
Predicate Prediction for Efficient Out-of-order Execution

Weihaw Chuang Brad Calder

Department of Computer Science and Engineering
University of California, San Diego

{wchuang,calder}@cs.ucsd.edu

Abstract

Predicated execution is an important optimization even for
an out-of-order processor, since it can eliminate hard to predict
branches and help to enable software pipelining. Using predi-
cation with out-of-order execution creates a naming bottleneck,
because there can be multiple definitions reaching a use, and not
knowing which use is the correct one can stall the processor.

In this paper, we examine using predicate prediction to spec-
ulatively allow execution to proceed in the face of multiple defi-
nitions. We show that the penalty for mispredicting a predicate
is not as severe as mispredicting a branch. Thus, making it
advantageous to replace hard to predict branches with predicate
predictions. We present a predicate misprediction recovery ar-
chitecture that replays instructions through the renamer to link
up the correct dependencies on a misprediction. This approach
allows us to avoid putting the predicted false path instructions
in the issue queue reducing the pressure on the dynamic out-of-
order scheduler.

Categories and Subject Descriptors
C. - Computer Systems Organization, C.1 - Processor Architec-
tures, C.1.0 -General

General Terms
Design, Performance

Keywords
Predicate Prediction, Predicated Execution

1. INTRODUCTION
In this work we concentrate on techniques to efficiently apply

predication to out-of order processors. Predication is beneficial
even in an out-of-order processor by eliminating hard to predict
branches using if-conversion [15]. By eliminating branches, if-
conversion also encourages greater instruction fetch throughput,
since fewer branches need to be predicted per cycle.

In out-of-order execution, register renaming demands that ev-
ery register-writing instruction have a new register name allo-
cated. Work by Wang et. al. [20] examined the performance of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’03, June 23–26, 2003, San Francisco, California, USA.
Copyright 2003 ACM 1-58113-733-8/03/0006 ...$5.00.

CMP.EQ P6,P7=R34,R32 ;;
(P6) MOV R33 = 1
(P7) MOV R33 = 20 ;;
ADD R4 = R33, 5

RENAME

DISPATCH

REGFILE

EXE

DECODE
Assembly Code

OOO Pipeline Instruction Propagation
through Pipeline

CMP.EQ P6,P7=R34,R32

(P6) MOV R33 = 1 (P7) MOV R33 = 20

ADD R4 = R33, 5

??

Figure 1: Multiple Definition Problem: Which value
does R33 take for its use? This ambiguity causes per-
formance issues for out-of-order machines with predica-
tion.

an out-of-order processor using IA64. They identified that pred-
ication is a performance bottleneck due to resolving the ambi-
guity caused by having multiple register definitions defined on
the same control flow graph. We call this the multiple-definition
problem, and it arises when during rename, a register use needs
to determine what definition to take its value from. If there are
multiple definitions of the same register guarded on different
predicates, and the predicates have not been resolved, then it is
unknown which definition the use should be linked to. Figure 1
illustrates the problem. The predicate generating CMP.EQ in-
struction has yet to reach the execute pipeline stage, so when
the ADD reaches the rename stage it doesn’t know which MOV
is the correct assignment to R33. One solution to the multiple-
definition problem is to stall the ADD instruction until it is clear
which is the true definition of R33, but this results in a loss in
performance over not predicating the program at all.

In this paper we examine using predicate prediction to effi-
ciently resolve the multiple definition problem. By performing
predicate prediction before register renaming occurs, we predict
which predicate paths will be true and which will be false.

Predicate prediction is closer to value prediction than branch
prediction. Predication is used in if-conversion to turn control-
flow into data-flow. Lipasti et.al. [13] and others extend the
idea of branch speculation to data-flow to break data depen-
dencies through value prediction. They found that value pre-
diction could be used to break data-flow dependences to help
increase instruction-level-parallelism. With predicate prediction
we speculatively predict predicate values to break the data-flow
dependencies in the “multiple-definition” problem.

Predicting predicates may appear counter intuitive, as
if-conversion is used to eliminate hard to predict branches. How-
ever, the predicate misprediction penalty is not as severe as a
branch misprediction. A branch misprediction flushes the entire

1

pipeline of instructions, when the wrong path of instructions is
fetched. Then fetch is redirected down the correct path. On the
other hand, a predicate misprediction does not need to refetch
down the correct path, since both paths of the control flow were
fetched for the if-converted region. Therefore, a predicate mis-
prediction requires only the replay of instructions with the cor-
rect dependencies enforced. This costs fewer pipeline penalties
than the full pipeline flush of a branch misprediction. In this
paper, we examine two unique replay predicate recovery archi-
tectures, which we call “rename-replay” and “selective-replay”.
Both of these are similar to previously proposed squash and se-
lective replay architectures examined in value prediction, but
modified to hook up the correct dependencies on a mispredic-
tion replay. Predication used with predicate prediction and re-
play can be thought of as a form of multi-path instruction fetch
directed by the compiler.

We also examine using predicate prediction to simplify register
renaming and out-of-order execution in a process called predicate
early evaluation. Predicate early evaluation eases the pressure
on the issue queue and the out-of-order dynamic scheduler by
not inserting into the issue queue falsely guarded instructions,
where the value of the guarding predicate is either the real value
or a predicted value.

The paper is organized as follows. In section 2, we discuss re-
lated work to out-of-order execution with predication. Section 3
describes the hardware structures to implement predicate pre-
diction. To understand later results, we state in Section 4 the
methodology used for simulation. Section 5 provides a compar-
ison of alternative design choices, and demonstrate why pred-
icate prediction is a good platform for out-of-order execution
with predication. In addition, we compare predicate prediction
to Wang et.al. [20] and the most recent work in this area. Sec-
tion 6 summarizes our paper.

2. RELATED WORK
In this section we describe related work on dealing with the

multiple-definition problem for out-of-order architectures with
predication.

2.1 Prior Hardware Solution for Multiple Defini-
tion Problem

Wang et.al. [20] recognized that multiple definitions would be
a problem in the renaming stage of an out-of-order implementa-
tion of IA64. The renaming stage is used to give each definition
of an architectural register a unique physical name (removing
WAW and WAR dependencies). With conditional-writer pred-
ication, it is possible to have multiple instructions guarded by
different predicate registers write to the same architectural reg-
ister. When a use of this architectural register is encountered in
the rename stage, the values of the predicates may be required
to determine which physical register to map to the architectural
register. If the predicate values are not yet available, a stall
must occur.

