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Modern computer architecture
research relies heavily on cycle-accurate simu-
lation to evaluate new architectural features, but
for industry-standard benchmarks, full simula-
tion can take weeks to months. Thus, to mea-
sure cycle-level events and examine the effect
that hardware optimizations would have on a
whole program, architects perform sampled sim-
ulation: They execute only small portions of the
program at cycle-level detail and then use that
information to approximate the full program
behavior. The subset chosen for detailed study
has a profound impact on the accuracy of the
performance approximation, and picking the
samples to be as representative as possible of the
full program is a topic of several research stud-
ies.1–3 The SimPoint tool,2 developed at the Uni-
versity of California, San Diego, uses a phase
classification algorithm to choose representative
simulation samples. (For a brief summary, see
the sidebar “How SimPoint works.”) 

Although sampling techniques such as Sim-
Point offer substantial time savings, their bot-
tleneck has been sampling startup, the process

of reconstructing the state that would be cre-
ated by simulating the full benchmark up to
the point when the sample starts. (We use the
noun “sample” to mean a sampling unit, and
the verb “sample” to mean collecting a sample
unit.) Sampling startup has two elements: 

• the sample starting image—determining
the correct program memory contents
(architecture state) at the beginning of
the sample; and

` • the sample warm-up—preparing the
processor’s internal data structures (the
microarchitecture state) for the sample.

This article proposes efficient and accurate
sampling startup approaches. To guarantee a
correct architecture state (the program’s mem-
ory contents), we present the touched memo-
ry image (TMI), which stores only the words
of memory that are accessed in a sample. Our
TMI files are two orders of magnitude small-
er than normal checkpoints. Because they are
small, they also load instantaneously and are
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significantly faster than using either fast-for-
warding or full checkpoints.

To guarantee a warm microarchitecture
state, we propose the memory hierarchy state
(MHS), which we can use to faithfully recre-
ate the state of the major microarchitecture
components, such as caches and translation
look-aside buffers (TLBs), at the start of a sam-
ple. The MHS is a microarchitecture check-
point of a cache that is at least as large as any
to be examined during a design space explo-
ration study; the way we store the microarchi-
tecture checkpoint allows for the recreation of
smaller cache sizes and associativities.

By combining TMI with MHS, we can
accurately and efficiently collect samples of
simulated processor execution. The end result
is a sampled simulation method that is accu-
rate, efficient in terms of disk storage, and fast
enough for simulating industry-standard
benchmarks in minutes. In this article, we
focus on the applicability of our sampling
startup techniques to SimPoint,2 but they
apply identically to statistical sampling and
stratified sampling, as we have discussed in a
previous publication.4

Sample starting image
The sample starting image (SSI) is the state

of the architecture (the programmer-visible
registers and memory) needed to enable the
correct functional simulation of a sample.
Computer architects usually obtain the SSI
by fast-forwarding from the start of execution
or by loading a checkpoint. Let’s look at how
these conventional approaches work before
we introduce the TMI, which eliminates their
drawbacks.

Fast-forwarding
Fast-forwarding quickly emulates the pro-

gram’s execution from the start of execution to
reach the sample of execution to be simulat-
ed. The advantage of this approach is that it is
simple to implement in simulators. The dis-
advantage is that it serializes the simulation of
all of the samples in a program, and so can
require fast-forwarding through the same
instructions many times. In addition, most
fast-forwarding implementations in current
simulators are fairly slow. Proposals for accel-
erating fast-forwarding—through native exe-
cution, JIT compilation, and binary

modification techniques5,6—are complex and
difficult to port across simulated instruction
set architectures (ISAs) and host platforms, yet
they still don’t completely remove fast-for-
warding time. The technique that we propose
is not dependent upon the host platform and
requires the change of no more than a few lines
of simulator code.

Full checkpoint
A checkpoint, which consists of program

register state and an image of the program
memory, is similar to a core dump of the pro-
gram. Using checkpoints avoids time-con-
suming fast-forwarding and enables efficient
parallel simulation. The disadvantage is that
full checkpoints can be very large. Using many
samples could be prohibitively costly in terms
of disk space. In addition, loading the large
checkpoint file from disk (or transferring it
over a network) at the beginning of a sample
adds to the total simulation time.

