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ABSTRACT
Predicated Execution has been put forth as a method for im-
proving processor performance by removing hard-to-predict
branches. As part of the process of turning a set of basic
blocks into a predicated region, both paths of a branch are
combined into a single path. There can be multiple defini-
tions from disjoint paths that reach a use. Waiting to find
out the correct definition that actually reaches the use can
cause pipeline stalls.

In this paper we examine a hardware optimization that
dynamically collects and analyzes path information to de-
termine valid dependences for predicated regions of code.
We then use this information for an in-order VLIW predi-
cated processor, so that instructions can continue towards
execution without having to wait on operands from false de-
pendences. Our results show that using our Disjoint Path
Analysis System provides speedups over 6% and elimination
of false RAW dependences of up to 14% due to the detection
of erroneous dependences in if-converted regions of code.

Categories and Subject Descriptors
C.1.3 [Computer Systems Organization]: Processor Ar-
chitectures – Other Architecture Styles

General Terms
Performance

Keywords
Dependence Analysis, Path Analysis, Predicated Execution

1. INTRODUCTION
A feature of the Explicitly Parallel Instruction Computing

(EPIC) architecture is its support for predicated execution.
Predicated execution in the form of if-conversion [5, 15] re-
moves hard-to-predict branches by combining both paths
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of a branch into a single path. In doing so, definitions of
the same logical registers (originally from different paths)
are intermingled. This makes data dependence analysis sig-
nificantly harder. Without the appropriate predicate sensi-
tive analysis, dependency assignments must be very conser-
vative, ultimately including dependencies that are not re-
quired.

The EPIC philosophy is that the compiler should handle
most of the dependence analysis and scheduling in order to
simplify the processor, and at the same time the compiler
has a broader view of the code [13]. In the case of the In-
tel Itanium (the first implementation of the IA64 ISA), a
scoreboard is used by the hardware to make decisions on
instruction dependencies. While some of the independence
information can be encoded by the complier into the VLIW
instruction grouping or bundle and passed on to the architec-
ture, much of it will have to be re-calculated by the hardware
without the benefit of predicate relationship information.

In this paper, we describe a Disjoint Path Analysis Ar-
chitecture that allows us to re-create predicate relationship
information in hardware. We show that this architecture can
be used to decrease the number of data dependencies that
are conservatively enforced for the current Itanium IA64 im-
plementation. If the predicate relationship information in-
dicates that a definition’s path is disjoint from the use, the
data dependence is not assigned. This means that the def-
inition was on a disjoint path. Our results show that up
to 14% of the dependencies in if-converted regions can be
removed for the Itanium model, yielding an improvement in
IPC of up to 6% for these regions.

2. MULTIPLE PATHS MEANS MULTIPLE
DEFINITIONS THAT RESULT IN STALLS

Predicated execution is a feature designed to increase ILP
and remove hard-to-predict branches. Machines such as the
Intel Itanium with hardware to support predicated code in-
clude an additional set of registers called predicate registers.
The process of predication replaces branches with compare
operations that set predicate registers to either true or false
based on the comparison in the original branch. Each oper-
ation is then associated with one of these predicate registers
(the operations guarding predicate). In general, the opera-
tion will be committed only if its guarding predicate is true.
This process of replacing branches with compare operations
is called if-conversion [5, 15].

An example of if-converting a set of basic blocks into a
predicated region can be seen in Figures 1 and 2. Figure 1
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Figure 1: Original Con-
trol Flow Graph

add r5=r2,r4
cmp P2,P3 =r5,0

(P2) mov r5=r7

(P3) add r6=r5,3

(P3) cmp P4,P5 = r6,0

(P4) mov r5=3

(P4) mov r6=-1

(P5) mov r6=0

mult r9=r5,r6

cmp P5,P6=r4,r5

Figure 2: If Converted
Version

[1] add r5=r2,r4

[2]        cmp P2,P3 =r5,0

[3] (P2) mov r5=r7

[4] (P3) add r6=(r5[1]or r5[3]),3

[5] (P3) cmp P4,P5 = r6,0

[6] (P4) mov r5=3

[7] (P4) mov r6=-1

[8] (P5) mov r6=0

[9] mult r9=(r5[1]or r5[3]or r5[6]),(r6[4] or r6[7] or r6[8])

[10]       cmp P5,P6 = r4, (r5[1] or r5[3] or r5[6])

Figure 3: If Converted showing multiple defi-
nitions of same register

shows the original control flow graph with 3 possible paths
to the final block shown in the region. Figure 2 shows the if-
converted code with the branches replaced and the 3 paths
effectively combined into one.

As already mentioned, the benefits of if-conversion include
the removal of hard to predict branches, and increased pos-
sibilities of finding instruction level parallelism (ILP). Nor-
mally, when a branch is encountered, the processor predicts
the next address from which to fetch instructions to continue
execution. There can be a large penalty if the prediction is
incorrect. Predicated execution allows for a third possibil-
ity, executing both paths of the branch. Predication can
also increase ILP because the predicated region can provide
a larger pool from which to find independent instructions.