In an effort to remove as many unnecessary stalls as possible,
Wang et. al. proposed the use of the select-µop instruction in
hardware for an IA64 out-of-order execution model. The new
select-µop instruction was conceptually based on the φ-function
used by static-single-assignment (SSA). It allows the resolution
of multiple definitions to be postponed to later stages of the
pipeline, providing greater chance that a stall would not have
to occur. To form the select-µop instructions, the possible def-
initions of a use are needed. To this end they presented an
augmented Register Alias Table (RAT), and use this to create
the select-µop instructions. Each set in the RAT represents all

of the current potential definitions for each logical register. Each
entry contains the renamed definition and the guarding predi-
cate under which it was defined. The most recent definition
guarded by a true predicate is the correct definition. Once this
definition is determined, any further dependencies left to be rec-
onciled could be eliminated from consideration. We simulated
the hardware select-µop mechanism used by Wang et. al. [20],
and compare its results to using predicate prediction.

Perhaps the earliest paper on executing predicated code on
an out-of-order machine was done by Chang et.al. [3]. They
noted the multiple-definition problem, and solve it by convert-
ing all predicated instructions into an internal select following
the instruction. Depending on the predicate the select chooses
the original destination value, or the computed result. This re-
quires an extra register file read port for each instruction (to
read the original value), and incurs a serialization on predicate
instructions. The Wang et.al. technique subsumes this idea
but reduces the serialization penalty through their wide fan-in
select-µops.

In implementing an out-of-order processor [11], the Alpha
21264 dealt with the conditional move instruction used for light-
weight if-conversion. They split the CMOV into two instructions
that selected the source of the CMOV or the destination, de-
pending on the predicate and behaving very much like a select
operation.

2.2 Solutions for Different Instruction Sets
Klauser et.al. [12] examined dynamically if-converting if-then-

else hammocks for an out-of-order processor to eliminate hard to
predict branches. They depend on the compiler or binary back-
annotation tool to provide hints that a control region forms a
hammock that can be if-converted, but otherwise don’t require
a predicated instruction-set. The processor decoder uses con-
fidence predictors to determine if-conversion profitability, and
when selected uses internal “CMOV” (selects) to choose the re-
sults of the executed path (qualified true).

Our prior work [4] examined a light-weight ISA extension tar-
geted at if-conversion, called Phi-predication. Phi-prediction is
derived from select-predication first seen in [14] with features
for qualifying memory and predicate assignments, to increase
the applicable control-flow regions. Select-predication always
assigns its register destination, and behaves like regular RISC
operations, thereby avoiding the multiple definition problem for
out-of-order execution. This paper makes extensive use of predi-
cate promotion and move combining optimizations to further im-
prove performance. Despite the utility of these technique, pro-
viding an ISA compatible solution for conditional-writer predi-
cated ISA’s like IA64 remains an important goal.

2.3 Predication Taxonomy
This section assists classifying predication by modes of oper-

ation, both at the instruction set level and implementation. It
demonstrates how prior work relates to one another, and to this
paper. First we consider the differences at the ISA. Conditional-
writer predication qualifies the state update of an instruction
under some predicate register. Select predication uses select in-
structions to choose between two different registers, and always
updates its definition. In Figure 2 on the left, illustrates this
ISA taxonomy.

In our taxonomy, the IA64 ISA [10] architecture falls under
conditional-writer, as do ISA’s using conditional move (CMOV)
operations like Alpha. These ISA’s suffer from the multiple-
definition problem on Out-Of-Order implementations as described
by [20] for IA64, by [11] CMOV on Alpha 21264. An example

2

(p1) r32=1

(p2) r32=2
(p3) r32=3

add =r32,1
r32=1

r33=2

r34=3
add =r32,1

1 cycle 2 cycle 3 cycle1 cycle

Conditional-Writer Predication Select Predication

p1
p2

Figure 3: Conditional writer predication on the left
evaluates in a single cycle, but must deal with the
multiple-definition problem. Select predication inher-
ently has already dealt with the multiple-definition
problem, so it may need several cycles to evaluate the
select chain. Both examples illustrate R22 taking the
value 2 via the bold path. Dashed lines indicate no
assignment is made. Triangles represent select opera-
tions.

of select predication is phi-predication extensions as noted in
Section 2.2. Select predication does not suffer from the multi-
ple definition problem, but suffers from a serialization problem
called select (phi) chaining. This is shown in Figure 3. We can
further classify ISA’s by the generality of predication, where
IA64’s predication applies to nearly all instructions, while Al-
pha’s predication is only present on a single CMOV instruction.
Generality correlates with the complexity necessary to imple-
ment that form of predication, as denoted by the “heavy-weight”
and “light-weight” criteria.

We now consider a taxonomy based on implementation, since
it can be different than the original ISA. This observation is
motivated by three papers that overcome the multiple defini-
tion problem for the conditional-writer predication by translat-
ing to a select predication internal representation [20, 3, 11].
We can see this taxonomy on the right of Figure 2. At the first
level of the taxonomy, machines are classified by whether the
approach is translated, or directly executes on hardware. Trans-
lated approaches have greater implementation cost but remain
backwards compatible to their original ISA. For direct execu-
tion, conditional-writer (e.g. IA64 [17, 10]) executes efficiently
only on in-order machines, while select can execute on both in-
order and out-of-order [4]. Predicate prediction, as described in
this paper, is a general technique that can be applied to assist
a conditional writer model execute efficiently on out-of-order.

3. HARDWARE CONCEPTS
To address the multiple definition problem we examine using

predicate prediction. We examine predicting predicates as they
are decoded using a traditional branch prediction architecture.
The most recent definition with a predicted true guarding pred-
icate is assumed to be the current definition to speculatively
avoid the multiple-definition problem. If the prediction is in-
correct, then the instruction that used the prediction needs to
(1) be hooked up to the correct definition, and (2) needs to be
re-executed using the out-of-order processors replay mechanism.
We describe these techniques in more detail in the rest of this
section.

