a convex hull around the target point and use ge-
ometry to determine the weight of each selected center.
This is much more challenging in our metric, so we use
a simpler scheme. Each point is computed as a weighted
average of its m nearest neighbors. If the closest neigh-
bor is at distance dy, then each point has relative weight
e o Appropriate choices for n and ¢ depend upon
both the number of cluster centers and each other —
a large ¢ will compensate for an overly-large n by dis-
counting faraway neighbors; a small ¢ requires a small n
so that faraway points are not included).

3.7 Weighting Average Throughput

To simplify comparisons between techniques to reduce
the number co-simulation points, we propose a single
weighted average throughput metric. We consider two
types of weights, the weight of a pair of benchmarks and
the weight of co-phases for each pair of benchmarks.
Each benchmark consists of a program and its input.
Programs have from one to five inputs, but a program
with many inputs is not necessarily more significant than
a program with a single input. Thus, we consider each

program equally important, as is every pairing of pro-
grams. Each input is equally important as any other for
the same program. In this scheme, the weight of lucas
and mesa is 25 times that of gcc-166 and gzip-program
since gcc and gzip each have 5 inputs.

For a given pair of benchmarks, we must subdivide the
weights between co-phases. Unlike programs and inputs,
the co-phases clearly should have distinct weights be-
cause the phases that compose them are known to have
particular weights. Some phases represent less than 5%
of a benchmark whereas others represent over 90% of
benchmark. The weight that we give to a co-phase is
equal to the product of the weights of the constituent
phases. Thus if one phase represents 20% of a bench-
mark and the other 30%, the weight of the co-phase is
6% that of the pair of benchmarks.

When the number of threads is large there may be too
many co-phases to estimate their performance efficiently.
Random sampling allows the weighted average to be es-
timated efficiently at any desired level of accuracy. Our
analysis procedures allow the average weighted through-
put to be estimated using detailed simulation of only a
small number co-simulation points.

4 Experimental Setup

4.1 Baseline Simulator

We use the M5 simulator [2] from the University of
Michigan, which is based on SimpleScalar3.0c [3] as our
SMT simulation environment. The configurations used
for this simulator are shown in Table 2. It is configured
to support an intensive multithreaded workload; hence
the abundant reorder buffer and processor width. The
memory hierarchy is based on current-generation pro-
cessors. For the L1 caches, unified L2 cache and branch
predictor we considered two design points each, for eight
possible combinations. We simulated SPEC CPU2000
benchmarks compiled for the Alpha ISA.

Each co-phase was executed until a combined 50M
instructions were committed by both threads. Since
our target workload (all co-phases) is constant and each
phase is homogeneous, we calculate performance using
throughput in instructions per cycle. Due to the long
simulation period, warmup effects correspond to less
than 0.5% variation in throughput. Nonetheless, we ig-
nore the first 5M combined instructions to remove error
due to warmup effects.

4.2 Cluster and Principal Components
Analysis

We analyzed the benchmarks and microarchitecture-
independent co-phase features using SimPoint 3.0 [9].
When analyzing benchmarks with SimPoint we found

32kB 2-way set-associative, 64-byte blocks, 1-cycle latency or

I-Cache 64kB 2-way set-associative, 64-byte blocks, 1-cycle latency
D-Cache 32kB 8-way set-associative, 64-byte blocks, 3-cycle latency or
64kB 8-way set-associative, 64-byte blocks, 3-cycle latency
Unified L2 1 MB 8-way set-associative, 128-byte blocks, 10-cycle latency or
4 MB 16-way set-associative, 128-byte blocks, 14-cycle latency
Memory 250-cycle latency

Branch Pred

21264-style hybrid predictor with 13-bit global history indexing a 8k-entry
global PHT and 8k-entry choice table; 2k 11-bit local history entries
indexing a 2k-entry local PHT

A: 4kB, 4-way set-associative BTB; 3-cycle misprediction recovery or
B: 4kB, 2-way set-associative BTB; 2-cycle misprediction recovery

00O Issue out-of-order issue, 256-entry re-order buffer
Width 8 instructions per cycle (Fetch, Decode, Issue and Commit)
Func Units 6 Integer, 2 Integer Multiply, 4 FP Add, 2 FP Multiply

Table 2: SMT processor configuration.

Percentage Change in Marginal IPC

0 10 20 30 40 50 60 70 80 90 100
Cumulative Percentage of Samples

Figure 1: Cumulative distributive function for marginal
change in TPC.

up to 10 phases per benchmark. We selected an aver-
age of 5 phases per program by removing phases that
corresponded to less than 2.5% of program execution.

The microarchitecture-independent analysis was per-
formed using a modified version of SimpleScalar. We
analyzed each of the 50M-instruction simulation points
found in the previous step.

From the PCA step we selected the 4 most-significant
dimensions, which were sufficient to explain over 44%
of the variance. Thus clustered 8-dimensional data. In-
creasing the number of dimensions used leads to poorer
cluster analysis as clustering treats all of the dimensions
as equally significant — this leads to the curse of dimen-
sionality problem.