However, the process of combining multiple paths into one
makes data dependence analysis significantly harder. Mul-
tiple paths containing definitions of the same architectural
registers are intermingled. In the control flow graph in Fig-
ure 1, there are 3 definitions of r5, each occurring in a dif-
ferent basic block. However, in the if-converted code, the
3 definitions are in the same predicated scheduling region.
When the compiler or hardware tries to set up dependen-
cies, the reaching definition for a use is not necessarily the
last definition.

It is clear from the control flow graph in Figure 1, that
the definition of r5 made by the mov instruction r5=r7 could
not be the definition used by the instruction r6=r5+3. The
definition and use in this case are on completely separate
(disjoint) paths. However, in the if-converted code (Fig-
ure 2), the mov provides the most immediate prior definition.
If the hardware has a dependence detection method telling
it that P2 and P3 are disjoint, a use of r5 will only have
to wait on the correct definition. Otherwise, both of the 2
previous definitions of r5 in the if-converted region must be
considered as possible definitions. It would not be until it
was determined that the guarding predicate of one of the
defining statements is false that the dependence could be
broken.

The mult instruction has multiple possible reaching def-
initions of r5 that are all valid as shown in Figure 3. It
could not be determined statically which of the definitions
reached. It would instead depend on the particular execu-
tion. If predicate registers P3 and P5 were defined as true,
the very first definition of r5 (r5[1]) would be the definition

that reaches the use of r5 in the mult. This is because it
would be the only definition guarded by true, or the only def-
inition on the taken path. However, if P2 is true, there would
be 2 definitions (from instructions r5[1] and r5[3]) along the
way guarded by true. Both of these are valid definitions on
the path. However, only the definition that is closest to the
use and along the correct path provides the definition. The
problem in data dependence analysis is determining which
is the closest definition on the same path as the potential
use.

2.1 Effect of Extraneous Definitions on the
Hardware

In the baseline Itanium model, dependency relationships
between a producer and consumer register, where at least
one is predicated, cannot be handled by the hardware until
the predicate value has been resolved. To accommodate
this in Itanium, the producer of the predicate register and a
potential consumer of a general purpose register guarded on
that predicate must be scheduled 2 cycles apart from each
other [4]. This holds true whether the predicate register has
a value of true or false.

Consider the following code segment:

(1) cmp P4,P5 = r8,r5 cycle 0
(2) (P4) ld r7=[r5] cycle 1
(3) (P5) add r6=r7,3 cycle 2

Based on the current Itanium implementation, these state-
ments must execute as shown above in their corresponding
cycles. Statement 3 is a potential consumer of statement 2,
so the architecture enforces a potential dependency between
the two instructions. The dependency will be broken by the
scoreboard when it is determined that either P4 or P5 has
a value of false. However, as described in [4], the producer
of the predicates and the potential consumer of the general
register must be scheduled at least 2 cycles apart to allow
time for this determination to be made. Under certain cir-
cumstances this latency is greater that 2 cycles.

In the above example, if the hardware can accurately de-
termine that the predicates guarding instructions 2 and 3
are disjoint, then it can allow those two instructions to be
scheduled and executed in the same cycle. This potential
savings is the benefit exploited by the Disjoint Path Analy-
sis architecture presented in this paper.



The Itanium is fully score-boarded to allow for real-time
decisions to be made about instruction execution [13, 16].
The main function of the scoreboard is to determine when
all dependencies are resolved and to enforce WAW hazards.
As mentioned, the mechanism is capable of breaking de-
pendencies when either the producer or consumer guarding
predicate is evaluated to be false. For the scoreboard, many
dependencies have to be recalculated by the hardware, and
we examine incorporating our Disjoint Path Analysis archi-
tecture into the Itanium scoreboard to eliminate false depen-
dencies (as described above) before the predicate definitions
are resolved.

3. RELATED WORK
Both compiler and hardware approaches have been pro-

posed for handling multiple definitions.

3.1 Predicated Multi-path Compiler Analysis
Gillies et.al. and Schlansker et. al. [12, 17] presented the

use of the Predicate Query System(PQS). This system uses
a predicate partition graph to statically describe disjoint-
ness. A definition and a use that originated from disjoint
paths cannot be dependent on one another. For a pure in-
order execution model, the compiler would use the disjoint-
ness information and schedule the code accordingly. Two
definitions of the same register guarded by disjoint pred-
icates could safely be scheduled in the same cycle because
only one definition would be guarded by true and ultimately
be written. A definition and use on disjoint paths could
also be scheduled in the same cycle for the same reason.
PQS has been included in the later phases of the Intel IA-
64 Compiler Code Generator [7] in the form of a relational
database from which information on predicate disjointness,
dominance, post-dominance and predicate promotion [14]
can be obtained.

In [9], we presented the need for complete path analy-
sis for predicated regions. This work extended the PQS
research by maintaining information not only on predicate
disjointness, but on the predicate predecessor/successor re-
lationships that re-create a path through a predicated re-
gion. We presented the idea of Full Path Predicates (FPPs)
to create predicates that represent a path through the pred-
icated region. This allows statements to be predicated on
the path that was taken to reach the statement, rather than
only with a particular basic block as in predicates created by
if-conversion. This allowed greater flexibility in instruction
scheduling, speculation, and control height reduction.