3.1 Predicate Predictor
Predicate prediction is the process of predicting predicates.

These predicate definitions were once a branch prediction before
if-conversion was performed. Therefore, we examined using well
studied branch prediction architectures to provide the predicate

predictions [16, 21].
The mapping from branch predictors is as follows: given the

PC of the predicate defining instruction, a prediction is gener-
ated. The resulting taken and not-taken prediction directions
provided by a branch predictor are mapped to True and False
for the predicate prediction. One prediction is provided for each
predicate generating operation. Since a typical predicate defin-
ing instruction (compare) generates two predicate definitions,
one boolean prediction is used to predict the first definition,
and the predicated value of the second predicate is derived from
the boolean relationship it has with the first predicate and the
qualifying predicate. As our code is limited to “unconditional”
compares, we only have to worry about these and the value of
the qualifying predicate. When the qualifying predicate is true,
then one of the output definitions is predicted and the other
is the inverse of the prediction. When it is false, the “uncon-
ditional” form assigns the predicates to false. Potentially one
could predict both definitions instead of one to improve accu-
racy, but we did not find that necessary for our if-conversion
algorithm. Other relationships such as “OR” and “AND” com-
pare forms, complicate this simple relationship, and most likely
could be solved by predicting both definitions.

In this paper, we examine having a separate predicate pre-
diction architecture from the branch prediction hardware. The
branch prediction hardware does its lookup prior to fetch, while
the predicate predictor does its lookup during decode once we
know the fetched instruction is a predicate definition. We sepa-
rate them because design constraints are different for predicate
predictors and branch predictors.

There might be benefit in merging the predicate and branch
history to improve prediction accuracy, but the following four
considerations compelled us to split them. Unlike modern branch
predictors, predicate predictors only need the branch history ta-
ble (or more aptly called boolean-value history table), and not
the return-address stack or the branch target buffer. A sec-
ond important consideration is that predicate predictions are
independent of one another unlike branch predictions. Branch
predictions have an implicit serial control dependency needed
to form an execution trace. Independence for the predicate
prediction makes it possible to build large multi-port predicate
predictors, or replicate them. Therefore, we focus on only us-
ing local history prediction information for predicate prediction.
Third, predicate values are not needed till register renaming al-
lowing multi-cycle predictor lookups. Forth, many predicate
predictions may be necessary. For a machine with Itanium re-
sources [8], it needs at least six predictions for the four integer
and two floating point compare instructions able to execute con-
currently.

3.2 Predicate Early Evaluation
Predicate early evaluation is the application of the predicate

state during the rename stage as shown in Figure 4. For an
out-of-order processor, we use this to eliminate the multiple-
definition problem at the register renamer. Qualified false in-
structions evaluate to NOP-like instructions, and don’t affect
register mapping, leaving only resolved true or predicted true
instructions to change the register mapping. This allows subse-
quent pipeline stages to view instructions as normal RISC-like
instructions without specialization for predication, simplifying
many implementation details. For example, score-boarding and
register bypassing, memory dependency resolution, and excep-
tion determination need not be predicate aware. These struc-
tures are complicated even in-order implementations as seen on
Itanium [18].

3

Select Conditional-Writer

Light-weight
Phi-Predication,

Multiflow

Heavy-weight
hypothetical

Heavy-weight
IA64

Light-weight
Alpha

Predication ISA

Translated Direct

Conditional-Writer
to Select

21264(Alpha)
Wang et.al..
Chang et.al.

Klauser et.al.

Select
Phi-Predication

Multiflow

Conditional-Writer
Itanium (IA64)

Predication Implementation

Figure 2: Taxonomy of predication based on ISA (left) and implementation (right). We can avoid the multiple
definition problem on conditional-writer by translating the ISA to select-predication in the implementation, or
by using predicate prediction.

FETCH

E
X

E

W
B

C
O

M

Replay-7 cycles
Flush-12 cycles

Prediction Prediction/
Spec Update

Predicate Early
Evaluation

Predicate Verification/
Arch Update

R
E

N
2

D
E

C

R
E

N
1

REGISSUED
E

C

Figure 4: Pipeline: Predicate prediction is completed by rename stage 1 (REN1). The predicted predicates and
the true predicate values are early-evaluated at REN2. Architectural predictor state updates occurs at commit,
though speculative update is at REN1.

For predicate early evaluation, a predicate value used during
renaming can be a predicted value, or can be the actual com-
puted state if the predicate is already resolved. Resolved pred-
icates occur if there is sufficient execution distance, in cycles,
between the predicate definition and its use for qualification.

3.3 Predicate Misprediction Recovery
With speculative early evaluation, the hardware verifies that

the prediction was made correctly. If it was not, misspecula-
tion recovery initiates. This process corrects the mispredicted
predicate state, and fixes up the register data-flow caused by
the incorrect register renaming. There are potentially at least
three different recovery mechanisms possible. We first discuss
using the branch misprediction hardware for predicate mispre-
diction recovery. Second, we consider rename-replay, which re-
plays instructions from a recovery instruction buffer through
the register renamer to properly hook up dependencies. Third,
we consider selective-replay, which replays the mispredicted in-
structions through the broadcast of the correct values using a
selective-replay recovery tag in the dynamic scheduler. We dis-
cuss all three techniques in the following subsections.

3.3.1 Flush Predicate Misprediction Recovery
Branch misprediction recovery hardware does all the needed

work to recover from a mispredicted predicate. Upon finding
a misprediction for a predicate generating instruction, the re-
covery hardware flushes the instruction pipeline and refetches
instructions from the I-Cache.

When the recovered instructions travel through the register re-
namer, it uses the corrected predicate state and remaps the reg-
isters to the correct data-flow. Using the branch misprediction
recovery path would seem like a natural design choice. However
the penalty of branch prediction loop includes refetching and

decoding, which is an unnecessary task, since the instructions
are already in the pipeline.