5 Experimental Evaluation

5.1 Homogeneous Intervals

The accuracy of our simulations depends on homoge-
neous behavior within each 50M-instruction interval. If
the pattern of execution for one program deviated sig-
nificantly near the end of the simulation interval, this
would affect simulations that execute the different code,
but some simulations might make faster progress with
the second program and thus never execute the different
code. It would be misleading to compare the results of
the two experiments. Thus, we need to verify that the
intervals contain homogeneous behavior. To do this, we
examine the execution of all co-phases on our baseline
processor and observe the effects of varying the length of
simulation between 45M and 50M instructions, in 0.5M
instruction increments. At each increment we compare
the IPC with the IPC prior to the increment and deter-
mine the relative difference caused by the slightly longer
execution. We plot these values in Figure 1 as a cumula-
tive distributive function (CDF) for eight microarchitec-
tures. For 80% of samples the variation in throughput is
at most 0.3% and less than 1% of samples cause a vari-
ation of more than 1.2%. Thus we can expect that our
simulations will provide stable, reliable results that are
not sensitive to the exact point at which simulation ter-
minates. Furthermore, the error rate is not particularly
sensitive to the machine configuration.

Variation in the middle of a simulation could also lead
to incomparable executions provided that both programs
have significant variation, as we demonstrated in our
previous work [17, 18]. For the homogeneous intervals
in this paper, the degree of variation in the middle of the
intervals is similar to that at the end of the execution
intervals. The use of 50M-instruction intervals ensures
that the natural fine-grain program variation is insignif-
icant on the scale that we sample.

Percentage Error

0 5 10 15 20 25 30 35 40 45 50
Number of Neighbors (n)

Figure 2: Error using different interpolation parameters
(configuration 32k 4M A).

25

Percentage Error

Constant ¢ (n=inf)

Figure 3: Error varying c using all configurations.

5.2 Interpolation

In Figure 2 we examine the effects on estimating
throughput that changing the parameters to the inter-
polation algorithm has, as described in Section 3.6. For
each combination of parameters we use 50 representative
points. We use one line for each choice for constant c.
The z-axis is the number of neighbors used to compute
throughput, n. Two values of n are of particular note.
When n = 1 the algorithm is equivalent to the standard
SimPoint algorithm that selects a single representative
simulation point (thus ¢ has no effect). Although this
method is reasonably accurate (3.2% error), it performs
worse than any other combination of parameters. At
n = 50, all representative points are used. Their weights
are dependent upon their distances and c¢. The larger
values of ¢ lead to more accurate results because they
give negligible weight to distant representative points.
Small values of ¢ and n combine to get excellent results
but the sharp inflection points indicate the need for fine-
tuning. All methods give excellent results (under 2%

35 T T T T T T T

25 i

Percentage Error

15

0.5

L L L L
40 42 44 46 48 50 52 54 56 58
Number of Representative Points (k)

Figure 4: Error using different numbers of randomly cho-
sen representative points (configuration 32k 4M A).

relative error) as long as at least 5 neighbors are used,
but using all the points is the most robust option.

In Figure 3 we examine the effects on error of using dif-
ferent values of ¢ with all eight microarchitecture config-
urations. We see that the error rates are low in all cases,
but different depending on machine configuration. The
configurations with 4M L2 caches have similar changes
in error rates for all ¢. The remaining configurations
are also distinguishable by L1 cache size. Since the er-
ror rates are low, any value of ¢ in this range can be
used to accurately compare different microarchitectural
configurations.

5.3 Random Representative Points

We also investigated using random selection of repre-
sentative points rather than cluster centers. Without
interpolation, the results were significantly worse than
using clustering. Interpolation, however, leads to sim-
ilar results whether centers are chosen randomly or by
using clustering. The main difference that we found were
slightly higher error rates and a preference for slightly
fewer neighbors. As we can see in Figure 4, we consis-
tently get at most 2.5% error when using varying num-
bers of randomly chosen cluster centers. Since we can
get accurate results despite randomly selecting centers,
we can scale the algorithm to large numbers of cores
and threads. Randomly sampling the set of possible co-
phases and clustering the results should give good re-
sults even though the ‘best’ cluster centers might not be
in the sample sets. Clustering ideally uses thousands of
iterations of cluster center movement with distance com-
parisons to all points in every step. Should our distance
metric be too expensive for huge numbers of cores or
threads, the random center results suggest that we could
reasonably reduce the number of iterations to compen-
sate or eliminate clustering altogether.

6 Summary

Architecture studies of multithreaded processor need to
balance the performance requirements of every combi-
nation of benchmarks. Simulating all of the bench-
mark combinations is excessively time-consuming, even
when using sampling techniques such as the Co-Phase
Matrix.[18, 17] We demonstrate a technique for analyz-
ing a benchmark suite and finding all of the distinct
co-phase behaviors that can occur when pairs of bench-
marks run together. By clustering the co-phases be-
haviors we are able to find representative co-simulation
points that can be simulated as substitute for simulat-
ing all of the co-phases. We demonstrate that less than
50 co-simulation points provide results differing by less
than 2.5% from simulating all co-phases.