Touched memory image
To reduce the size of the checkpoint file, we

use the TMI, which stores only the blocks of
memory to be accessed during sample simula-
tion. TurboSMARTSim, created in parallel and
independently of this work, uses a similar
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How SimPoint works
The SimPoint sampling approach picks a few samples that, when simulated, accurately

create a representation of the program’s complete execution. To do this, SimPoint breaks a pro-
gram’s execution into intervals, and for each interval creates a code signature, which is a pro-
file of the basic blocks executed during the interval. Next, it performs clustering on the code
signatures, grouping intervals with similar code signatures into phases. The notion is that
intervals of execution with similar code signatures have similar architecture behavior, which
research has confirmed.1,2 Therefore, we need simulate only one interval from each phase to
recreate a complete picture of the program’s execution. SimPoint then chooses a representative
from each phase and performs detailed simulation on that interval. The chosen samples, each
an interval on the order of millions of instructions, are called simulation points. Taken togeth-
er, these simulation points can represent the complete execution of a program. 
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technique.7 The TMI is a collection of chunks
of memory (touched during the sample) with
their corresponding memory addresses and

data. These are the blocks read during the sim-
ulation sample. For each sample, we store a
TMI on disk. At simulation time, before sim-
ulating the given sample, we load the TMI
from disk. The chunks of memory in the TMI
are then written to their corresponding mem-
ory addresses. This guarantees a correct SSI
when starting the sample simulation.

Several optimizations reduce the TMI’s
required storage. We use a sparse image repre-
sentation so that the TMI does not store regions
of memory that consist of consecutive 0s. In
addition, the TMI combines large regions of
non-0 sections of memory and stores them as a
single chunk. This saves storage space in terms
of memory addresses in the TMI, because it
needs to store only one memory address for a
large consecutive data region. Finally, we store
only memory regions that are read during the
sample; the TMI does not need to store regions
that are written before being read.

The TMI contains only the data needed to
execute the correct path of execution. There-
fore, there may be some memory locations
accessed during speculative execution while
simulating the sample that will not be in the
sample’s memory image. We compared the
performance between having the full memo-
ry image versus TMI and found that not hav-
ing the exact memory data used by some of
these wrong-path effects resulted on average in
only a 1 percent difference in estimated per-
formance.4 An alternative to the TMI is the
load value sequence (LVS), a sequence of load
values read in the sample.4

Remainder of the sample startup image
The rest of the SSI includes the code used

for the simulation sample and a trace of all of
the system call interactions to guide repro-
ducible architecture simulations. We could
either represent the code in the checkpoint as
the original binary along with the dynamical-
ly loaded libraries and where these libraries were
loaded, or as a set of code pages used during
execution. We can represent the system call
interactions in a checkpoint by a trace of all
inputs and outputs of all system calls executed
for the sample to be simulated, as done in Sim-
pleScalar external I/O (EIO) files. The “Auto-
matically logging operating-system effects”
sidebar describes an improved approach for
providing this trace for an SSI.
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Automatically logging operating-system effects
The checkpointing techniques in this article focus on providing the starting image and the

warmed microarchitecture state to accurately start simulation. Similar checkpointing tech-
niques can also capture system interactions to provide application simulation without hav-
ing to provide any emulation support for the system calls in the simulator.

Narayanasamy et al. present an approach that creates a system effect log to automatical-
ly capture all system effects in a simulation sample.1 This approach automatically determines
when a system effect has modified an application’s memory location. To create the system
effect log, the approach uses a tool such as Pin2 to profile the sample of execution. During this
profiling, the application keeps an up-to-date shadow copy of all of the memory values the
application code has read and written. For each load the application executes, if the value in
the real memory differs from the shadow copy, some external event—such as a system call,
an interrupt, or a DMA transfer—has modified the memory value. The approach automatical-
ly identifies when this has occurred for a load, and then logs the execution instance of the load
along with the value. During simulation of a sample, when the application executes that load
instance, the simulator consumes the load’s value from the system effect log and then stores
that value in the simulator’s memory. This allows the reproducible simulation of application-level
behavior without system call emulation support in the simulator. For each system call execut-
ed, the system effect log also contains any changes to the register state affected by the sys-
tem call. The instrumentation added to the application automatically discovers these changes
by examining the differences between the register states before and after the system call. It
loads these logged register values into registers when the system call is simulated.