August et. al. [6] and Sias et. al [19] examined using Bi-
nary Decision Diagrams (BDD) to provide accurate and effi-
cient predicated execution and analysis. They used BDDs to
completely represent predicate relationships. Unlike PQS,
the BBDs have no loss due to their representation. Any
form of query can be made once expressed as a Boolean
expression and tested as a tautology. They found this ex-
tra power essential when dealing with predicates created in
optimizations following if-conversion.

PQS, BBDs, and the analysis designed for creating FPPs
were compile-time solutions to filling the need for special-
ized dependency analysis of predicated code for instruction
scheduling. However, when the instructions are executed in
hardware, the hardware must now deal with resolving these
multiple definitions. The motivation for research presented
in this paper is to design a way to perform the analysis

add r5=r2,r4
cmp P2,P3 =r5,0

(P2) mov r5 =r7

(P3) add r6=(r5or r5 ),3

(P3) cmp P4,P5 = r6,0

(P4) mov r5 =3

(P4) mov r6 =-1

(P5) mov r6 =0

mult r9=(r5or r5 or r5 ),(r6 or r6  or r6 )

cmp P5,P6 = r4, (r5 or r5  or r5 )

Figure 4: If Converted showing renamed definitions
of same register

described above in the context of a real-time hardware en-
vironment, to eliminate the stalls described in Section 2.1.

3.2 Hardware Solutions for Dealing with Mul-
tiple Path Definitions

Wang et.al. [20] recognized that multiple definitions would
be a problem in the renaming stage of an out-of-order im-
plementation of an architecture supporting predicated code.
The renaming stage is used to give each definition of an ar-
chitectural register a unique physical name (removing WAW
and WAR dependencies). In the presence of predication it is
possible to have multiple instructions, guarded by different
predicate registers, write to the same architectural register.
When a use of this architectural register is encountered in
the rename stage, the values of the predicates may be re-
quired to determine which physical register to map to the
architectural register. If the predicate values are not yet
available, a stall must occur.

Figure 4 provides a renamed version of the code in Fig-
ure 2 and illustrates the problem that can occur in the re-
naming stage. The mappings of the first few statements are
unambiguous. The physical register r5 defined by the first
add can be mapped to the first use in the cmp. However, it
is unclear which renamed version of r5 should be mapped
to the use of r5 in the second add. It is even more ambigu-
ous which definition will reach the use in the mult. This
ambiguity cannot be removed until the values of predicate
registers P2 and P4 are known.

In an effort to remove as many unnecessary stalls as pos-
sible, Wang et. al. proposed the use of the select-µop in-
struction for an IA64 out-of-order execution model. The
new select-µop instruction was based on the phi-node used
by static-single-assignment (SSA) [10]. It allows the resolu-
tion of multiple definitions to be postponed to later stages
of the pipeline, providing more chance that a stall would
not have to occur. To form the select-µop instructions, the
possible definitions need to be kept track of. To this end
they presented an augmented Register Alias Table (RAT),
and use this to create the select-op instructions. The RAT
used for this optimization is shown in Figure 5. Each set
represents the current logical definitions for a given register.
Each block contains the renamed definition and the Guard-
ing Predicate under which it was defined. The most recent
definition guarded by a true predicate would be the correct
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Figure 5: Augmented Register Alias Table used to
implement the select-µop optimization for out-of-
order processors supporting predicated execution.

definition. Once this definition was determined, any further
dependencies left to be reconciled could be eliminated from
consideration.

The entries are ordered in the table with the most recent
definition in the highest numbered slot. Each set has four
entries. If there is no available slot when a new definition
must be entered, a select-µop is created, replacing all four
entries. A select-µop is also created and inserted into the
instruction stream when any use of a register with multiple
definitions is encountered in the rename stage. For example,
the first few instructions from Figure 4 with the select-µop
included would be:

add r5=r2,r4

cmp P2,P3=r5,0

(P2)mov r5’=r7

select r5=r5,r5’

(P3)add r6=r5,3

This removes any ambiguity as to which renamed version
of r5 should be mapped to the use in the final add instruc-
tion, avoiding the need to stall in the rename stage. A stall
might be necessary if the guarding predicates of the defini-
tions of r5 are not determined by the time the select-µop
executes.

The select-µop is not designed to be helpful for in-order
processors. It is an optimization for the renaming stage,
which is not a part of the in-order pipeline. In addition,
it inserts another instruction and layer of dependency into
the instruction stream. We use a modified version of the
RAT for Disjoint Path Analysis architecture described in the
next section. We do not store renamed physical registers in
the RAT, since we are concentrating on an in-order VLIW
architecture.

4. DISJOINT PATH ANALYSIS ARCHITEC-
TURE

In this section, we describe the Disjoint Path Analysis
Architecture that allows the same predicate sensitive path

analysis done in the compiler to be accomplished in the hard-
ware. To support this analysis, we add the Path Information
Table (PIT) and the Last Definition Table (LDT) to the Ita-
nium Implementation. In addition, we replace the register
status table (the mechanism for determining if there is an
outstanding write of each of the logical registers) with an ex-
tended Register Alias Table (RAT). These tables can be seen
in Figures 7, 8 and 9 in various stages as we progress through
processing the code in Figure 3. Register Alias Tables are
common to out-of-order processors to facilitate renaming.
We use a modified version to maintain information about
definitions that define the same logical register from the dif-
ferent paths combined during if-conversion. These registers
are not renamed, as in the out-of-order use of the RAT [20],
since we are modeling an in-order VLIW processor. The
other structures are unique to the Disjoint Path Analysis
Architecture. The PIT is used to maintain disjointness in-
formation about predicates that guard register definitions
and uses. The LDT is used to provide information to the
RAT about the latest reference in the PIT to a particular
predicate definition.