This set of co-simulation points can be used to com-
pare the performance of different microarchitectural con-
figurations by executing 2.5 billion instructions per con-
figuration. Our simulation point selection technique sim-
plifies the simulation procedure by ensuring that each
co-simulation point has homogeneous behavior.

Acknowledgments

We would like to thank the anonymous reviewers
for providing helpful comments on this paper. This
work was funded in part by NSF grant No. CCF-
0342522, NSF grant No. CCF-0311710, a UC MI-
CRO grant, and a grant from Intel and Microsoft.
Lieven Eeckhout is a Postdoctoral Fellow with the Fund
for Scientific Research—Flanders (Belgium) (FWO—
Vlaanderen) and is also supported by Ghent Univer-
sity, IWT, HiPEAC and the European SARC project
No. 27648.

References

[1] A.R. Alameldeen and D. A. Wood. Variability in archi-
tectural simulations of multi-threaded commercial work-
loads. In Annual International Symposium on High Per-

formance Computer Architecture (HPCA-9), 2003.
[2] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardst.

Network-oriented full-system simulation using M5. In
Sizth Workshop on Computer Architecture FEvaluation

using Commercial Workloads (CAECW), Feb. 2003.
[3] D. C. Burger and T. M. Austin. The SimpleScalar tool

set, version 2.0. Technical Report CS-TR-~97-1342, Uni-

versity of Wisconsin, Madison, June 1997.
[4] 1. K. Chen, J. T. Coffey, and T. N. Mudge. Analysis

of branch prediction via data compression. In Proceed-
ings of the 7th International Conference on Architectural
Support for Programming Languages and Operating Sys-

tems (ASPLOS VII), pages 128-137, Oct. 1996.
[5] L. Eeckhout, J. Sampson, and B. Calder. Exploiting pro-

gram microarchitecture independent characteristics and
phase behavior for reduced benchmark suite simulation.

In Proceedings of the 2005 IEEE International Sympo-
stum on Workload Characterization (IISWC), pages 2—

12, Oct. 2005.
L. Eeckhout, H. Vandierendonck, and K. De Bosschere.

Workload design: Selecting representative program-
input pairs. In Proceedings of the 2002 International
Conference on Parallel Architectures and Compilation

Techniques (PACT), pages 83-94, Sept. 2002.
M. Ekman and P. Stenstréom. Enhancing multiprocessor

architecture simulation speed using matched-pair com-
parison. In Proceedings of the 2005 IEEE International
Symposium on Performance Analysis of Systems and

Software (ISPASS), pages 89-99, Mar. 2005.
M. Franklin and G. S. Sohi. Register traffic analysis

for streamlining inter-operation communication in fine-
grain parallel processors. In Proceedings of the 22nd
Annual International Symposium on Microarchitecture

(MICRO-22), pages 236—-245, Dec. 1992.
G. Hamerly, E. Perelman, J. Lau, and B. Calder. Sim-

point 3.0: Faster and more flexible program analysis. In
Workshop on Modeling, Benchmarking and Simulation,

June 2005.
R. A. Johnson and D. W. Wichern. Applied Multivariate

Statistical Analysis. Prentice Hall, fifth edition, 2002.
J. Lau, J. Sampson, E. Perelman, G. Hamerly, and

B. Calder. The strong correlation between code sig-
natures and performance. In IEEE International Sym-
posium on Performance Analysis of Systems a nd Soft-

ware, Mar. 2005.
J. Lau, S. Schoenmackers, and B. Calder. Structures for

phase classification. In Proceedings of the 2004 Interna-
tional Symposium on Performance Analysis of Systems

and Software (ISPASS), pages 57-67, Mar. 2004.
A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John.

Measuring program similarity: Experiments with SPEC
CPU benchmark suites. In Proceedings of the 2005 IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS’05), pages 10-20, Mar.

2005.
S. E. Raasch and S. K. Reinhardt. The impact of re-

source partitioning on SMT processors. In International
Conference on Parallel Architectures and Compilation

Techniques (PACT), Sept. 2003.
T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.

Automatically characterizing large scale program behav-
ior. In 10th International Conference on Architectural

Support for Programming, Oct. 2002.
M. Van Biesbrouck, L. Eeckhout, and B. Calder. Effi-

cient sampling startup for sampled processor simulation.
In 2005 International Conference on High Performance
Embedded Architectures and Compilation (HiPEAC),

pages 47-67, Nov. 2005.
M. Van Biesbrouck, L. Eeckhout, and B. Calder. Consid-

ering all starting points for simultaneous multithreading
simulation. In Proceedings of the IEEE International

Symposium on Performance Analysis of Systems and

Software (ISPASS), pages 143-153, Mar. 2006.
M. Van Biesbrouck, T. Sherwood, and B. Calder. A

co-phase matrix to guide simultaneous multithreading
simulation. In Proceedings of the 2004 IEEE Interna-
tional Symposium on Performanc e Analysis of Systems
and Software (ISPASS’04), Mar. 2004.

