
Appeared in the Workshop on Interaction between Compilers and Computer Architectures, San Antonio, Texas, Feb. 1997

Procedure Mapping Using Static Call Graph Estimation

Amir H. Hashemi David R. Kaeli Brad Calder

Dept. of Electrical and Computer Engineering Dept. of Computer Science and Engineering

Northeastern University University of California, San Diego

Boston, MA La Jolla, CA

fahashemi,kaelig@ece.neu.edu calder@cs.ucsd.edu

Abstract

As the gap between memory and processor perfor-
mance continues to grow, it becomes increasingly im-
portant to exploit cache memory e�ectively. One tech-
nique used by compiler and linkers to improve the per-
formance of the cache is code reordering. Code re-
ordering optimizations rearrange a program so that
sections of the program with temporal locality will be
placed next to each other in the �nal program layout.

A number of software approaches to code reorder-
ing have been proposed. Their goal is to reduce the
number of cache line con
icts. Most of these schemes
use pro�le data in order to reposition the code in the
address space. In this paper we present a link-time
procedure mapping algorithm which uses a call graph
constructed without the use of pro�le data. We will re-
fer to this scheme as static call graph estimation.
In this approach we use program-based heuristics to

statically estimate the behavior of the call graph. Then
once the estimated weighted call graph is formed, we
can employ various procedure remapping algorithms.
Our results show that we were able to reduce instruc-
tion cache miss rates by 20% on average when using
our estimated static call graph with modern procedure
reordering algorithms.

1 Introduction

Pro�le-based feedback optimizations have been used

extensively to tune the performance of programs [3, 8].

Pro�le-based methods use a set of sample inputs to

pro�le an application. These pro�les are then fed back

into an optimizer and are used to train the application

to the data. The main drawback of pro�le-based op-

timizations is the extra time and e�ort required to

�rst pro�le the program, and then recompile using

the pro�le. It can also be hard to �nd a represen-

tative input suitable for the proposes of pro�ling. If

a developer can not a�ord the time and e�ort to per-

form pro�le-based optimizations, the compiler must

rely on static techniques to estimate the program's

behavior. To this extent, researchers have examined

using program-based heuristics and machine learning

techniques to statically estimate a program's behavior

at compile-time.

Program-based estimationmethods attempt to pre-

dict branches and estimate the control
ow of a

program based on a program's structure. Some of

these techniques use heuristics based on local knowl-

edge that can be encoded in the branch architec-

ture [10, 14]. Other techniques rely on applying

heuristics based on more detailed control
ow anal-

ysis [1, 16, 17]. Still others have examined using ma-

chine learning techniques to statically predict the con-

trol
ow at compile-time [2]. In [5], Hank et al. showed

that these program-based heuristics can be used to

accurately guide pro�le-based optimizations, employ-

ing techniques such as superblock formation, achieving

performance improvements close to those realized by

using pro�le data. While many of these techniques

have been shown to be e�ective in predicting program

ow, none of these previous studies have attempted to

apply their heuristics to procedure reordering.

Prior work in procedure reordering used pro�les to

guide the program layout in order to reduce instruc-

tion cache con
icts [7, 6, 11]. In this paper we examine

how to perform procedure reordering using heuristics

to estimate the behavior of a program's call graph. By

inspecting the high-level language branch constructs

(e.g., loops, switches, conditional branches), we stati-

cally predict how often each edge in the call graph is

1

traversed. These estimated weights are then used to

guide existing procedure reordering algorithms.

In this paper we describe our heuristics for stat-

ically estimating the call graph, and provide cache

simulation results showing the improvement in the

miss rate after applying procedure reordering opti-

mizations. In x2 we will discuss prior work in program-

based control
ow estimation. In x3 we describe the

heuristics we use to statically estimate a call graph's

behavior. In x4 we describe the experimental method-

ology and the procedure reordering algorithm used in

our results. We then provide cache simulation re-

sults showing the e�ects of using our estimated call

graph edges to guide procedure reordering optimiza-

tions in x5. In x6 we conclude, and discuss directions

for future work.

2 Background

In this section we discuss existing approaches to

program-based static branch prediction and control

ow estimation. Statically estimating the control
ow

graph of a program starts with static branch predic-

tion. Correctly predicting the probability of \taking a

branch" will allow us to have a better chance at accu-

rately estimating which paths in the control
ow will

be the most important.