This approach has several benefits:

• The log can be used during simulation to deterministically reexecute the application
across system calls and interrupts, providing reproducible simulation results.

• The simulation environment does not have to support and maintain system call emu-
lation, and it makes it significantly easier to simulate other operating systems as well
as port the simulation environment to other operating systems.

• The approach easily allows simulation of samples of real-world applications on today’s
popular architecture simulators (such as SimpleScalar).

Because it identifies the registers and memory locations modified by system calls com-
pletely independently of the semantics of the system call, this approach is easy to imple-
ment and is portable across operating systems. Computer architects use this approach to
simulate Linux, Mac OS X, and Windows applications, with Pin generating the system effect
logs, which are then consumed by application-level simulators.
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Sample warm-up
Sample warm-up techniques prepare the

microarchitecture state for a sample. Memo-
ry hierarchy structures such as caches and
TLBs represent a very large fraction of the
state in a microprocessor. Structures such as
branch predictors and processor core struc-
tures (reorder buffer, issue buffers, and so on)
have significantly less state. Because our main
focus in this article is the SimPoint sampling
methodology, which uses relatively large sam-
ples (on the order of millions of instructions),
we concentrate here on warming the memo-
ry hierarchy state.

Memory hierarchy warm-up techniques fall
into three main categories:

• estimating the cache miss rate in the
sample,

• simulating additional instructions before
the sample, and

• taking a microarchitecture checkpoint.

To cover all three types of warm-up, we
examine five warm-up strategies: no warm-
up, hit on cold, fixed-length warm-up, mem-
ory reference reuse latency, and our memory
hierarchy state approach.

No warm-up
The no-warm-up strategy assumes an

empty cache at the beginning of each sam-
ple—that is, that the first use of each cache
block in the sample will be a miss. Obvious-
ly, this will result in an overestimation of the
number of cache misses, and consequently an
underestimation of overall performance.
However, for large sample sizes, the bias can
be small. This strategy is very simple to imple-
ment and incurs no runtime overhead.

Hit on cold
The hit-on-cold strategy also uses an

empty cache at the beginning of each sam-
ple, but assumes that the first use of each
cache block in the sample is always a hit. Hit
on cold works well for programs that have a
high hit rate, but it requires a modification
to the simulator to check a bit on every
cache miss. If the bit indicates that the cache
block has yet to be used, the address tag is
added to the cache but the access is consid-
ered to be a hit.

Fixed-length warm-up
Many warm-up approaches simulate addi-

tional instructions prior to the sample to
warm large hardware structures.1,7–9 The sim-
plest warm-up technique merely provides a
fixed-length warm-up before each sample. For
example, caches and branch predictors might
undergo a warm-up of one million instruc-
tions of execution before simulation of each
sample.

Memory reference reuse latency
The memory reference reuse latency

(MRRL) approach, proposed by Haskins and
Skadron, makes a microarchitecture-inde-
pendent analysis of memory references.8 We
can use this to determine how far back in exe-
cution we need to go so that warming will
encounter a prior access to 99.9 percent of the
memory locations that we will access during
simulation of a particular sample. This point
will be the start of the warm-up period for
simulation of that sample. We fast-forward to
or load the checkpoint for the warm-up start-
ing point.

From that point until the sample’s starting
point, we run functional simulation in con-
junction with cache and branch-predictor
warm-up, also called functional warming.
That is, all memory references warm the
caches, and all branch addresses warm the
branch predictors. When the simulation
reaches the beginning of a sample, detailed
processor simulation begins to obtain perfor-
mance results. 

The cost of the MRRL approach is that it
requires simulation of many instructions dur-
ing warm-up.

Memory hierarchy state
Our final warm-up strategy, based on the

memory hierarchy state (MHS), stores cache
state so that caches do not need warming at
the start of simulation. We can apply the same
technique to other cache-like structures, such
as TLBs. By this approach, we collect the
MHS through cache simulation—that is,
functional simulation of the memory hierar-
chy. Design-space exploration can require sim-
ulation of many different cache configurations.
We collect the MHS only once for each block
size and replacement policy, and then reuse it
extensively during design space exploration of
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memory hierarchies, any of which may have a
smaller size or a smaller associativity.