The rest of this section describes these structures in more
detail. In particular, we will discuss how these structures
are utilized and updated in the Disjoint Path Analysis Ar-
chitecture to provide information critical to eliminating non-
essential register dependencies.

4.1 Register Alias Table
In an EPIC architecture, there can be multiple possible

register definitions for a given operand as described previ-
ously. As shown in Section 2, extraneous definitions could
cause unnecessary stalls in the pipeline.

To facilitate the process of determining the correct def-
inition, an extended Register Alias Table (RAT) is used,
adapted for our purposes from [20]. The RAT implemen-
tation is used to maintain a list of the possible definitions
for the use of a logical register. Since we are concentrating
on an in-order model, the multiple definitions are not due
to renaming. Instead, they are the result of the same logi-
cal register definition along different disjoint paths merged
together through if-conversion. Consequently, each entry in
a set for a logical non-predicate register contains not a new
physical register, but a reference to the instruction that cre-
ated the particular definition.

The second part of the slot entry is not just the predicate
on which the definition was guarded, but a reference to the
location in our Path Information Table where disjointness
information associated with the definition’s guarding predi-
cate can be found. The Path Information Table entry comes
from the LDT. If the entry in the LDT corresponding to the
guarding predicate of the current instruction is valid, this
information is recorded in the RAT. If the entry is invalid,
no reference to disjointness information is made. This will
be discussed further in Section 4.2.

The RAT is updated in the decode stage for each register
definition with one exception. If there is not an empty slot
when a new register definition is encountered, the defining
instruction stalls the whole front-end of the processor until a
slot has been vacated. We modeled the RAT using various
numbers of slots ranging from 4 to 16. With 16 slots the
pipeline never had to stall due to lack of available slots.
With four slots, we did have to stall occasionally, but the
effects on the IPC were relatively small as we will show in
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Section 6.

4.2 Predicate Information Table and Last Def-
inition Table

The Predicate Information Table (PIT) is updated to main-
tain information on disjointness between predicates. The
table is then used to answer the question:

• Can two given instructions possibly be on the
same path?

This is critical information because a dependence cannot
exist between two instructions that are not on the same
path. If we can answer this question about the second add

instruction and the first mov instruction in Figure 2, we can
know that the use of r5 in the add cannot be dependent on
the definition of r5 in the mov.

As in the example in Figure 7 depicts, the PIT is a matrix
NxN representing the last N definitions of predicate regis-
ters. A given logical predicate definition can be represented
multiple times in the table. We refer to these definitions as
predicate definition instances because multiple vectors may
reflect information about the same logical predicate register,
only a different instance of its definition. For example, Fig-
ure 2 shows P5 being defined in two different places in the
code. Each of these definitions will have different disjoint-
ness information associated with them and therefore must
be represented separately. The rows in the PIT represent the
predicate register instances with which the given predicate
definition (represented by the column) is disjoint.

Each of these definition instances must remain live until
it is no longer possible that an instruction guarded by it
remains in the pipeline. Consider the following definitions:

(1) cmp P4,P5 = r8,r5

(2) (P4) mov r7=r5

(3) (P5) cmp P9,P4 = r9,r5

(4) (P4) add r6=r7,3

When the dependencies for the final add are calculated,
it is important to have the disjointness information for the
prior definition of r7 available. The add and the mov are
guarded by the same logical predicate register, but are not
necessarily on the same path. To maintain correct disjoint-
ness information for the mov’s definition, we cannot allow
the latest definition of P4 to replace the previous definition
in the PIT.

The first PIT definition for P4 can be freed once the second
definition of P4 in our example is committed. Since we are
executing instructions in order, at this point we are guaran-
teed that there are no instructions guarded by this definition
left in the pipeline. In addition, all of the predicates rep-
resented in the PIT are unconditional predicate defines, so
they are guaranteed to define their two predicates even if
their guarding predicate is false. For example, in statement
3, P9 and P4 will be defined even if P5 is false.

A disjoint representation in the PIT, means that those two
predicates are guaranteed to be disjoint. If two predicates
are not represented as disjoint in the PIT, then no disjoint
information is know about those two predicates. They ei-
ther may or may not be disjoint. The PIT only represents
disjointness information between two predicates that it can
guarantee to be disjoint.

Any PIT column entry can be allocated to a given pred-
icate definition during execution. Each predicate definition
that occurs during execution is allocated the first free PIT
vector. We maintain a queue of pointers to free pit vectors.
The deallocation of PIT entries is handled by the LDT and
described below. If there is not a free PIT entry (the free
list is empty), no disjointness information will be recorded
about the predicate definition instance. We used a 45x45
matrix in this paper and never encountered a lack of avail-
able PIT entries. Figure 6 shows the maximum and average
PIT entries that the RAT referenced in a given cycle. The
maximum number of entries required ranged from 29-45 for
the benchmarks we tested. The average entries used was
significantly less.