One of the simplest program-based methods

for static branch prediction is called \backward-

taken/forward-not-taken" (BTFNT). This technique

relies on the heuristic that backward branches are usu-

ally loop branches, and as such, are likely to be taken.

One of the main advantages of this technique is that it

relies solely on the sign bit of the branch displacement,

which is already encoded in the instruction. While

simple, BTFNT is also quite successful, since many

programs spend a lot of time executing inside of loops

and the backwards branch in a loop is correctly pre-

dicted as taken when using the BTFNT heuristic.

In recent work, Ball and Larus [1] showed that ap-

plying a number of simple program-based heuristics

can signi�cantly improve the static branch prediction

miss rate over BTFNT on tests based on the condi-

tional branch operation. Their heuristics use infor-

mation about branch opcodes, operands, branch suc-

cessor blocks, looping constructs, as they try to en-

code knowledge about common programming idioms.

Two questions arise when employing this type of a ap-

proach: 1) which heuristics should be used in general,

and 2) how to prioritize heuristics when more than one

applies to a given branch. Ball and Larus describe

seven heuristics that they considered successful, but

also noted that \We tried many heuristics that were

unsuccessful. [1]" The prioritization problem has ex-

isted in the arti�cial intelligence community for many

years and is commonly known as the \evidence com-

bination" problem. Ball and Larus considered this

problem in their paper and decided that the heuris-

tics should be applied in a �xed order; thus the �rst

heuristic that applied to a particular branch was used

to determine what direction it would take. They de-

termined the \best" �xed order by conducting an ex-

periment in which all possible orders were considered.

In a related paper, Wu and Larus extended the

heuristic-based methods of Ball and Larus [17] to stat-

ically estimate the edge weights of the program's con-

trol
ow graph. In that paper, their goal was to de-

termine branch probabilities instead of simple branch

prediction in order to provide program-based pro�le

estimation. Wu and Larus abandoned the simplistic

evidence combination function of using a best �xed

order in favor of an evidence combination function

borrowed from Dempster-Shafer theory [4, 13]. By

making some fairly strong assumptions concerning the

independence of di�erent attributes, the Dempster-

Shafer evidence combination function can produce an

estimate of the branch probability from any number

of sources of evidence. The sources of evidence used

by Wu and Larus were the heuristic's branch predic-

tion success from the paper of Ball and Larus [1].

Their algorithmpropagated these branch probabilities

throughout each procedure's basic block graph. After

the intra-procedural estimated edge weights were cal-

culated, the algorithm then propagated the call fre-

quencies along the call graph edges to compute the

inter-procedural estimated call edge weights.

Wagner et al. [16] also used heuristics similar to

those of Ball and Larus to perform program-based pro-

�le estimation. They also applied the heuristics in a

�xed order. They used the heuristic probabilities as

did Wu and Larus, but instead used Markov Model-

ing to propagate the probabilities through the control

ow graph [12]. This creates basic block graphs and

call graphs with estimated edge weights.

Both the Wu and Larus and the Wagner et al.

study examined statically estimating the program's

behavior. What they did not provide are results on

how e�ective these estimations would be when ap-

plied to weighting call graphs used for code reordering.

To our knowledge, no study has examined the perfor-

mance of using these statically estimated call graphs

to guide pro�le-based optimizations like procedure re-

ordering. In this paper we use a very small subset

of these previously proposed heuristics to create es-

2

Variable Value

wi 10

wl 10

wr 200

Table 1: Weight propagation factors

timated call graph edge weights. We then use these

estimated edge weights to guide procedure reordering

optimizations. The main contribution of this paper

is our examination into how e�ective static call graph

estimation is when performing optimizations that are

typically guided by pro�les.

3 Static Call Graph Estimation

In this section we describe the heuristics we used for

our static call graph estimation, and describe how we

propagate these estimated edge weights throughout

the call graph. The goal of static call graph estima-

tion is to assign estimated call edge frequencies based

on procedure call sites. Locations of interest are con-

trol transfer constructs present in high-level language

codes. We are especially interested in loops (e.g., do

while, for loops), switch statements (e.g., switch/case

blocks), and conditional branches (e.g., if/then/else).