Our technique is similar to trace-based
construction of caches, except that storing
information in a cache-like structure decreas-
es both storage space and the time to create
the cache required for simulation. Along with
the cache tags, we store status information for
each cache line so that dirty cache lines are
correctly marked.

Figures 1 and 2 demonstrate how MHS works
when reducing the cache associativity and the
number of sets. In these figures, each row is a
cache set with a number of columns equal to the
cache’s associativity. Each cache block is labeled
with a letter representing a tag and a number rep-
resenting the time (in memory operations) since
the cache block was last used. In the top row of
the large cache (cache set 00), D and B are the
most recently used blocks. When MHS reduces
associativity to two (Figure 1), those are the two
most recently used blocks, so MHS retains them.
Figure 2 shows the reduction of the number of
cache lines to two, merging cache sets 00 and 10
to a single set (0), and cache sets 01 and 11 into
set 1. The new cache sets contain the most recent-
ly used entries from both of the cache sets that
merged. This operation increases the length of

the cache tags by one bit, indicating from which
cache sets the cache lines originated.

MHS and MRRL are equally microarchitec-
ture-independent. MHS stores all addresses
needed to create the largest and most associa-
tive cache size of interest. Similarly, MRRL goes
back in execution history far enough to capture
the working set for the largest cache of interest.
The techniques have different trade-offs, how-
ever. MHS requires more disk space than
MRRL; MRRL needs only to store the point at
which to begin warming, whereas MHS stores
a source cache. In terms of simulation speed,
MHS substantially outperforms MRRL
because MHS does not need to simulate
instructions to warm the cache. Loading the
MHS trace takes very little time.

For many microarchitectural configurations,
caches and TLBs are the only important struc-
tures to simulate and store to disk for use dur-
ing simulation. Most other microarchitectural
structures are small enough that they warm up
in the first few thousand instructions of exe-
cution, causing negligible error in the context
of 1-million-instruction samples. 

We can achieve low error rates by storing
only caches to disk, but for completeness, let’s
look at appropriate mechanisms for storing
other large microarchitectural structures as
well. If a microarchitectural feature remains
constant over all experiments, it is usually suf-
ficient to simulate its behavior once and store
it to disk, and then use this to restore its state
for all experiments. Only microarchitectural
features whose configurations change during
the experiments need special treatment. Fur-
thermore, as long as stored microarchitectur-
al structures are independent in their contents,
a single run of a functional simulator can save
all possible versions of the various structures
at the same time that the simulator creates the
MHS. MRRL can simulate any combination
of microarchitectural features, but it executes
the same presample instructions once for
every microarchitectural configuration.

It might be necessary to store large, complex
conditional branch predictors to disk for each
of their possible configurations. If the compo-
nents of a branch predictor can be considered
separately, it might be possible to look at many
configurations, with only a few variations saved
to disk. For example, branch target buffers and
return-address stacks can be resized, just like
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Figure 1. Using the memory hierarchy state strategy to
reduce a cache from four-way to two-way associativity.
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Figure 2. Using MHS to reduce the number of cache sets.



caches, so only one large instance of each must
be stored. Other conditional branch predictor
components might need to be simulated for
each size and algorithm used, and these can
usually be combined with branch target buffers
and address stacks of any size.

Situations in which separate microarchitec-
tural components affect each other are more
complex to handle. For example, consider an
experiment that examines various cache sizes
and several different prefetchers with internal
state. The prefetchers affect the cache’s con-
tents, so an ideal simulation would simulate
the two structures together, storing correlated
cache and prefetcher contents to disk. In the
worst case, every combination of two compo-
nents that interfere with each other would need
to be stored to disk for warm-up. In this case,
our technique to resize the caches is not affect-
ed by the existence of prefetched data from a
single prefetcher. Thus, we can store one copy
of the MHS for each prefetcher design even
though we examine many cache configurations.
Any microarchitectural structure that does not
interfere with prefetching and cache contents
can have its configurations simulated separate-
ly, minimizing the number of microarchitec-
tural combinations that must be simulated.

Evaluation
To evaluate our sampling startup tech-

niques—TMI and MHS—we first performed
experiments to compare their accuracy with
the other startup techniques. Next, we evalu-

ated the applicability of our sampling startup
techniques for targeted sampling as done in
SimPoint.