3.3.2 Rename-Replay for Predicate Mispredictions
The next idea is to reuse instructions already fetched and

decoded to reduce the recovery loop. When a predicate mispre-
diction is detected in write-back, this form of replay takes all
instructions seen by the pipeline from the point of the 1st use
of the mispredicted predicate to the last instruction that was
renamed and sends them all back through the register renamer
and back into the issue queue to hook up the correct dependen-
cies. All instructions before register renaming are stalled until
the recovery process is done. Because this recovers instructions
through the renaming to correct instruction dependencies we
call this “rename-replay”.

Just like branch speculation, the register rename mapping
needs to be checkpointed. We checkpoint the register mapping
at the first use of a predicate prediction, since this is the point
at which the rename-replay would start if the predicate was mis-
predicted.

Since we are using early predicate resolution, instructions that
are qualified on false predicates (predicted or resolved) are not
put into the issue queue to be dynamically scheduled. This is to
reduce the pressure on the issue/instruction queue. We instead
store the instructions in a dedicated buffer called the recovery
queue (RecQ). The RecQ can be thought of as separate from
the Reorder/Commit buffer or a pointer into it. Instructions
are replayed at the first use of a predicate misprediction from
the RecQ back into the rename stage. All instructions are kept
in-order in the RecQ and are replayed on a misprediction. Dur-
ing normal execution, only instructions with a predicted or true
path guarded predicate enter the instruction queue and are dy-
namically scheduled.

4

These properties can be seen in Figure 5. In this example,
six instructions (IN0 to IN5) are fetched and sent through the
pipeline. We then show three points in their progress through
the pipeline. The first step represents normal execution where
the instruction at Rename are evaluated based on the predicted
predicate where P6 is predicted to be TRUE and P7 is predicted
to be FALSE. Instruction 3 is predicted true and enters the IQ,
while instruction 2 is predicted false and does not enter. In-
struction 4 is always true and enters both the IQ and RecQ.
Instruction 1, which was previously predicted true, is (specula-
tively) issued, and its entry removed from the IQ. Note that all
instructions are copied in-order to the recovery queue, just like
a ROB/Commit buffer. In step 2, evaluation of the compare at
instruction 0 finds a misprediction of the predicates. The first
instruction to use the mispredicted value, instruction 1, marks
the beginning of the replay in the RecQ. It and all subsequent
instructions in the issue queue are sent through the register-
renamer to fix the register dependencies. When going through
early-evaluation in the rename stage a second time, instructions
2 and 4 evaluate to true. Instruction 0 is not touched by the re-
play event, and continues towards commit. In step three, normal
execution resumes. By this point, instruction 0 has committed
and was removed from the RecQ. Instruction 5 enters the IQ
and RecQ with the corrected register rename tags.

3.3.3 Selective-Replay for Predicate Mispredictions
Selective replay can further improve the performance of the

recovery mechanism, as it only recovers instructions that use in-
correct state, allowing other instructions to execute. For predi-
cate prediction recovery, the mispredicted instructions and any
dependent instructions that use its results need to be re-executed
using the updated predicate information. For this paper we ex-
plore one potential implementation of selective-replay for pred-
icate prediction.

For the selective-replay model, all instructions- predicted qual-
ified true and false- are placed in the issue queue (IQ) due to
selective recovery. In this model, all of the possible dependen-
cies are kept track of through serialization for replay in the issue
queue, therefore they do not have to go through the renamer on
a replay to fix up the dependencies.

To correctly find the dependencies during a replay on a pred-
icate prediction, we keep track of two tags for each operand and
an extra input tag to retain destination register state. For the
operands, the two input tags represent (1) the predicted data
flow when the instruction first enters the issue queue, and (2)
the replay data flow that conservatively links def-use chains.
This second recovery operand tag links to the nearest poten-
tial definition, no matter whether it is qualified true or false.
If the instruction is qualified on false, a replay tag associated
with the destination register, propagates the original definition
state. This tag acts as an input tag, and passes the original
value through the instruction. The overall effect is to create a
serialization through the multiple definitions for a register guar-
anteeing that the correct value will eventually reach all uses on a
replay. On a replay, starting with the first recovery instruction,
it writes to the replay tag (2). Input operands on replay instruc-
tions can accept either the regular or replay data-flow tag. All
dependent instructions are re-executed in data-flow fashion.

These register renaming and replay concepts are illustrated
in a diagram in Figure 6. The top left of the figure shows the
original predicated code example, where we are executing five
instructions. The top right shows the instruction queue state
after these instructions have gone through predicate prediction
and early register evaluation and illustrates the recovery tags.

In this example, p6 is predicted to be TRUE, and P7 and P8 to
be FALSE. The instruction queue state shows two tag values for
each operand as described above. For example, the shl instruc-
tion has t5 as the predicted definition and t11 as the recovery
definition shown as (t5,t11). If shl ends up being TRUE and
no prior instructions before it are replayed, it will get its value
from t5. If a prior instruction before it ends up being replayed,
then it would get its value instead through t11. The instruction
queue state is the destination recovery tag < tag > at the end
of each instruction line. This tag points to the last instruction
that defined the same register. This tag is used to propagate the
correct value serially if the instruction is qualified false. When
a replay occurs the multiple-definition problem is handled by
serializing all potential definitions through each other, which we
will show in the rest of this example.

The bottom part of Figure 6 shows two different mispredic-
tion examples. The first example on the bottom left shows what
happens when the shl ends up being TRUE when it was origi-
nally predicated as FALSE. The state in the example shows the
dependencies used during the replay with the solid arrow. In
this case, since shl is TRUE it will get its input dependency
from t5, and then selectively propagate its value.

The second example on the bottom right, shows the case when
the sub instruction is TRUE when it was predicted to be FALSE.
In this example, it will gets its operand value from t5, and
propagate its result value using its destination tag of t11. Note
that the correct destination tag is propagated through the shl

instruction using its destination recovery tag. The shl ends up
acting like a move and it knows to take the tag tll, since it is
guarded on FALSE, and then it propagates its value using its
destination tag of t12.

Traditional selective-replay implementations are complicated,
with predication making them more so. Recent literature from
industry seems to suggest that the complexity level necessary for
general selective-replay is considered tractable. Borsch et.al. [1]
state that the Alpha 21464 would have used selective replay, as
compared to the window-replay mechanism used in 21264. They
describe the realistic implementation detail for both. The Pen-
tium 4 paper [7] simply states it uses selective-replay. Recent
academic papers for example by Ernst et.al. [6] use selective-
replay exclusively as the recovery mechanism in their high per-
formance speculative trace execution processor. Taking the next
step to include predicates, may not be that far fetched.