Our algorithm begins by constructing a call graph,

where the nodes of the graph represent the procedures

in the program, and the edges connecting the nodes

represent call paths. Multiple call sites to a single

procedure produce a single edge in the graph. It is

important to note that this graph is directed, from

caller to callee. We need to indicate direction in order

to propagate weights in the proper direction.

One issue that needs to be addressed when con-

structing our call graph is how to handle the occur-

rence of cycles (i.e., recursions) in the graph. This can

be handled either during the construction of the call

graph, or during the propagation of the edge weights.

We decided to handle recursive calls by detecting them

during construction, and assigning a weight at graph

creation time. As each edge is added, we see if there

are alternative paths between the caller and callee.

If another path exists directed from the callee to the

caller in the already graphed procedures, we will iden-

tify the current edge as a recursion. In this case,

we will assign the edge a �xed recursion weight (wr),
breaking the recursion.

After the initial call graph has been formed, we

start from the starting procedure (i.e., main), and

assign weights to the edges in our graph. We tra-

verse the graph in a depth-�rst order assigning edge

weights in this manner. We begin by assigning an ini-
tial weight (wi) to the starting procedure and propa-

gate this weight to the children of this procedure using

four heuristics: postdom-entry, loop, cond-branch, and
switch. The following list describes each of these four

heuristics. In the description, we will refer to node X

as the parent procedure, and node Y as the child pro-

cedure. We use the following rules to determine the

weight of edge X ! Y . All heuristics are used where

they apply (i.e., multiple heuristics may be applied for

a single procedure call site).

1. Postdom-entry: if the basic block containing

the procedure call Y post-dominates all the entry

points into procedure X, then we know procedure

Y will be called ifX is executed. Assign the node

weight of procedure X to a call edge X !Y, if

the call to procedure Y will always be executed

whenever procedure X is executed.

2. Loop: give a larger weight to procedure call edges

that are contained within loops. Assign the node

weight of procedure X multiplied by a constant

loop weight (wl) to a call edge X ! Y , if the

call to procedure Y is contained within a loop in

procedure X.

3. Cond-branch: predict that for a conditional

branch point that both paths have equal prob-

ability of being taken. Assign the node weight of

procedure X divided in half to a call edge X ! Y ,

if the call to procedure Y is contained within a

conditional path in procedure X.

4. Switch: predict that each switch case has an

equal probability of being executed. Assign the

node weight of procedure X, divided by the num-

ber of cases appearing in the switch block, to a

call edge X ! Y , if the call to procedure Y is

contained within a subcase of a switch block in

procedure X.

Figure 1 shows an example of how �ve procedures A-E

are assigned weights, based on their individual loca-

tions in C source code. Dashed lines indicate weights

that are propagated.

Table 1 shows the values we use for the initial
weight (wi), the loop weight (wl), and the recursion
weight (wr) for the results in this paper. These values

where chosen by trial and error. Future work we will

study what e�ects varying these values have on the

procedure mapping algorithms.

3

void A(int a)
{
 int x;
x = B(a);
switch (x) {
case ’0’ :

x = E();
break;

case ’1’ :
...

int B(int b)
{
 int i, y, z = 0;
if (b < 100)
y = C(b);

for (i = 0; i < 100; i++)
z += D(i);

...

A

B

C D

E

wi
wi

wi/2 wi/wl

wi/#cases

}

}

Figure 1: A sample call graph for procedures A-E. Code snipits for procedures A and B are also shown. Procedure

A is the entry node, and is assigned an initial weight wi. This weight is then propagated throughout the rest of

the call graph based on the heuristics described above. Each edge assumes the propagated weight. Each node

assumes the weight of all edges entering the node.

The magnitude of the edge weights in the statically-

weighted call graph do not have much signi�cance.

Their relative weights are much more important,

since the pro�le-based procedure reordering algo-

rithms function on the edge weights. If the estimated

edge weights mirror those of the pro�led edge weights,

our static call graph estimation should result in proce-

dure orderings similar or close to the those generated

using dynamic pro�les.

4 Experimental Methods

We modi�ed gcc version 2.7.2 to build the estimated

call graphs needed as input to our procedure map-

ping algorithm. This provided us with the interme-

diate representation necessary to guide our heuristics

described in x3.