Methodology
Our experiments used the MRRL-modified

SimpleScalar simulator, which supports taking
multiple samples, interleaved with fast-for-
warding and functional warming (http://www.
cs.virginia.edu/~jwh6q/mrrl-web). With minor
modifications, this simulator also supports
checkpoints, TMI, hit on cold, and MHS. We
simulated SPEC 2000 benchmarks compiled
for the Alpha ISA and using reference inputs.

The simulation we performed was of an
aggressive, eight-wide, superscalar, out-of-
order processor. The branch predictor com-
bines a bimodal predictor with a two-level
predictor, using a 8,192-entry table of 2-bit
counters in each case. Using a conservative
branch predictor with an aggressive execution
engine emphasizes the negative side effects of
TMI by increasing the number of misspecu-
lated instructions that execute. The proces-
sor’s memory hierarchy consists of an 8-Kbyte
L1 instruction cache and a 16-Kbyte L1 data
cache along with a unified 1-Mbyte, four-way,
set-associative, unified L2 cache. 

To study the applicability of the reduced
checkpointing and warm-up techniques for
targeted sampling using SimPoint, we used
SimPoint with an interval size of 1 million,
with the maximum number of phases set to
400. Figure 3 shows the number of 1-million-
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instruction simulation points (samples) per
benchmark. This is also the number of check-
points per benchmark, because we need one
checkpoint per simulation point. The number
of checkpoints per benchmark varies from 15
(for crafty) to 369 (for art). We focus on small,
1-million-instruction intervals because Sim-
Point is most accurate when many (at least 50
to 100) small intervals (1 million instructions
or less) are accurately simulated. However, we
found that using the TMI checkpoints offers
an important savings in disk space even for
10-million and 100-million instruction inter-
val sizes.

Figure 4 shows SimPoint’s accuracy with
perfect sampling startup compared to the
complete execution of the program; perfect
sampling startup assumes the state prior to the
sample to be the same as under complete
benchmark execution. The average error is 1.3
percent; the maximum error is 4.8 percent (for
the parser benchmark). We use this configu-
ration as the baseline for our experiments,
which concentrate on reducing error, disk
usage, and simulation time.

Error analysis
Figure 5 evaluates error rate in cycles per

instruction (CPI) for various sample warm-up
techniques as compared to the SimPoint
approach using perfect warm-up—this
excludes any error introduced by SimPoint. To
calculate this error rate, we used a baseline for
which we took CPI samples from a complete

detailed execution of the entire benchmark.
The no-warm-up and hit-on-cold strategies
result in high error rates—17 percent and 25
percent on average. For many benchmarks,
one of these two strategies is dramatically bet-
ter than the other, suggesting that an algorithm
that intelligently chooses between them might
offer a significantly lower error rate.

The fixed 1-million-instruction warm-up
achieves better accuracy, with an average error
of 4 percent. However, its maximum error can
be fairly large—16 percent, for the parser
benchmark. MRRL and MHS obtained signif-
icantly better error rates, with the average error
for each approaching 1 percent. Thus, we con-
clude that MRRL and MHS are equally accu-
rate when used in conjunction with SimPoint.

So far, however, we’ve only discussed error
rates assuming full checkpoints. Using TMI in
conjunction with MHS increases the error rates
only slightly, from 1 to 1.2 percent. This
increase stems from the fact that TMI does not
always include load values for loads being exe-
cuted along mispredicted paths. TMI includes
these load values in the memory only if they are
read by correct-path instructions during the
sample or previously written during the sam-
ple. We found that, on average, only about 2
percent of the issued loads read incorrect data
and then used it in a way that affected wrong-
path execution. This is what led to the average
difference in CPI error rates of 0.2 percent; the
maximum difference in CPI error we saw was 1
percent. (We show detailed results elsewhere.4)
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Figure 4. SimPoint’s accuracy with perfect sampling, compared to the complete execution
of the program’s input.



We also found that all techniques accurate-
ly predicted the branch predictor and L1
cache hit rates. The branch prediction error
is about 0.35 percent for all techniques, even
though only MRRL warms the branch pre-
dictor. Since the L1 caches are small, they
warm quickly. For the data cache, every tech-
nique other than hit on cold (which shows a
0.15 percent average error) has less than 0.1
percent average error. The instruction cache

error rates are lower with MRRL or MHS.
But with the average error below 0.02 percent
for all the techniques, this improvement
might not be significant. Only the L2 cache is
large enough to require warming for 1-mil-
lion-instruction samples.