3.3.4 Broadside Predicate Register Assignment
IA64 contains several instructions for the maintenance of pred-

icate state that causes difficulties in an out-of-order machine.
Broadside read and write instructions are used to preserve predi-
cate register file state across procedure calls (and software pipelined
loops). Simultaneous “broadside” writes of the predicate regis-
ter file, assigns all 64 predicates through special MOV instruc-
tions, and imposes a synchronization point for all predicate reg-
isters in the out-of-order pipeline. For an out-of-order processor,
all 64 predicate writes need new physical definitions and need to
be renamed. This general problem is faced by all out-of-order
IA64 implementations that support a predicate broadside write.

We model using a physical predicate register file that supports
broadside writes to a sequential series (vector) of 64 predicate
registers. This allows a broadside write to write a whole vector
of 64 physical predicate registers at a time. Each vector is rep-
resented as a single tag in the register map, and an instruction
would find its predicate value by indexing into the predicate
register file with the tag + virtual predicate number. If a
vector of 64 predicate registers is not available for the broad-

5

FE REN

IQ IN
3

RecQ IN
3

IN
2

IN
1

IN
1

Issue REG EXE

FE REN

IQ IN
2

RecQ IN
2

IN
3

Issue REG EXE

IN
1

pred cor

IN0 cmp p6,p7=r15,2

IN1 T F (p6) add r16=1,r8;;

IN2 F T (p7) sub r17=13,r8

1. PREDICTED DEPENDENCY

Normal Execution: pred ict P6:T P7:F

IQ STATE:

IN1 add t3=1,t2

IN3 shl t4=t3,4

IN4 st[t1]=t4

2. CORRECTED DEPENDENCY

Recovery Mode: corrected P6:F P7:T

IN2 sub t3=13,t2

IN4 st4 [t1]=t3

IN
15

IN
15

FE REN

IQ IN
2

RecQ IN
2

IN
3

Issue REG EXE

IN
1

IN
15

IN
15

3. RETURN TO NORMAL

EXECUTION

IN2 sub t2=13,t1

IN4 st4 [t3]=t2

IN5 shl t4=t3,3

DET

IN
0

IN
0

Recovery Signal

WB

DET

WB

DET

WB

pred cor

IN3 T F (p6) shl r17=r16,4;;

IN4 st4 [r18]=r17

IN5 shl r19=r17,3

IN
14

IN
14

IN
14

IN
14

IN
14

IN
14

IN
0

IN
0

Figure 5: Conceptual view of Rename-Replay for predicate misprediction recovery. Top figure indicates normal
operation. Middle figure receives a recovery signal when the compare (IN0) writes back its predicates. This wakes
up instructions from the Recovery Queue (RecQ), and forwards them to the register renamer. These instructions
are early-evaluated with the correct predicate, and register dependencies are repaired. The bottom figure shows
execution starting from the corrected Instruction Queue (IQ) state.

side write during renaming, the renamer would stall until they
became available. In our simulations, this rarely ever occurred,
and this was modeled with having two 64 predicate vectors (for
renaming broadside predicate writes) on top of the default reg-
ister file.

4. METHODOLOGY
Our simulation methodology was derived from an earlier pa-

per [4], but is described in greater detail in this paper. Most of
our infrastructure work for this paper was to modify SimpleScalar-
3.0 [2] to support predicate prediction and gather supporting
results.

4.1 Trace Generation
We built a trace driven IA64 simulation environment with

SimpleScalar-3.0. The key components of the tool chain are
shown in Figure 7. We started with a set of tracing and decod-
ing libraries. GNU bin utilities provide a basic opcode library
and instruction decoder that we enhanced with unique opcode
identifiers, functional unit classification, and several other fea-
tures. We also use GNU “libbfd” to access the “.text” section.
Over this we built a custom tracing infrastructure using con-
cepts learned from David Mosberger’s ”utrace.c” utility. Like
his tool, our tracing mechanism uses ptrace, an API frequently
used by debuggers, to access low-level, child-process context in-
formation [5]. Each trace record contains state for the execution
of an IA64 instruction. It contains an IP (instruction pointer),
PR (predicate register file), and either memory address or the
register stack engine (RSE) state from AR.PFS. This informa-
tion is sufficient to simulate the most important performance

GNU inst decoder

SimpleScalar (sim-outorder)

trace API

GNU bfd

benchmark
executable

trace file

binary annotation

trace file

trace API

trace_writer

benchmark
executable

Figure 7: Software Components for Simulator and
Trace-Writer.

features of IA64. These are predication, RSE, software pipelin-
ing (not used in this paper), caches, branch prediction, and ex-
ecution core resources. This information is written out into a
compressed trace, which is then consumed by our version of Sim-
pleScalar. Access to this trace file is through a common API and
library to simplify software development. We built a customized
text section binary annotation that passes instruction attributes
and primitive debug information from the IA64 compiler to the
simulator. This is patterned after Intel’s Flexible Annotation
library [9], although much more simpler.

4.2 Simulator
Our IA64 simulator is derived from SimpleScalar 3.0 [2], but

has been radically modified to handle tracing the peculiarities
of IA64 [18, 8]. We model the register stack engine, including
injecting RSE spills and reloads with the necessary pipelining
stalls, dependencies across software pipeline rotation, and data

6

mov t1=

(p6) add t5=1,(t1,-) <t1>

(p7) sub t11=2,(t5,t5) <t5>

(p8) shl t12=(t5,t11),3 <t11>

st []=(t5,t12)

mov t1=

add t5=1,t1

-

-

st []=t5

T

F

F

IQ RECOVERY STATEIQ PREDICTEDP

mov t1=

(p6) add t5=1,(t1,-) <t1>

(p7) sub t11=2,(t5,t5) <t5>

(p8) shl t12=(t5,t11),3 <t11>

st []=(t5,t12)

mov t1=

add t5=1,t1

-

-

st []=t5

T

F

F

IQ RECOVERY STATEIQ PREDICTEDP

Original Code

mov r33=1

(p6) add r33=1,r33

(p7) sub r33=2,r33

(p8) shl r33=r33,3

st []=r33

1

2

3

4

5

INST#

mov r33=1

(p6) add r33=1,r33

(p7) sub r33=2,r33

(p8) shl r33=r33,3

st []=r33

1

2

3

4

5

INST#

Predicate Predicted: Expanded IQ State

mov t1=

add t5=1,t1

-

(p8) shl t12 =(t5,t11),3 <t11>

st []=(t5,t12)