The applications we study are taken from the

SPEC92 benchmark suite and a Unix utility program

taken from the gnu toolset. In the �nal presentation

of this paper, we will have results from the SPEC95

benchmark suite and as well as a number of other

programs with much higher cache miss ratios. For

espresso and li we provide results across a range of

inputs. In the �nal version of this paper, we will in-

clude a range of inputs for all of the programs studied.

To examine the performance of our statically es-

timated call graphs we apply these estimated edge

weights to an existing procedure reordering algorithm.

The procedure reordering algorithm we chose is our

color mapping algorithm described in [6]. The algo-

rithm processes the edges from the heaviest weighted

to the lightest weighted. When processing an edge,

the procedure's associated with the edge are mapped

to the address space, and each procedure is assigned

the cache lines (colors) used by that procedure in

the address space. These colors are then used to

avoid cache con
icts with other procedures as they

are mapped into the address space (see [6] for a com-

plete description of the algorithm). Other algorithms

have been proposed for procedure reordering such

as the depth-�rst algorithm of Hwu and Chang [7],

and the greedy edge weight algorithm of Pettis and

Hansen [11]. In [6], we showed that our color map-

ping algorithm consistently outperformed the Pettis

and Hansen greedy algorithm. Therefore, in this pa-

per we only provide results for our cache line color

mapping algorithm.

To study the e�ectiveness of procedure reordering

we used the ATOM trace-driven simulation tool [15].

ATOM is an execution-driven simulation tool for the

DEC Alpha processor. Using ATOM, we model an

8KB direct-mapped instruction cache with a 32 byte

4

line, similar in design to the DEC Alpha 21064 and

21164 �rst-level instruction cache.

5 Results

In this section, we provide simulation results for

the Original program layout, the procedure layout

generated using our Static estimated call graph edge

weights, and the layout using a Dynamic pro�le-

generated call graph. These results are shown in Ta-

ble 2. The results show that static call graph estima-

tion can be e�ectively used to determine edge weights.

While the average miss rate for programs studied was

around 1%, using procedure ordering based on esti-

mated call graph edge weights reduced the miss rate

to 0.8%, a 20% reduction. Compared to pro�le-driven

repositioning, the miss rate was reduced from 1%

down to 0.6% on average. This shows that our static

call graph estimation achieved almost half the reduc-

tion in misses that the dynamic pro�le achieved. This

is a very encouraging result, indicating that static code

repositioning can signi�cantly improve a program's

performance.

We can see from Table 2 that for all of the bench-

marks and input combinations, we obtain a reduction

in the cache miss rate, except for a couple of inputs

for espresso. When using the dc1 input to espresso,

the instruction cache miss rate actually increases for

our algorithm. Note that this input generates the

shortest trace, and thus is more susceptible to small

di�erences. The actual number of misses between the

2 runs di�er by less than 900 instruction cache misses.

The result for bison is also of special interest. Here

we are actually outperforming the pro�le-driven color-

based repositioning. This highlights the fact that pro-

�le data does not capture the temporal locality exhib-

ited by a single procedure, and that �nding an optimal

mapping to minimize con
icts is NP-complete [9].

To further improve on these results, we plan to in-

vestigate the following issues:

1. Incorporate static branch prediction techniques

to improve upon the one-half heuristic currently
used for conditional branches.

2. Identify commonly called, but infrequently vis-

ited, procedures (e.g., exit(), error()).

3. Provide a more deterministic approach for loop

iteration estimation.

4. Examine alternative techniques for propagating

the estimated edge weights throughout the call

graph.

5.1 Synthetic graphs versus pro�le-

driven graphs

To judge how well our heuristics compared to the dy-

namic pro�les, we next examine some statistics com-

paring the call graphs generated using estimation with

the pro�le-generated call graphs. Our procedure map-

ping algorithm uses a threshold value on the call graph

edge weights in order to split a graph into 2 sets [6].

The edges and procedures with weights above the

threshold value are included into the popular set of

procedures and edges, and the remaining edges and

procedures are labeled as unpopular. We compute

the weight of a procedure (node) as the sum of all

edges weights entering and exiting a node. The al-

gorithm concentrates on accurately mapping out the

popular procedures, since the unpopular procedures

rarely cause a change in control
ow. For our ap-

proach to be useful, a high percentage of the popu-

lar nodes that reside in the dynamically-formed call

graphs should also appear in the popular set for the

statically-formed graphs.