The matrix is initialized so that every entry (correspond-
ing to a column) is a bit vector set to 0. To determine which
predicate definition instances are disjoint from another pred-
icate instance x, the column of x is read. This produces a
bit vector representing the disjointness of predicate x in rela-
tionship to all of the other predicate definitions represented
in the PIT. A bit set in the nth location of the vector in-
dicates that Predicate definition instance n is disjoint from
instance x.

The disjointness information is accumulated in the PIT
from 2 sources. First, if the predicate defining statement is
guarded by a predicate, the disjointness information is in-
herited from its guarding predicate. In Figure 2 P3 guards
the definitions of P4 and P5, so P4 and P5 are successors
of P3. Both P4 and P5 inherit the disjointness information
from P3 in the PIT. If the predicate defining statement is
not guarded, or guarded by P0 (the constant true), the pred-
icate is initialized to be not disjoint from any predicate defi-
nitions. In our example, the definitions of P6 and P5 (second
instance) are unguarded, so they do not inherit disjointness
information. Second, disjointness information is added to
the PIT stating that the newly defined predicates (P5 and
P6) are disjoint.

The Last Definition Table is shown in Figures 7, 8 and 9 at
various stages as entries are made. It contains two entries
for each logical predicate register. One entry is a pointer
to the Column of the PIT representing the last definition
instance of a given predicate register. For example, LDT[4]
will contain a pointer to the last unconditional definition of
P4, and LDT[5] to the last definition of P5. The other field
in the LDT entry indicates if the last definition of the logical
register contains a valid PIT entry. It may not be valid if
either of the following are true:
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Figure 7: Three tables shown after first cmp statement is processed. One definition of r5 has been entered
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Figure 9: Three tables after third cmp statement is processed. A new definition of P5 is made and given its
own disjointness information. The old definition of P5 in the LDT is replaced. Three new definitions are
added to the RAT.



• There was not an available PIT vector when the latest
definition was encountered.

• The last definition of the predicate was conditional.
This could mean that it was a type of or or and predi-
cate definition [3]. We do not keep disjoint information
for these definitions in the PIT. For the benchmarks we
tested, these types of definitions comprised an average
of 0.4% of the predicate definitions.

When a predicate definition is added to the LDT, the
LDT entry to be updated contains the last definitions PIT
entry. This last (old) PIT entry is associated with the cmp

instruction that is redefining that predicate. When this cmp
instruction commits, it causes the deallocation of the PIT
entry associated with the prior definition. When the PIT
entry is deallocated, an entry is made in the PIT free list
with the pointer to the deallocated vector. This scheme is
similar to register deallocation for out-of-order processors.

The LDT information is used by the RAT to find the PIT
vector of the guarding predicate of a register definition. This
will be explained in more detail in Section 4.5.

On a branch prediction, our implementation will check-
point both the PIT and the LDT. If a misprediction is deter-
mined, the PIT and LDT will be restored to their pre-branch
condition. It is not necessary to checkpoint the RAT, as all
instructions can continue through the pipeline, committing
pre-branch definitions and squashing mis-predicted ones. If
we wish to avoid the cost of checkpointing, an alternative is
to clear the LDT and PIT on a mis-prediction and assume
no disjointness information is available on recent predicate
definitions.

4.3 Using the PIT and RAT to Determine Ac-
tual Dependencies

The PIT is accessed at most once per instruction when
dependencies are being set. The RAT will be accessed N
times where N is the number of operands in the current
instruction. These tables are used as follows:

• Current instruction is Guarded. When processing
an instruction, the vector associated with the guarding
predicate of that instruction is read from the PIT. To
determine which PIT entry to read, the PIT entry cor-
responding with the last definition of the predicate we
are guarding is looked up in the LDT. Therefore, the
LDT and PIT vector read for processing an instruc-
tion is done serially. For each operand in the current
instruction, their corresponding RAT entries are read
in parallel. These entries can be read in parallel with
the LDT and PIT lookups. Each RAT entry contains
contains a pointer to the dynamic instruction produc-
ing the value for that definition, along with a pointer
to the PIT entry that represents that defining instruc-
tions guarding predicate. This PIT pointer is used
to compute the disjointness of the RAT entry defini-
tion from the use for the instruction we are processing.
The PIT pointer of each definition is looked up in the
PIT vector of the current instruction’s guarding predi-
cate. If the bit for that PIT pointer is set in the vector,
the definition associated with that index cannot create
a dependency for the current instruction because the
PIT pointer and the guarding predicate are disjoint.
If not, or there is no PIT index in the RAT entry, a

dependency may exist and the architecture will treat
that definition as a potential input dependency.

Figure 8 shows the PIT when the second add instruc-
tion in Figure 3 is considered. Entries have been made
for definition instances of P2 and P3. At this time
the only definitions in the RAT for r5 would be r5[1]

and r5[3]. From PIT column 1 (the entry for P3, the
guarding predicate of the add) we see that the bit for
the location associated with P2 (Row 0) is set. This
means that the guarding predicate instance of defini-
tion r5[3] is disjoint from the instance of the guarding
predicate of the add. Consequently r5[3] should not
be considered as a possible definition, and will not set
a dependence. However, r5[1] will set a dependence
since it is unguarded and is not disjoint.