T

F

F=>T

1

2

3

4

5

COR IQ STATE#

mov t1=

add t5=1,t1

-

(p8) shl t12 =(t5,t11),3 <t11>

st []=(t5,t12)

T

F

F=>T

1

2

3

4

5

COR IQ STATE#

mov t1=

add t5=1,t1

(p7) sub t11=2,(t5,t5) <t5>

(p8) shl t12=(t5,t11),3 <t11>

st []=(t5,t12)

T

F=>T

F

1

2

3

4

5

COR IQ STATE#

mov t1=

add t5=1,t1

(p7) sub t11=2,(t5,t5) <t5>

(p8) shl t12=(t5,t11),3 <t11>

st []=(t5,t12)

T

F=>T

F

1

2

3

4

5

COR IQ STATE#

Mispredict Example #1 (recover at 4) Mispredict Example #2 (recover at 3)

normal data-flow

recovery data-flow

Figure 6: Example of register renaming for selective replay predicate misprediction recovery. The top left is the
original code, and the top right shows the instruction queue state for the original code. On the bottom shows two
different misprediction recovery examples. Dashed-lines represent normal data-flow, while solid lines represent
recovery data-flow. Note in misprediction examples, the normal data-flow reaches into the recovery region. Also
note for example #2, at instruction #5, how recovery qualified false instructions effectively turn into a move to
propagate the prior definition of r33 so that it can reach its real use.

prefetching. SimpleScalar’s generic branch predictor was ex-
tended to support counted loops, our predicate predictors and
the Itanium Branch-Address-Predictor. We pay special atten-
tion to functional unit latencies and resource modeling to match
the compiler scheduling model. The register dependency ma-
chinery was also substantially enhanced to support predication
and various predicate prediction models. A summary of the ar-
chitectural parameters modeled during simulation for our predi-
cated configurations is given in Table 1. The baseline and Wang
results are for an out-of-order architecture identical to this, ex-
cept that the branch predictor tables for these baseline architec-
tures are twice the size as those used for the predicate prediction
architectures, which are shown in Table 1. This is to normalize
the amount of prediction state between the models using a pred-
icate predictor and the baseline. We chose a large meta chooser
predictor with local (PAp) [21] and bimodal history as the base-
line configuration. This does better than an earlier study with
global/local meta-chooser, and about as well as global/bimodal
meta-chooser. Using only local information allows us to per-
form multiple branch predictions in parallel without having any
history dependence between prior predictions.

Our architecture models the Itanium pipeline depth with the
addition of three additional pipeline stages between rename and
execute to represent the added complexities of out-of-order ex-
ecution. The pipeline in Figure 4 clarifies this.

4.3 Benchmarks
We use nine benchmark programs from Spec2000 Integer and

Floating-Point. These programs represent all Spec2000 pro-
grams that compile and trace correctly in our modified envi-

ronment. They were all compiled with a version of Intel’s IA64
Compiler (Electron) modified for our environment. Some en-
hancements we have made are binary annotations, and a im-
proved if-conversion region picker. All benchmarks use the ref-
erence input set, and in the case of vpr the “place” input was
used.

For each benchmark, we compiled three sets of binaries. The
first binary has no if-conversion to be used as a comparison base-
line. The second binary contains conditional-writer (IA64) pred-
ication used with the predicate prediction and Wang’s select-
µops [20]. The third binary contains phi-predication [4] and is
used to compare against the conditional-writer predication.

Because we are dealing with three binaries, we need to make
sure they functionality execute for the same amount during sim-
ulation. To provide this, we performed fast forwarding using
SimPoints [19] and determined when to stop simulation based
upon the Nth and Mth procedure call invocation. We limit our
simulations to at most 300 million instructions, but we make
sure that all binaries, for the same program, start at the same
function call invocation and end at the same functional call in-
vocation. The number of instructions ended up being simulated
for each binary is shown in Figure 2.

Figure 8 measures the precent of the executed code that was
predicated due to if-conversion. On average 7.6% of a program’s
execution was inside if-converted code. bzip, twolf and vpr con-
tain the most if-conversion. This measurement does not include
predicated code generated outside the compiler’s if-conversion
routines, which occurs primarily from IA64 floating-point di-
vides (and square roots) and library code.

7

Trace Start Point End Point If-Conversion Trace Length Length change

164.gzip function: function: None 299999974 0.00%
longest match longest match Conditional-Writer 308150184 2.72%

Select 280294174 -6.57%
175.vpr function: function: None 299999926 0.00%

read arch get non updateable bb Conditional-Writer 280030525 -6.66%
Select 281682898 -6.11%

177.mesa function: function: None 305123237 0.00%
general textured triangle sample 1d linear Conditional-Writer 296756476 -2.74%

Select 297920347 -2.36%
179.art function: function: None 267860087 0.00%

match reset nodes Conditional-Writer 285006398 6.40%
Select 285010952 6.40%

183.equake function: function: None 258547696 0.00%
phi0 smvp Conditional-Writer 261602566 1.18%

Select 261421846 1.11%
186.crafty function: function: None 299999966 0.00%

SwapXray FirstOne Conditional-Writer 296844214 -1.05%
Select 297980972 -0.67%

197.parser function: function: None 297341672 0.00%
region valid ppmatch Conditional-Writer 299925970 0.87%

Select 299999902 0.89%
256.bzip2 function: function: None 299207422 0.00%

spec putc fullGtU Conditional-Writer 298802221 -0.14%
Select 299999983 0.26%

300.twolf function: function: None 299999954 0.00%
ucxx1 new dbox a Conditional-Writer 286907180 -4.36%

Select 289647451 -3.45%

Table 2: Trace Characteristics: Because predication may introduce additional instructions in the trace, we
synchronized execution between known start and end points.