In Table 3 we compare the popular sets generated

for the programs we examined. In the Table, the sec-

ond and third columns are the dynamic pro�le (DT)

and static (ST) thresholds used when pruning the call

graphs, splitting the graphs into the popular and un-

popular parts. The fourth and �fth columns are the

dynamic pro�le (D Siz) and static (S Siz) sizes of the

popular procedure sets. The sixth column (Int) is the

intersection between these two sets. The seventh col-

umn (Total) is the number of procedures in the ex-

ecutable. The next column, (Static) shows the per-

centage of popular procedures in the static set that

were also in the dynamic pro�le set. The last column,

W Crrl, shows the percentage of popular procedures

executed that where both in the static set and the dy-

namic pro�le set. This is calculated as the (dynamic
weight of the intersection set)/(total dynamic weight
of the entire dynamically-generated call graph. This

last column gives an indication of how close the static

call graph estimation comes to correctly �nding the

popular procedures. The results show that we come

close to partitioning the program into popular sets for

espresso and li, with 91% and 87% accuracy. For

the programs bison and eqntott we achieve a much

less success, only capturing 47%, percentage of proce-

dures in the estimated popular set. As can be seen

in Table 3, one can adjust the correlation by adjust-

ing the threshold value for the statically-formed call

graphs.

5

Instrs Traced Miss Rate

Program Input in Millions Original Static Dynamic

bison objc pars.y 77 M 1.7 0.9 1.1

espresso Z5xp1 29 M 1.3 1.1 0.9

bca 486 M 0.3 0.2 0.1

cps 591 M 0.4 0.4 0.3

dc1 .9 M 2.8 2.9 2.3

mlp4 84 M 1.1 0.9 0.8

opa 136 M 0.6 0.6 0.5

ti 74 M 0.6 0.4 0.4

tial 1145M 0.9 0.6 0.5

eqntott int pri 3 2021 M 0.2 0.1 0.1

li 8-queens 1314 M 1.5 0.8 0.3

9-queens 6938 M 1.4 0.8 0.3

Average 1.0 0.8 0.6

Table 2: Trace Driven Simulation Results.

Program DT ST D Siz S Siz Int Total % Static % W Crrl

bison 1000 100 38 87 23 331 26.4 47.4

1000 200 38 77 22 331 28.6 47.4

1000 500 38 63 19 331 30.2 44.9

espresso 200 8000 94 177 85 539 48.0 91.6

200 10000 94 174 85 539 48.9 91.4

200 20000 94 162 83 539 51.2 84.3

eqntott 200 50 35 47 22 498 46.8 47.9

200 200 35 49 22 498 44.9 47.9

200 800 35 42 19 498 45.2 47.9

li 200 500 88 110 56 575 50.9 86.9

200 800 88 100 52 575 52.0 81.0

200 1200 88 89 47 575 52.8 87.1

Table 3: Variance in popular procedures in the estimated call graph.

6 Summary

Instruction caches are commonly used to bridge the

performance gap between the speed of the processor

and the supporting memory. Code-reordering com-

piler optimizations can be employed to make better

use of a cache by reducing cache con
icts and improv-

ing page usage. These optimizations are traditionally

guided by pro�les which are fed back into an optimiz-

ing compiler. Even though pro�le-based optimizations

are e�ective, they are often expensive due to the ex-

tra time needed to perform program pro�ling. Code

developers may choose not to use these optimizations

because of this feedback step, or they might not be

able to use the optimizations if their compiler does

not provide any pro�ling mechanism. An alternative

approach is to attempt to reorder statically (i.e., at

compile time) by estimating the behavior of the pro-

gram. This would allow these optimizations to be ap-

plied even in the absence of pro�le information.

In this paper, we examined the use of static call

graph estimation in order to perform procedure map-

ping optimizations to reduce instruction cache con-

icts. We estimated the edge weights in the static

call graph using simple heuristics which take into con-

sideration the control
ow structure of the program

(e.g., loops, conditional branches, switch statements).