• Current instruction not guarded or Guarded by
P0. The PIT is not accessed. Each possible definition
for an operand in the RAT is a possible dependency to
the use, and we cannot narrow the dependencies down
with our disjointness information.

4.4 Updating the RAT
The RAT is updated in the decode and writeback stages

except as mentioned earlier. When a defining instruction
is processed, the register defined is entered into the RAT
for the set corresponding to the logical register. It will be
assigned a new available slot without replacing another with
the following exceptions:

• An entire set in the RAT will be cleared for a logical
register if the next entry to be made is un-guarded, or
guarded by P0 (the constant TRUE).

• A single slot will be replaced when a logical register
is re-defined guarded by the same predicate instance
(same PIT entry).

Two items of information are placed into the RAT entry.
The first is a pointer to the instruction making the defi-
nition. The second is a pointer to the guarding predicate’s
disjointness information (if any) found in the PIT. The later
piece of information is available from LDT if the valid bit
indicates that the disjointness information is current.

RAT entries are removed during writeback when the defin-
ing instruction is committed or invalidated due to a guarding
predicate with the value of false.

4.5 Updating the PIT
After the operands are processed for an instruction, the

definitions are examined. If we have an unconditional cmp
statement (used henceforth to represent all predicate defin-
ing statements), the instruction will update the PIT for the
predicates defined. The next two free entries in the PIT
will be cleared and allocated to the two new predicate def-
initions. The LDT will be updated to reflect the new most
current definitions of the predicate registers defined. If we
have a conditional predicate definition, the LDT valid bit
will be set to invalid and no pit entries will be made. Two
writes are performed into the PIT vectors, according to the
rules below:

• Inherit Disjointness Information



– A Guarded cmp. If the cmp is guarded, the PIT
entry corresponding to the guarding predicate is
used to initialize the two vector PIT entries for
the two new definitions. In doing this, we cap-
ture the inherited disjoint set information. Fig-
ure 8 shows the effect created when the second
cmp statement is processed. The cmp statement
was guarded, so the entries in the column of the
guarding predicate instance of P3 are copied into
the the columns of the newly defined instances
of P4 and P5. The vector allocated to guarding
predicate P3 was determined from LDT[3]. The
complement bits are set as described below.

– An Unguarded cmp. If the cmp is not guarded,
or guarded by P0 (the constant TRUE), the vec-
tors of the newly defined predicates remain cleared.
Figure 9 shows the PIT after the third cmp state-
ment is encountered. Only the complement bits
are set according to the next rule. Notice that
the second instance of P5 has different disjoint-
ness information than the first instance and that
the entry in the LDT for P5 pointer to the last
definition.

• Set Bit for Complement Predicate. The two pred-
icates defined in an unconditional cmp statement are
always disjoint. We set the location of the comple-
mentary predicate in each of the vectors to indicate
this.

Figure 9 shows the complement bits set for the third
cmp. P5(2) and P6 are complementary predicates. P5(2)
is allocated vector 4, so this location is set in vector 5
allocated to P6.

4.6 Predicates Defined False
Statements guarded on false predicates are by definition

not on the executed path. Consequently, they never create
dependencies and can be considered to be disjoint from ev-
ery valid path. Their relationships to other invalid paths
are inconsequential. The PIT can reflect this information.
When a false predicate definition is encountered, the com-
plete associated row and column in the PIT will be set.

5. METHODOLOGY
We created an EPIC simulator using the Itanium ISA de-

rived from SimpleScalar [8] called IA64SimpleScalar. We
extended the baseline SimpleScalar model to simulate the
IA64 ISA in 5 areas. First, we added the ability to model
in-order execution with detection and enforcement of false
(WAW) dependencies. Second, we extended the simulator
to support the IA64 predicated instruction set. One of the
most significant changes in this area was the need to in-
clude the possibility of multiple definitions for the use of
a register. Multiple definitions exist when the same regis-
ter is defined along multiple paths that are joined into one
through if-conversion. IA64 supports software pipelining,
and we implemented the functionality of rotating registers
along with specialized instructions that implicitly re-define
predicate registers. Another important feature of the IA64
ISA is its support for control and data speculation [13]. To
support this feature, we modeled the implementation of the
ALAT, with its related operations and penalties. Finally,

we added the ability to detect bundles and stop bits and
appropriately issue instructions using this information.

Our simulator uses instruction traces instead of emula-
tion. Our traces are generated on IA64 machines running
Linux through the ptrace system interface [11]. This allows
a parent program to single-step a spawned child. For each
instruction in the trace, we record the information necessary
to simulate the machine state. For all instructions, we record
the instruction pointer, the current frame marker [2] and
the predicate registers. In addition, we record the effective-
address for memory operations and the previous function
state for return. The data collected is written to a trace file.
IA64SimpleScalar then reads in the trace file to simulate the
program’s execution.