The unified L2 cache is much larger than
the L1 caches, so warm-up issues can be sig-
nificant. Figure 6 clearly shows the advantages
of cache warm-up. MHS and MRRL have
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average error rates below 0.18 percent; the
only benchmark with error rates higher than
average is fma3d, with error rates of 1.6 per-
cent. Fixed warm-up gives an average error
rate of 1.2 percent, but for parser and bzip2
the error rate is nearly 5 percent. For some
benchmarks, hit on cold is better than no
warm-up, but overall their error rates are 14
percent and 6.5 percent, respectively. 

More significant than the error rates is the
precise correlation between L2 cache rate error
(Figure 6) and CPI error (Figure 5). The rel-
ative magnitudes of the bars match nearly
exactly for every benchmark. Clearly, accurate
performance prediction is sensitive to the
warm-up of the L2 cache.

Storage requirements
Figure 7 shows the total sizes (in Mbytes) of

the files that need to be stored on disk per
benchmark for three sample startup approach-
es: full checkpoint, TMI, and MHS. The file
sizes for the full-checkpoint approach are huge.
The average file size per compressed check-
point is 49.3 Mbytes, and the average total file
size per benchmark is 7.4 Gbytes. Storing all
full checkpoints for a complete benchmark
can, however, take up to 28.8 Gbytes (lucas).
The maximum average storage requirement
per checkpoint can be large as well; for wup-
wise, it is 163.6 Mbytes. Loading and trans-
ferring these large checkpoints over a network
can be costly in terms of simulation time.

TMI reduces checkpoint size by more than
two orders of magnitude. The average total
TMI checkpoint file size per benchmark is 52.6
Mbytes, and the maximum total file size is 206
Mbytes, for applu. These huge checkpoint file
size reductions make checkpointing feasible in
terms of storage cost for sampled simulation.
Also, the typical single checkpoint size is sig-
nificantly reduced to 365 Kbytes, which makes
loading the checkpoints highly efficient.

MHS is the only warm-up approach we dis-
cussed that requires additional storage. Figure
7 quantifies the storage this strategy needs to
store cache contents. The total average stor-
age MHS requires per benchmark is 40
Mbytes, with an average of 256 Kbytes per
checkpoint (8 bytes per cache block). 

Of course, MHS requires this additional
storage on top of the storage needed for the
checkpoints. The small file sizes, however,
allow efficient loading.

Total simulation time
Figure 8 shows the total simulation time (in

minutes) for the various sample startup tech-
niques when simulating all simulation points
on a single machine. These simulation times
include the time required for fast-forwarding,
loading checkpoints or TMI, loading MHS,
or warming structures by functional warming
or detailed execution.

We considered the SSI techniques of fast-
forwarding, checkpointing, and reduced check-
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pointing using TMI in combination with the
two most accurate sample-warm-up tech-
niques, MRRL and MHS. MRRL and MHS
with fast-forwarding are both slow. The average
total simulation time is more than 6 hours per
benchmark with MRRL, and more than 5
hours with MHS. If we combine MRRL with
checkpointing, the average total simulation
time per benchmark drops below 2.25 hours.
Combining MHS with full checkpointing
decreases total simulation time even further, to
55 minutes. Combining the reduced-check-
point TMI approach with MHS reduces the
average total simulation time per benchmark
to less than 14 minutes on a single processor.
Because most benchmarks are represented by
100 to 200 samples that can be simulated con-
currently, parallel simulation of a single bench-
mark can reduce that time to seconds.

Using our two sampling startup tech-
niques—TMI for the sample starting

image and MHS to warm the microarchitec-
ture—significantly improves the efficiency of
sampled simulation. TMI requires two orders
of magnitude less storage than full check-
pointing and results in faster simulation than
both fast-forwarding and full checkpointing.
Our microarchitecture checkpointing
method, MHS, is as accurate as MRRL and
substantially faster. The end result for sam-
pled simulation is that obtaining highly accu-

rate per-benchmark performance estimates
(only a few percent CPI prediction error) takes
only minutes, whereas previously proposed
techniques required multiple hours. In the
future, we intend to extend the MHS tech-
nique to support shared caches in multi-
threaded processors and improve the MHS
support for branch prediction. MICRO
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