If−
C

on
ve

rs
io

n

0%

5%

10%

15%

20%

art bzip2 crafty equake gzip mesa parser twolf vpr avg

Figure 8: Percent of execution from if-converted re-
gions.

5. COMPARISON
In this section, we first compare different design alternatives

to predicate prediction. Subsequently we examine the different
predicate prediction approaches. All speedup results are nor-
malized to the same baseline out-of-order architecture without
if-conversion with a branch predictor double the size of the archi-
tecture supporting predication. Equalizing the overall predictor
area is meant to provide a fair comparison between the area
for the predictors in the baseline and the predicate prediction
architectures.

Three binaries are generated and used for all of the results.
The first uses no if-conversion, the second uses standard
conditional-writer if-conversion targeting mispredicted branches,
and the third uses Phi-predication described in [4].

5.1 Alternative Strategies
In this section we compare different design alternatives to

predicate prediction. Figure 9 provides the speedup compar-

isons between the initial execution models. First we contrast a
less efficient, but straight forward design, for dealing with the
multiple definition problem. This approach stalls the pipeline
in the rename stage until the multiple definition problem is re-
solved. More specifically a predicated instruction waits before
the register renamer until its guarding predicate value has been
defined via a writeback. The performance penalty with this ap-
proach (stall-only) is caused by stalling the fetch pipeline shows
an overall slowdown of -11.8%.

S
pe

ed
up

−30%
−25%
−20%
−15%
−10%

−5%
0%
5%

10%
15%
20%
25%
30%

art bzip2 crafty equake gzip mesa parser twolf vpr avg

Stall−only
Wang
Phi−pred

Figure 9: Alternatives to Predicate Prediction:
Speedup normalized against No-predication.

Next we consider the prior technique by Wang et.al. [20] de-
scribed in related work in Section 2.1 . This is a better solution
that avoids the predicate early-evaluation stall and serialization
of qualified simultaneous writers, by using a special select-µop
to choose between different qualified writers. The performance
is seen in Figure 9 under “Wang” is clearly better than “stall-
only” with an average speedup of 3%. We can see there is some
performance penalty due to inserting the select-µop in the eval-
uation path for a few benchmarks.

8

Predicated Machine Model

Fetch Width Up to 2 Bundles
Issue Width 6 instructions
Function Units Itanium latencies, resource units
Reorder buffer RUU: 256, LSQ: 128
L1D 64KB, 4 way, 32B Blk, 2 cycle latency
L1I 64KB, 4 way, 32B Blk, 1 cycle latency
L2 Unified 4MB, 4 way, 64B Blk, 12 cycle latency
DTLB 128 entry, 30 cycle miss penalty
ITLB 64, 30 cycle miss penalty
Memory 300 cycle latency
Branch Pred 16K meta chooser between bimodal

(16K entry) and local 2-level table
(16k entry); 32 Return Address Stack;
512 BTB; 12 cycle miss penalty
Br mispred delay: 12 cycle

RSE Lazy spill and reloads, model
register stack

select-µop/phi 1 cycle latency
Wang/Phi only)
Stall-only Predicate resolution: min 7 cycle
Flush Recovery: 12 cycle
Rename-Replay Recovery: 7 cycle
Selective-Replay Recovery: 7 cycle
Predicate-Pred 16K meta chooser between bimodal

(16K entry) and local 2-level
table (16k entry)

Table 1: IA64 SimpleScalar: This table describes the
general characteristics of our trace-driven simulator.

One design issue for “Wang “is building select-µop for the
floating-point operations. For the Itanium integer operations,
the minimum latency move is a single cycle, however floating
point is five due to exception reporting and greater logic com-
plexity. For results in Figure 9, we use a single cycle select-op
implementation for both integer and floating point, since the
select should be unencumbered by floating point instruction re-
quirements. We did simulate using a five cycle latency. With
this change the speedup turns into a slowdown of -0.77%.

The Phi-predicated code as described by proposed by Chuang
et.al. [4] can conceptually be viewed as taking Wang et.al.’s
select-µops, and having the compiler automatically insert them.
This requires an ISA change from IA64. We find a speedup of
5.2% for phi-predication as seen in Figure 10 under “phi-pred”.

5.2 Predicate Prediction
Predicate prediction provides the possibility to provide paral-

lel execution of qualified writers, and to eliminate the data-flow
dependency and stalls of prior approaches. Further, its fully
compatible with IA64 ISA predication. In this section, we de-
scribe the performance of using predicate prediction with three
recovery mechanisms. These techniques are: flush, rename-
replay, and selective-replay. We compare the results of predicate
prediction with Wang et.al. and perfect predicate prediction.
These results are seen in Figure 10.

Figure 11 shows the number of mispredicted branches for the
original (no-predicated) binary and the predicated binary with
predicate prediction. The bottom part of the predicate predic-
tion bar shows the mispredicts due to branches, and the top bar
shows the mispredicts due to predicate predictions that were
actually used.

When using rename-replay the average speedup is 3.0% over

S
pe

ed
up

−10%

−5%

0%

5%

10%

15%

20%

25%

30%

art bzip2 crafty equake gzip mesa parser twolf vpr avg

Wang
Flush
Rename−Replay
Selective−Replay
Perfect

Figure 10: Predicate Prediction Speedups: Normalized
against No-predication with double branch predictor
capacity.

M
is

pr
ed

ic
tio

ns

0

1e+06

2e+06

3e+06

4e+06

art bzip2 crafty equake gzip mesa parser twolf vpr avg

No−Pred x2, Branch Miss
If−Conv,Branch Miss,Comb
If−Conv,Pred Miss,Comb

Figure 11: Distribution of predictor mispredictions.
First bar is the number of branch mispredictions w/o
if-conversion. Second bar shows the number of branch
mispredictions and predicate mispredictions stacked.

no-predication, with the largest speedup being 12.7% for vpr.
This model tends to track “perfect” especially on gzip, twolf,
and vpr. These benchmarks have a larger percentage of execu-
tion from if-converted code as seen in Figure 8. In addition, Fig-
ure 11 shows that we are trading off reducing expensive branch
mispredictions for increased predicate mispredictions.