IA64SimpleScalar decodes the traces using an opcode li-
brary containing a record for each IA64 instruction, and
a library that interprets each instruction. This was built
from the GNU opcode library that contains opcode masks to
match the instruction, operand descriptions, mnemonic, and
type classification. We enhanced this by adding a unique in-
struction identifier, quantity of register writers, and target
Itanium functional unit.

In this paper we used a number of small benchmarks, cho-
sen for structure which would produce predication. Two of
the benchmarks we use are from the Trimaran System [1].
These include mm and sqrt. In addition, we included a pro-
gram that completes an exchange sort, a program that com-
putes the maximum subsequence found in a list of num-
bers and test program called nested created in an effort
to find a program that contained more if-conversion. Ta-
ble 1 provides a description of each benchmark, the number
of instructions in the trace, the percent of if-converted in-
structions produced, and the initial IPC without the path
optimization applied. All benchmarks were compiled using
the Intel IA64 shrink wrapped C++ Compiler using the -O3
compilation option with profiling. Current production com-
pilers produce minimal code guarded on predication. This
is a result from having most of the predication turned off
in the compiler due to the maturity level of the compiler
and some predicate implementation issues in Itanium. We
believe that future generations of EPIC processors and com-
pilers will perform more predication, and this will increase
the benefit one can expect from using our Disjoint Path
Analysis architecture.

Table 2 shows the parameters used for the simulated mi-
croarchitecture modeled after the Itanium. The functional
unit distribution includes 2 integer units, 2 memory units
(able to execute some IALU instructions as well), 2 float-
ing point units and 3 branch functional units. The latencies
used varied by instruction, and were derived from the Ita-
nium Processor Microarchitecture Reference [4]. The mem-
ory hierarchy is modeled after the Itanium. The L1 data
and instruction caches are 4-way associative, sized at 16K
with 32 byte blocks. The L2 cache is unified, with a capacity
of 96K, 6-way set-associative with base latency of 6 cycles.
Floating point loads bypass the L1 cache and incur an extra
3 cycle latency in the L2 cache (totaling 9). The L2 cache
will allow misses on as many as 8 outstanding cache lines
at once [4]. Loads made from an address to which a value
was stored within the last 3 cycles will bypass the L1 cache,
seeking its value from the L2 cache. The L3 cache is unified,
located off chip in the Itanium implementation. The base
latency is 21 cycles with floating point loads requiring 24.



benchmark trace size % if-conversion % predication io IPC description

exchange 506969 10.2 20 .8083 Exchange sort routine
max subseq 1421327 3.3 57 .7954 Finds maximum subsequence in a list
mm 937964 15 33 1.0373 matrix multiplication and summation
sqrt 560019 11.2 26 .8169 Newton-Raphson - saves partial results in array
nested 4635904 16.9 25 .9726 Nested loops and if-then-elses

Table 1: Presents description of benchmarks simulated including instruction count, percent of dynamic if-
converted instructions and baseline IPCs for in-order and out-of-order execution.

L1 I Cache 16k 4-way set-associative, 32 byte blocks, 2 pipeline cycles
L1 D Cache 16k 4-way set-associative, 32 byte blocks, 2 cycle latency
Unified L2 Cache 96k 6-way set-associative, 64 byte blocks, 6 cycle latency
Unified L3 Cache 2Meg direct mapped, 64 byte blocks, 21 cycle latency
Memory Disambiguation load/store queue, loads may execute when all prior store addresses are known
Functional Units 2-integer ALU, 2-load/store units, 2-FP units, 3-branch
DTLB, ITLB 4K byte pages, fully associative, 64 entries, 15 cycle latency

Branch Predictor meta-chooser predictor that chooses between bimodal and 2-level gshare, each table has 4096
entries

BTB 4096 entries, 4-way set-associative

Table 2: Baseline Simulation Model created to correspond the the parameters set by the Intel Itanium.

Although the Itanium implements two levels of DTLB, we
modeled the DTLB similar to the ITLB as fully associative,
with 64 entries, 4k page size and a 15 cycle latency. Memory
access is assumed to require 80 cycles. All models issue up
to 6 instructions per cycle. Branch misprediction penalty is
a minimum of 8 cycles.

6. DISJOINT PATH ANALYSIS RESULTS
We apply Disjoint Path Analysis Architecture to our Intel

Itanium in-order model derived from [13, 3, 7, 18].
The IA64 compiler bundles instructions into groups of

three. A template included with the bundle is used to de-
scribe to the hardware the combination of functional units
required to execute the operations in the bundle. Stop bits
are inserted in the instruction stream as part of the template
to create instruction groups, or sets of instructions that are
known to be independent of each other. Stop bits guaran-
tee that the instructions issued together are independent of
each other, but give no information on the relationships of
these instructions to those outside of the group.

In the Itanium implementation, bundles are directed or
dispersed to the functional units two at a time, subject to
independence and resource constraints. The full two bundles
(up to 6 instructions) are sent unless a functional unit is
unavailable, or a stop bit is encountered indicating the end
of an instruction group. If any of the instructions entering
the functional units must stall because a data dependence
is not yet satisfied, all of the instructions waiting to begin
execution stall as well. This is essentially a pure in-order
processor requiring a limited scoreboard to determine when
the whole instruction group can start execution.