We then used these estimated call graph edge weights

to guide our color-based procedure reordering algo-

rithm [6]. Our results show that the static call graph

estimation was able to reduce the cache miss rate of

the original program on average by 20%. In compar-

6

ison to using pro�les to perform the same optimiza-

tions, the dynamic pro�les reduced the miss rate of the

original program on average by 40%. This indicates

that we were able to achieve almost half of the per-

formance improvement typically seen by pro�le-based

optimizations when using static call graph estimation.

We see many future directions for this work. We

are currently modifying our algorithm to include more

detailed branch heuristics and to use normalized prob-

abilities for the estimated edge weights as in previous

research [1, 16, 17]. We plan to extend the heuristics

of Ball and Larus to more accurately predict which

call paths will be frequently executed, and to examine

other evidence combination techniques to propagate

the estimated edge weights in the call graph. In addi-

tion, we plan on examining how well these techniques

can be applied to other pro�le-based optimizations

such as basic block reordering, inlining, and procedure

splitting.

References

[1] T. Ball and J.R. Larus. Branch prediction for

free. In Proceedings of the SIGPLAN'93 Confer-
ence on Programming Language Design and Im-
plementation, pages 300{313, June 1993.

[2] B. Calder, D. Grunwald, M. Jones, D. Lindsay,

J. Martin, M. Mozer, and B. Zorn. Evidence-

based static branch prediction using machine

learning. ACM Transactions on Programming
Languages and Systems, 19(1), 1997.

[3] P. P. Chang, S. A. Mahlke, and W. W. Hwu. Us-

ing pro�le information to assist classic compiler

code optimizations. Software Practice and Expe-
rience, 21(12):1301{1321, 1991.

[4] A. P. Dempster. A generalization of bayesian in-

ference. Journal of the Royal Statistical Society,
30:205{247, 1968.

[5] R. Hank, S. Mahlke, R. Bringmann, J. Gyllen-

haal, and W. Hwu. Superblock formation using

static program analysis. In 26th International
Symposium on Microarchitecture, pages 247{256.
IEEE, 1993.

[6] A.H. Hashemi, D.R. Kaeli, and B. Calder. E�-

cient procedure mapping using cache line color-

ing. WRL Research Report 96/3, October 1996.

[7] W.W. Hwu and P.P. Chang. Achieving high in-

struction cache performance with an optimizing

compiler. In 16th Annual International Sympo-
sium on Computer Architecture, pages 242{251.
ACM, 1989.

[8] G.P. Lowney, S.M. Freudenberger, T.J. Karzes,

W.D. Lichtenstein, R.P. Nix, J.S. O'Donnell, and

J.C. Ruttenberg. The multi
ow trace scheduling

compiler. Journal of Supercomputing, 7:51{142,
1993.

[9] S. McFarling. Program optimization for instruc-

tion caches. In Proceedings of the Third Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS III), pages 183{191, April 1989.

[10] S. McFarling and J. Hennessy. Reducing the cost

of branches. In 13th Annual International Sym-
posium of Computer Architecture, pages 396{403.
Association for Computing Machinery, 1986.

[11] K. Pettis and R.C. Hansen. Pro�le guided code

positioning. In Proceedings of the ACM SIG-
PLAN '90 Conference on Programming Language
Design and Implementation, pages 16{27. ACM,

ACM, June 1990.

[12] C.V. Ramamoorthy. Discrete markov analysis of

computer programs. In 20th National Conference,
pages 386{391. ACM, 1965.

[13] G. Shafer. A Mathematical Theory of Evidence.
Princeton University Press, Princeton, NJ, 1976.

[14] J. E. Smith. A study of branch prediction strate-

gies. In 8th Annual International Symposium
of Computer Architecture, pages 135{148. ACM,

1981.

[15] A. Srivastava and A. Eustace. ATOM: A sys-

tem for building customized program analysis

tools. In Proceedings of the Conference on Pro-
gramming Language Design and Implementation,
pages 196{205. ACM, 1994.

[16] T.A. Wagner, V. Maverick, S. Graham, and

M. Harrison. Accurate static estimators for pro-

gram optimization. In Proceedings of the Con-
ference on Programming Language Design and
Implementation, pages 85{96, Orlando, Florida,
June 1994. ACM.

[17] Y. Wu and J.R. Larus. Static branch frequency

and program pro�le analysis. In 27th Interna-
tional Symposium on Microarchitecture, pages 1{
11, San Jose, Ca, November 1994. IEEE.

7