Results for the second predicate prediction technique, “selective-
replay”, are shown in Figure 10. Selective-replay recovers mis-
predicted instructions and any instructions that depends on it
that have been put in the Instruction Queue. We find this to
provide a 6.9% speedup on average over no-predication. The
results for Perfect predicate prediction suggest that selective-
replay, even though it requires keeping the recovery operand
and destination tags, provides close to ideal benefits.

5.3 Design Space Exploration
We consider one additional hardware change from our ear-

lier results: modeling broadside predicate register file updates.
Broadside predicate register-file saves and restores impose a syn-
chronization penalty, and cause the predicate predictor state
to become potentially stale. We now consider the impact of
synchronization using the hardware described in Section 3.3.4.
When we allow hardware to keep track of two broadside writes,
we see a slow down of just 0.1%. Several programs art, equake,
and gzip were essentially unaffected due to shallow call depth.
Parser was most affected with a slow down of 0.4%, most likely
caused by its deep recursive call pattern.

6. CONCLUDING REMARKS
In this paper we described the multiple definition problem

for an out-of-order architecture with predication, and examined
using predicate prediction to solve this. Unlike traditional re-
covery techniques for branches or load-speculation, predication
introduces new problems and benefits that we examine.

We considered two techniques to recover from predicate mis-
predictions: “rename-replay” and “selective-replay”. Rename-

9

replay recovers instructions through the register renamer to re-
pair register dependencies due to predicate misspeculation. It
represents the more realistic implementation of the two tech-
niques. This technique obtains a speedup of 3.0% over no-
predication with double the branch predictor size, but has
speedups of 10% for gzip, and 13% for vpr. Selective-replay
only re-executes the instruction that uses the mispredicted pred-
icate, and any instructions along those dependency paths. Its
performance result represents an upper-bound with a speedup
of 6.9%, also normalized over no-predication. Overall, rename
replay is potentially the more straight forward recovery tech-
nique to implement, although selective replay achieves twice as
much speedup for some programs.

7. ACKNOWLEDGMENT
We thank the anonymous reviewers for their thorough and in-

sightful comments. This work was funded by National Science
Foundation grant No. CCR-0073551 and a grant from Intel Cor-
poration. We especially would like to thank Intel for providing
the Electron compiler sources, and their assistance in using it.

8. REFERENCES
[1] E. Borsch, E. Tune, S. Manne, and J. Emer. Loose loops

sink chips. In Proceedings of the Eighth International
Symposium on High-Performance Computer Architecture,
Feb 2002.

[2] D.C. Burger and T.M. Austin. The Simplescalar Tool Set,
version 2.0. Technical Report CS-TR-97-1342, University
of Wisconsin, Madison, Jun 1997.

[3] P.Y. Chang, E. Hao, Y. Patt, and P.P. Chang. Using
predicated execution to improve the performance of a
dynamically scheduled machine with speculative
execution. In Proceedings of the 1995 International
Conference on Parallel Architectures and Compilation
Techniques, June 1995.

[4] W. Chuang, B. Calder, and J. Ferrante. Phi-prediction for
light-weight if-conversion. In Proceedings of the
International Symposium on Code Generation and
Optimization, March 2003.

[5] S. Eranian and D. Mosberger. The Linux/ia64 Project:
Kernel Design and Status Update. Technical Report
HPL-2000-85, HP Labs, 2000.

[6] D. Ernst, A. Hamel, and T. Austin. Cyclone: A
broadcast-free dynamic instruction scheduler selective
replay. In Proceedings of the 30th Annual International
Symposium on Computer Architecture, June 2003.

[7] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel. The microarchitecture of the
pentium 4 processor. Intel Technology Journal Q1, 2001.

[8] Intel Itanium Processor Reference Manual for Software
Optimization, November 2001.
http://developer.intel.com/design/itanium/downloads/
245474.htm.

[9] Intel Flexible Annotations.
http://www.intel.com/software/products/opensource/
tools1/perftools.htm.

[10] IA-64 Application Instruction Set Architecture Guide,
Revision 1.0, 1999.

[11] R. Kessler. The Alpha 21264 Microprocessor. IEEE
Micro, 19(2):24–36, Mar–Apr 1991.

[12] A. Klauser, T. Austin, D. Grunwald, and B. Calder.
Dynamic hammock predication for non-predicated
instruction set architectures. In Proceedings of the 1998

International Conference on Parallel Architectures and
Compilation Techniques, pages 278–285, October 1998.

[13] M. Lipasti and J. P. Shen. Exceeding the dataflow limit
via value prediction. In Proceedings of the 29th
International Symposium on Microarchitecture, Dec 1996.

[14] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D.
Lichtenstein, R. P. Nix, J. S. O’Donnell, and J. C.
Ruttenberg. The Multiflow Trace Scheduling compiler.
The Journal of Supercomputing, 7(1-2):51–142, May 1993.

[15] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August,
and W. W. Hwu. A comparison of full and partial
predicated execution support for ILP processors. In
Proceedings of the 22nd International Symposium on
Computer Architecture, pages 138–150, 1995.

[16] S. McFarling. Combining Branch Predictors. Technical
Report TN-36, Compaq WRL, June 1993.

[17] M. Schlansker and B. R. Rau. EPIC: An Architecture for
Instruction-Level Parallel Procesors. Technical Report
HPL-1999-111, HP Labs, 2000.

[18] H. Sharangpani and K. Aurora. Itanium processor
microarchitecture. IEEE Micro, 20(5):24–43, Sept–Oct
2000.

[19] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program
behavior. In Proceedings of the 10th International
Conference on Architectural Languages and Operating
Systems, October 2002.
http://www.cse.ucsd.edu/users/calder/simpoint/.

[20] P. H. Wang, H. Wang, R. M. Kling, K. Ramakrishnan,
and J. P. Shen. Register renaming for dynamic execution
of predicated code. In Proceedings of the 7th International
Symposium on High Performance Computer Architecture,
February 2001.

[21] T. Y. Yeh and Y. N. Patt. A comparison of dynamic
branch predictors that use two levels of branch history. In
Proceedings of the 20th International Symposium on
Computer Architecture. ACM and IEEE Computer
Society, 1993.

10