The scoreboarding mechanism is used to detect depen-
dencies between instructions outside of instruction groups.
It allows dependencies to be broken when either the pro-
ducing or consuming instruction is found to be guarded by
a predicate evaluated to false. Our Disjoint Path Analysis
architecture focuses on eliminating these false dependencies
allowing instructions to start executing a little earlier as de-
scribed in Section 2.1.
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Figure 10: Disjoint Path Analysis results. Re-
sults show the percent speedup obtained inside of
if-converted regions when 4 and 16 entries are used
per RAT register definition.

6.1 Results
Figure 10 shows the percent speedup achieved using the

Disjoint Path Analysis architecture. Results are shown for a
RAT with 4 and 16 possible definitions per register. These
results show the percent speedup over the percent of code
executed in if-converted regions. Table 1 shows that only
3% to 17% of the executed code was in if-converted regions.
The production compiler we used in this study was overly
conservative in the if-conversion regions it formed, and fu-
ture compilers most likely will create larger predicated re-
gions. On average, results with a RAT of size 4 produced
speedups of 4.1%, and results with a RAT of size 16 pro-
duced speedups of 4.8%

Figure 11 shows the percent speedup over the complete
execution of the program if every use knew exactly which
definition it should be dependent upon. This shows an up-
per bound of the potential benefit possible for knowing exact
path information. This is important because if we had per-
fect knowledge of the values each predicate definition would
ultimately assume, we could know exactly which dependen-
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Figure 11: Percent speedup achievable over the
complete execution of the program if every use knew
perfectly which definition it depended upon.
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Figure 12: Percent of dependencies removed by Dis-
joint Path Analysis and perfect predicate informa-
tion over the complete execution of the program.
RAW represents Read After Write dependencies
while WAW represents Write After Write depen-
dencies.

cies to set. No dependencies would be set for instructions
guarded by a predicate with the value of false, and the only
definition to reach a use in a statement guarded by a true
predicate would be the last definition guarded by a true
predicate. The results show that having perfect information
can achieve on average a speedup of 5.3% for the complete
execution of the program.

Next, we compare the number of dependencies removed
using our Disjoint Path Analysis Architecture with a four
entry PIT set against those removed using perfect predicate
information. As shown in Figure 12, the average number
of Read After Write (RAW) dependencies removed was a
little over 1% using the Disjoint Path Architecture while the
number of Write After Write (WAW) dependencies removed
was less than half of that. The average for having perfect
predicate information was over 16% for RAW dependencies
and almost 10% for WAW dependencies. This is because,
using perfect predicate information, no dependencies were
set between any producers or consumers guarded by false
predicates. Note, Write After Read (WAR) dependencies
are not an issue due to the nature of in-order processors.

The perfect predicate information knew of all false defi-
nitions. In contrast, Disjoint Path Analysis could only de-
termine if a producer and consumer were on the same path.
A dependence could initially be set between a producer and
consumer both of which had false guarding predicates. Note
that these dependencies will be broken by the scoreboard as

soon as the producer or consumer is known to be guarded
by false.

7. CONCLUSIONS
In this paper, we present an approach to dynamic path

analysis used to expose erroneous data dependencies in the
current Itanium architecture and in an out-of-order imple-
mentation of an IA64 architecture. We present the Disjoint
Path Architecture that allows us to re-create predicate re-
lationship information at runtime in hardware. This pred-
icate relationship information provided by the addition of
the Path Information Table and related logic allows us to
answer the question “can a given definition be on the same
path for a use?” If the answer to this question is no, then
that definition is not considered as a possible dependence.
Our results showed that the number of RAW dependencies
set in if-converted regions could be reduced by 14% using
Dynamic Path Analysis with the current Itanium Implemen-
tation. As a result, IPC could be increased up to 6% in these
regions.

The benchmarks we used for this study were compiled
using the Intel IA64 shrink wrapped C++ Compiler using
the -O3 compilation option with profiling. Current produc-
tion compilers produce minimal code guarded on predica-
tion. This is a result from having most of the predication
turned off in the compiler due to the maturity level of the
compiler and some predicate performance issues in Itanium.
We believe that future generations of EPIC processors and
compilers will perform more predication, and this will in-
crease the benefit one can expect from using our Disjoint
Path Analysis architecture.

We presented results using our Disjoint Path Analysis ar-
chitecture for a pure in-order processor. A potential applica-
tion of this technique would be for an IA64 implementation
employing out-of-order execution. For this model, where in-
structions can begin execution as soon as their operands are
ready, it is even more important to eliminate false dependen-
cies, thus exposing additional instruction level parallelism.
Comparing the use of this technique with the select-µop ap-
proach discussed in Section 3 is a topic of interest for future
work.

We recognize that this dynamic dependence analysis adds
additional hardware complexity. An alternative would be
to generate this disjointness information in the compiler,
augmenting the analysis that already exists. The disjoint-
ness information could be communicated to the hardware
by a renaming phase late in the scheduling process. Sepa-
rate names could be given to different instances of the same
variables determined to be on different paths. The trade-
off, however, would be an increased data dependence depth.
When two paths rejoin, a form of phi instruction would have
to be inserted to determine which definition reaches a use.
This is a topic of interest for future work as well.
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